高等数学下册知识点
- 格式:doc
- 大小:116.00 KB
- 文档页数:3
高数下册常用常见知识点高等数学下册常用知识点第八章:空间解析几何与向量代数一、向量及其线性运算1.向量的概念及基本性质:包括向量相等、单位向量、零向量、向量平行、共线、共面等基本概念。
2.向量的线性运算:包括加减法和数乘。
3.空间直角坐标系:包括坐标轴、坐标面、卦限和向量的坐标分解式等。
4.利用坐标进行向量的运算:设向量a=(ax。
ay。
az),向量b=(bx。
by。
bz),则a±b=(ax±bx。
ay±by。
az±bz),λa=(λax。
λay。
λaz)。
5.向量的模、方向角、投影:包括向量的模、两点间的距离公式、方向角、方向余弦和投影等。
二、数量积和向量积1.数量积:包括数量积的概念、性质和计算公式等。
2.向量积:包括向量积的概念、性质和计算公式等。
三、曲面及其方程1.曲面方程的概念:包括曲面方程的定义和基本性质等。
2.旋转曲面:包括旋转曲面的定义、方程和旋转后方程的计算等。
3.柱面:包括柱面的特点、方程和母线的概念等。
4.二次曲面:包括椭圆锥面的方程和图形等。
2.椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$3.旋转椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$4.单叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$5.双叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1$6.椭圆抛物面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=z$7.双曲抛物面(马鞍面):$\frac{x^2}{a^2}-\frac{y^2}{b^2}=z$8.椭圆柱面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$9.双曲柱面:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$10.抛物柱面:$2x=ay^2$空间曲线及其方程:1.参数方程:$\begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases}$,如螺旋线:$\begin{cases}x=a\cos t\\y=a\sin t\\z=bt\end{cases}$2.一般方程:$F(x,y,z)=0$,消去$z$,得到曲线在面$xoy$上的投影。
空间解析几何和向量代数:..sin ,sin 0cos ,cos Pr Pr )(Pr ,cos Pr )()()(222222212121221221221型面积向量积模的一半为三角为平行四边形的面积;几何意义:向量积的模向量积:,两向量之间的夹角:是一个数量数量积:轴的夹角。
与是向量在轴上的投影:空间两点的距离:θθπθθθϕϕb a c b b b a a a kj ib ac b a b a b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M Md zyxz y xzy x z y x zz y y x x z z y y x x u u⋅==⨯=⋅=⨯≤≤++⋅++++=++=⋅=⋅+=+⋅=-+-+-==113,,22,,22211};,,{,1302),,(},,,{0)()()(122222222222222222222220000002220000000000=--=-+=-=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x q p z q y p x cz b y a x ptz z nty y m tx x p n m s t p z z n y y m x x C B A DCz By Ax d c zb y a x D Cz By Ax z y x M C B A n z z C y y B x x A 双叶双曲面:单叶双曲面:、双曲面:同号)(双曲抛物面:同号)(椭圆抛物面:、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距式方程:、一般式方程:,其中、点法式:平面的方程:04222222=-+cz b y a x 、椭圆锥面:多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy yv dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x -=-=-=-+-+-===-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:jyf i x f y x f y x p y x f z l x y fx f l f l y x p y x f z∂∂+∂∂==∂∂+∂∂=∂∂=),(grad ),(),(sin cos ),(),(的梯度:在一点函数的转角。
