二维随机变量及条件分布
- 格式:ppt
- 大小:3.36 MB
- 文档页数:2
§3.2 二维随机变量的独立性与条件分布1`二维随机变量的独立性定义3.2.1 设(,),(),()X Y F x y F x F y 依次为(,),,X Y X Y 的分布函数,若对任意实数,x y 都有(,)()()X Y F x y F x F y =则称两个随机变量X 与Y 相互独立.(1) 离散型随机变量的独立性定义3.2.2如果(X,Y )是二维离散型随机变量,如果对于它们的任意一对取值i x 及j y ,对(X ,Y )的任意一对取值(),i j x y ,都有{,} {} { } i j i j P X x Y y P X x P Y y ===== i ,j =1,2,… (3.2.2) 则称离散型随机变量X 和Y 是独立的。
例3.2.1例3.1.1中两个随机变量X 与Y 是相互独立吗? 解 由例3.1可得2222210,,,915p p p ⋅⋅===显见22 2..2,p p p ≠⋅因此X 与Y 不独立.(2) 连续型随机变量的独立性定义3.2.3 如果(X,Y )是二维连续型随机变量,其联合概率密度为p (x,y ),则X 与Y 也都是连续型随机变量,它们的概率密度分别为(),()X Y p x p y , 若对任意实数,x y 都有(,) (),()X Y p x y p x p y = 则称连续型随机变量X 和Y 是独立的。
例3.2.2本章第一节例3.2中随机变量X,Y 的边缘概率密度分别为p X (x )=⎰+∞∞-p (x,y )dy=2()2042, 0,0, x y x edy e x +∞-+-⎧=≥⎪⎨⎪⎩⎰其它.p Y (y )=⎰+∞∞-p (x,y )dx=2()2y 04x 2, y 0,0, x y ed e +∞-+-⎧=≥⎪⎨⎪⎩⎰其它.显然有 p (x,y )=p X (x )·p Y (y ), 所以X,Y 相互独立。
第五章 二维随机变量第一节 二维随机变量及其分布一、二维随机变量1、定义:设),,(P S F 为一概率空间,X 、Y 均为S 上的一维随机变量,称二维向量X ),(Y X =为S 上的二维随机变量.2、X 的分布:}{B P ∈X , 2B ∈B . 其中可证:=∈}{B X F ∈∈∈},))(),((|{S e B e Y e X e .若取},|),{(2121y y y x x x y x B ≤<≤<=,那么},{}{2121y Y y x X x P B P ≤<≤<=∈X},{22y Y x X P ≤≤=},{21y Y x X P ≤≤- },{},{1112y Y x X P y Y x X P ≤≤+≤≤-.3、分布函数(1)定义:设),,(P S F 为一概率空间,),(Y X 为S 上的二维随机变量,R ∈∀y x ,,规定:},{),(y Y x X P y x F ≤≤=. 称),(y x F 为),(Y X 的分布函数.显然: },{2121y Y y x X x P ≤<≤<),(),(),(),(11122122y x F y x F y x F y x F +--=.(2)性质① R ∈∀y x ,,1),(0≤≤y x F .② ),(y x F 关于y x ,均为单调不减函数.③ 0),(=-∞y F ,0),(=-∞x F ,0),(=-∞-∞F ,1),(=+∞+∞F . ④ ),(y x F 关于y x ,均为为右连续函数.⑤ R ∈<<∀2121,y y x x ,0),(),(),(),(11122122≥+--y x F y x F y x F y x F .注:①~⑤为分布函数的特征性质.反之亦然.例1掷硬币三次,X 表示出现正面的次数,|)3(|X X Y --=,求),(Y X 的分布函数),(y x F .解:(1) X 的所有可能取值为3,2,1,0,依次记为4321,,,x x x x ,Y 的所有可能取值为3,1,依次记为21,y y .列表如下X样 本 点Y0 (反反反)3 1 (正反反) (反正反) (反反正) 1 2(正正反) (正反正) (反正正)13 (正正正)3(2) 概率情况列表 81},{21===y Y x X P ,83},{12===y Y x X P , 83},{13===y Y x X P ,81},{24===y Y x X P ,其他0},{===j i y Y x X P .