高等数学下册知识点第七章 空间解析几何与向量代数一、填空与选择1、已知点A (,,)321-和点B (,,)723-,取点M 使MB AM 2=,则向量OM=。
2 已知点A (,,)012和点B =-(,,)110,则AB=。
3、设向量与三个坐标面的夹角分别为ξηζ,,,则cos cos cos 222ξηζ++= 。
4、设向量a 的方向角απβ=3,为锐角,γπβ=-4=,则a = 。
5、向量)5,2,7(-=a 在向量)1,2,2(=b 上的投影等于。
6、过点()121-,,P 且与直线1432-=-=+-=t z t y t x ,,, 垂直的平面方程为_____________________________. 7、已知两直线方程是130211:1--=-=-z y x L ,11122:2zy x L =-=+,则过1L 且平行2L 的平面方程为____________________ 8、设直线182511:1+=--=-z y x L ,⎩⎨⎧=-+=--03206:2z y y x L ,则1L 与2L 的夹角为( ) (A ). 6π (B ).4π (C ).3π (D )2π.9、平面Ax By Cz D +++=0过x 轴,则( )(A )A D ==0 (B )B C =≠00, (C )B C ≠=00, (D )B C ==0 10、平面3510x z -+=( )(A )平行于zox 平面 (B )平行于y 轴(C )垂直于y 轴 (D )垂直于x 轴 11、点M (,,)121到平面x y z ++-=22100的距离为( )(A )1 (B )±1 (C )-1 (D )1312、与xoy坐标平面垂直的平面的一般方程为 。
13、过点(,,)121与向量k j S k j i S--=--=21,32平行的平面方程为 。
14、平面0218419=++-z y x和0428419=++-z y x 之间的距离等于⎽⎽⎽⎽⎽⎽ 。
高等数学下册知识点归纳
高等数学下册的知识点主要包括以下内容:
1. 向量的模、方向角、投影:向量的模是表示向量大小的度量,方向角和方向余弦是描述向量方向的量,投影则是描述向量在另一个向量上的投影。
2. 两向量的数量积、向量积:数量积是两个向量的点乘,结果是一个标量;向量积是两个向量的叉乘,结果是一个向量。
3. 平面及其方程:平面的一般方程、点法式方程等都是描述平面的重要方式。
4. 空间直线及其方程:空间直线的方程包括对称式方程、参数方程等。
5. 空间曲线的切线与法平面:空间曲线的切线方程和法平面方程是描述空间曲线的重要方式。
6. 曲面的切平面与法线:曲面的切平面和法线是描述曲面在某一点的切线和方向的重要方式。
7. 全微分:全微分是函数在某一点的变化率的度量,包括一阶偏导数和高阶偏导数。
8. 偏导计算:偏导数是函数在某个变量上的变化率,对于多元函数来说,偏导数是重要的概念。
9. 二元函数的极限:二元函数的极限是描述函数在某个点附近的性质的重要方式,包括极限的求解和证明。
10. 二重积分:二重积分是计算二维区域上的积分的重要方式,包括定积分和反常积分。
以上是高等数学下册的一些主要知识点,掌握这些知识点有助于理解和应用高等数学的基本概念和方法。
期末高数下册知识总结本文将对高等数学下册的知识进行总结,主要分为以下几个部分:空间解析几何、多元函数与偏导数、重积分、无穷级数与幂级数、常微分方程五个部分。
一、空间解析几何(平面与直线、空间曲线与曲面、空间直角坐标系下的曲线与曲面)空间解析几何是指在空间情形下分析和研究几何形体、几何运动、数学方程和几何方程之间的联系的一门数学学科。
学习空间解析几何可以帮助我们理解空间形体之间的关系以及其运动规律。
1.平面与直线- 平面方程:点法式、一般式、截距式、两平面交线、平面与平面垂直、平行关系- 直线方程:点向式、两点式、一般式、向量叉乘、直线与直线垂直、平行、斜率、角度的概念与求解2.空间曲线与曲面- 空间曲线的方程:参数方程、一般方程- 空间曲面的方程:二次曲面、旋转曲面、柱面、锥面的方程3.空间直角坐标系下的曲线与曲面- 参数方程下的曲线计算:弧长、速度、加速度、切线、法平面、法线- 参数化的曲面计算:一类曲面的面积、体积、切平面、切向量二、多元函数与偏导数多元函数是指具有多个自变量的函数,偏导数是研究多元函数对其中一个自变量求导数的方法。
学习多元函数与偏导数可以帮助我们更加深入地了解多元函数的性质和变化规律。