(3)求分布. 记}2,1 ,3,2,1|),{(===j i y x A j i ,YX1 3 0 0 8/1 1 8/3 02 8/3 0 38/1A B BA B +=, 显然φ=∈}),{(A B Y X ,那么}),{(}),{(}),{(A B Y X P BA Y X P B Y X P ∈+∈=∈∑∈===∈=By x j i j i y Y x XP BA Y X P )(,},{}),{((4)求分布函数. ∑≤≤===≤≤=yy x x j i j i y Y x XP y Y x X P y x F ,},{},{),(.⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥≥<≤<≤≥≥<≤<≤<≤≥<≤<<<<=.3 ,3 1, ,3 ,32 ,8/7 ;31 ,3 ,8/6 ;3 ,21 ,8/4 ;31 ,21 ,8/3 ;3 ,10 ,8/1;3 ,1 1 0 0,),(y x y x y x y x y x y x y x y x y x F 或或二、边缘分布1、),(Y X 关于X 的边缘分布: ),(lim }{)(y x F x X P x F y X +∞→=≤=.证明:取}{},{},{x X Y x X n Y x X A n ≤=+∞<≤→≤≤=不减,由①②知),(lim y x F y +∞→存在,故)(}{)lim ()(lim ),(lim ),(lim x F x X P A P A P n x F y x F X n n n n n y =≤====∞→∞→∞→+∞→.2、),(Y X 关于Y 的边缘分布: ),(lim }{)(y x F y Y P y F x Y +∞→=≤=. (略)三、随机变量相互独立、定义:设),(y x F 为),(Y X 的分布函数,X 、Y 的分布函数分别为 )(x F X 、)(y F Y ,若R ∈∀y x ,,恒有=),(y x F )(x F X )(y F Y , 则称X 与Y 相互独立.2、X 与Y 相互独立⇔R ∈<<∀2121,y y x x ,恒有}{}{},{21212121y Y y P x X x P y Y y x X x P ≤<≤<=≤<≤<.证明:“⇐” R ∈∀y x ,,由于},{},{y Y x X y Y n x X n ≤≤→≤<-≤<-, }{}{x X x X n ≤→≤<-, }{}{y Y y Y n ≤→≤<-均不减,则},{),(y Y x X P y x F ≤≤=},{lim y Y n x X n P n ≤<-≤<-=∞→}]{}{[lim y Y n P x X n P n ≤<-≤<-=∞→}]{lim }{lim y Y n P x X n P n n ≤<-≤<-=∞→∞→)()(}{}{y F x F y Y P x X P Y X =≤≤=.“⇒”R ∈<<∀2121,y y x x ,有 },{2121y y x x P ≤<≤<ηξ ),(),(),(),(11122122y x F y x F y x F y x F +--=)()()()()()()()(11122122y F x F y F x F y F x F y F x F Y X Y X Y X Y X +--= )]()()][()([1212y F y F x F x F Y Y X X --= }{}{2121y y P x x P ≤<≤<=ξξ.3、X 与Y 相互独立⇔R ⊂∀21,B B ,恒有}{}{},{2121B Y P B X P B Y B X P ∈∈=∈∈.第二节 二维离散型随机变量一、二维离散型随机变量 1、定义:设),,(P S F 为一概率空间,),(Y X 为S 上的二维随机变量,若),(Y X 的取值为有限个或可数个(至多可数),称),(Y X 为S 上的二维离散型随机变量. 显然:),(Y X 为S 上的二维离散型随机变量⇔X 与Y 均为S 上的一维离散型随机变量.2、概率分布:设),(Y X 所有可能取的值为),(j i y x ,令 },{j i ij y Y x X P p ===,称其为二维随机变量),(Y X 的概率分布(分布率)。