1.多元函数的极限- 多元函数极限的定义与性质- 极限存在的条件与计算- 多元函数极限与连续函数2.多元函数的偏导数- 偏导数的定义与性质- 高阶偏导数的计算与应用- 隐函数的偏导数3.多元函数的微分与全微分- 多元函数的微分定义与性质- 链式法则与全微分的计算4.多元函数的方向导数与梯度- 方向导数的概念与计算- 梯度的概念与计算- 梯度的几何意义5.多元函数的极值与最值- 多元函数的极值的判定与求解- 条件极值的求解- 二次型的矩阵表示与规范形三、重积分重积分是对多元函数在给定区域上的积分,通过重积分可以计算出在多元函数定义的区域上的一些量的总和。
1.二重积分- 二重积分的概念与性质- 直角坐标系下的二重积分的计算- 极坐标系下的二重积分的计算2.三重积分- 三重积分的概念与性质- 柱坐标系下的三重积分的计算- 球坐标系下的三重积分的计算3.坐标变换与积分- 坐标变换的概念与方法- 二重积分与三重积分的坐标变换4.重积分的应用- 质量、重心、质心的计算- 总质量与平均密度的计算- 转动惯量与转动半径的计算四、无穷级数与幂级数无穷级数是指所含项的个数为无穷多个的数列之和,幂级数是指形如∑\(a_n(x-a)^n\)的形式的级数。
高等数学(下)知识点总结[汇编]
1.常微分方程:常微分方程是涉及未知函数在某个函数域内的导数与该未知函数自身
的关系的方程。
在常微分方程的解法中,可以使用分离变量法、齐次法等方法求解。
同时,也需要掌握一阶线性微分方程、一阶非线性微分方程、高阶线性微分方程等方程的解法。
3.多元函数微积分学:多元函数微积分学是研究多元函数的微积分理论及其应用的学科。
在多元函数微积分学的知识点中,需要掌握多元函数的极限、连续性、偏导数、方向
导数、梯度、多元函数的微分、多元函数的积分等内容。
4.向量代数与空间解析几何:向量代数与空间解析几何是研究向量相关理论及其在空
间解析几何中的应用的学科。
在向量代数与空间解析几何的知识点中,需要掌握向量的基
本运算、向量的数量积与向量积、直线及平面的方程、空间曲面方程等内容。
6.常微分方程的数值解法:常微分方程的数值解法是利用数值方法求解常微分方程的
近似解。
其中,欧拉法、龙格-库塔法等是常用的数值解法。
掌握常微分方程的数值解法
有利于在实际问题中应用数学知识进行求解。
以上就是高等数学下学期的知识点总结。
对于学习这门学科的学生来说,掌握以上知
识点是非常重要的,可以帮助他们更好地应对考试和实际问题的求解。
高等数学下册(同济大学第七版)知识点高等数学下册知识点下册预备知识第八章 空间解析几何与向量代数(一) 向量及其线性运算1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面;2、 线性运算:加减法、数乘;3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式;4、 利用坐标做向量的运算:设),,(z y x a a a a = ,),,(z y x b b b b = , 则 ),,(z z y y x x b a b a b a b a ±±±=±, ),,(z y x a a a a λλλλ= ;5、 向量的模、方向角、投影:1) 向量的模:222z y x r ++= ;2) 两点间的距离公式:212212212)()()(z z y y x x B A -+-+-=3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,,4) 方向余弦:rz r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα5) 投影:ϕcos Pr a a j u =,其中ϕ为向量a 与u 的夹角。
(二) 数量积,向量积1、 数量积:θcos b a b a=⋅1)2a a a =⋅高等数学(下)知识点 2)⇔⊥b a 0=⋅b az z y y x x b a b a b a b a ++=⋅2、 向量积:b a c⨯= 大小:θsin b a ,方向:c b a ,,符合右手规则1)0=⨯a a 2)b a //⇔0=⨯b a z y x z y x b b b a a a k j i b a =⨯ 运算律:反交换律 b a a b⨯-=⨯(三) 曲面及其方程1、 曲面方程的概念:0),,(:=z y x f S2、 旋转曲面: yoz 面上曲线0),(:=z y f C ,绕y 轴旋转一周:0),(22=+±z x y f 绕z 轴旋转一周:0),(22=+±z y x f3、 柱面:0),(=y x F 表示母线平行于z 轴,准线为⎪⎩⎪⎨⎧==00),(z y x F 的柱面 4、 二次曲面1)椭圆锥面:22222zbyax=+2)椭球面:1222222=++czbyax旋转椭球面:1222222=++czayax3)单叶双曲面:1222222=-+czbyax4)双叶双曲面:1222222=--czbyax5)椭圆抛物面:zbyax=+22226)双曲抛物面(马鞍面):zbyax=-22227)椭圆柱面:12222=+byax8)双曲柱面:12222=-byax9)抛物柱面:ay