二维随机变量分布公式掌握二维随机变量分布的公式二维随机变量的概率分布函数(probability distribution function,简称PDF)是用来描述随机变量取值与其对应的概率之间的关系。
在概率论与数理统计中,我们经常需要对二维随机变量的分布进行建模和分析,因此掌握二维随机变量分布的公式是非常重要的。
一、离散型二维随机变量分布公式对于离散型二维随机变量,其取值只能是有限个或者可列个。
假设随机变量(X,Y)的可能取值为{(x1,y1),(x2,y2),...,(xn,yn)},其对应的概率为{P(X=x1,Y=y1),P(X=x2,Y=y2),...,P(X=xn,Y=yn)}。
离散型二维随机变量的分布可以用概率质量函数(probability mass function,简称PMF)来描述,其计算公式为:P(X=x,Y=y) = P(X=xk,Y=yk) for (x,y) = (xk,yk)其中,xk和yk分别为二维随机变量(X,Y)的取值。
二、连续型二维随机变量分布公式对于连续型二维随机变量,其取值可以是任意实数。
假设随机变量(X,Y)的概率密度函数(probability density function,简称PDF)为f(x,y),则对于任意给定的区域A,有:P((X,Y)∈A) = ∬Af(x,y)dxdy其中,(X,Y)∈A表示(X,Y)在区域A内取值,∬表示对区域A进行二重积分。
从而,我们可以通过计算二重积分来求得连续型二维随机变量的概率。
三、二维随机变量的边缘分布边缘分布是指在二维随机变量(X,Y)的分布中,将其中一个随机变量的取值固定下来,对另一个随机变量的分布进行描述。
对于离散型二维随机变量,边缘分布的计算可以通过将概率加和。
对于连续型二维随机变量,边缘分布的计算可以通过对概率密度函数进行积分。
1. X的边缘分布:P(X=x) = ∑P(X=x,Y=y) for all y(离散型), f_x(x) = ∫f(x,y)dy(连续型)2. Y的边缘分布:P(Y=y) = ∑P(X=x,Y=y) for all x(离散型), f_y(y) = ∫f(x,y)dx(连续型)四、二维随机变量的条件分布条件分布是指在给定另一个随机变量的取值的条件下,对该随机变量的分布进行描述。
第三章 二维随机变量及其分布第一节 基本概念1、概念网络图⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+=⎭⎬⎫⎩⎨⎧→⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧→分布分布分布三大统计分布函数分布正态分布均匀分布常见二维分布独立性条件分布边缘分布连续型分布密度离散型分布律联合分布F t X X X Z Y X Z Y X n 221),,min(max,),(χξΛ2、重要公式和结论例3.1 二维随机向量(X ,Y )共有六个取正概率的点,它们是:(1,-1),(2,-1),(2,0),2,2),(3,1),(3,2),并且(X ,Y )取得它们的概率相同,则(X ,Y )的联合分布},1||,1|:|),{(≤-≤+=y x y x y x D求X 的边缘密度f X (x)例3.3:设随机变量X 以概率1取值0,而Y 是任意的随机变量,证明X 与Y 相互独立。
例3.4:如图3.1,f(x,y)=8xy, f X (x)=4x 3, f Y (y)=4y-4y 3,不独立。
例3.5:f(x,y)=⎩⎨⎧≤≤≤≤其他,010,20,2y x Axy例3.6:设X 和Y 是两个相互独立的随机变量,且X ~U (0,1),Y ~e (1),求Z=X+Y 的分布密度函数f z (z)。
例3.7:设随机变量X 与Y 独立,其中X 的概率分布为,6.04.021~⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡X 而Y 的概率密度为e(1),求随机变量U=1+Y X的概率密度g(u)。