x=2(四)空间曲线及其方程1、 一般方程:⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F 2、 参数方程:⎪⎪⎩⎪⎪⎨⎧===)()()(t z z t y y t x x ,如螺旋线:⎪⎪⎩⎪⎪⎨⎧===btz t a y t a x sin cos 3、 空间曲线在坐标面上的投影⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F ,消去z ,得到曲线在面xoy 上的投影⎪⎩⎪⎨⎧==00),(z y x H(五) 平面及其方程1、 点法式方程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n = ,过点),,(000z y x2、 一般式方程:0=+++D Cz By Ax 截距式方程:1=++cz b y a x 3、 两平面的夹角:),,(1111C B A n = ,),,(2222C B A n = ,222222212121212121cos C B A C B A C C B B A A ++⋅++++=θ⇔∏⊥∏21 0212121=++C C B B A A⇔∏∏21// 212121C C B B A A ==4、 点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离:222000C B A DCz By Ax d +++++=(六) 空间直线及其方程1、 一般式方程:⎪⎩⎪⎨⎧=+++=+++022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程:p z z n y y m x x 000-=-=-方向向量:),,(p n m s = ,过点),,(000z y x3、 参数式方程:⎪⎪⎩⎪⎪⎨⎧+=+=+=ptz z nt y y mt x x 000 4、 两直线的夹角:),,(1111p n m s = ,),,(2222p n m s = ,222222212121212121cos p n m p n m p p n n m m ++⋅++++=ϕ⇔⊥21L L 0212121=++p p n n m m⇔21//L L 212121p p n n m m ==5、 直线与平面的夹角:直线与它在平面上的投影的夹角,222222sin p n m C B A CpBn Am ++⋅++++=ϕ⇔∏//L 0=++Cp Bn Am⇔∏⊥L pC n B m A ==第九章 多元函数微分法及其应用(一) 基本概念(了解)1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集。
高等数学(下)知识点总结1、二次曲面1)椭圆锥面:2)椭球面:旋转椭球面:3)单叶双曲面:双叶双曲面:4)椭圆抛物面:双曲抛物面(马鞍面):5)椭圆柱面:双曲柱面:6)抛物柱面:(二)平面及其方程1、点法式方程:法向量:,过点2、一般式方程:截距式方程:3、两平面的夹角:,,;4、点到平面的距离:(三)空间直线及其方程1、一般式方程:2、对称式(点向式)方程:方向向量:,过点3、两直线的夹角:,,;4、直线与平面的夹角:直线与它在平面上的投影的夹角,;第九章多元函数微分法及其应用1、连续:2、偏导数:;3、方向导数:其中为的方向角。
4、梯度:,则。
5、全微分:设,则(一)性质1、函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:偏导数存在函数可微函数连续偏导数连续充分条件必要条件定义122342、微分法1)复合函数求导:链式法则若,则,(二)应用1)求函数的极值解方程组求出所有驻点,对于每一个驻点,令,,,① 若,,函数有极小值,若,,函数有极大值;② 若,函数没有极值;③ 若,不定。
2、几何应用1)曲线的切线与法平面曲线,则上一点(对应参数为)处的切线方程为:法平面方程为:2)曲面的切平面与法线曲面,则上一点处的切平面方程为:法线方程为:第章重积分(一)二重积分:几何意义:曲顶柱体的体积1、定义:2、计算:1)直角坐标,,2)极坐标,(二)三重积分1、定义:2、计算:1)直角坐标-----------“先一后二”-----------“先二后一”2)柱面坐标,3)球面坐标(三)应用曲面的面积:第一章曲线积分与曲面积分(一)对弧长的曲线积分1、定义:2、计算:设在曲线弧上有定义且连续,的参数方程为,其中在上具有一阶连续导数,且,则(二)对坐标的曲线积分1、定义:设 L 为面内从 A 到B 的一条有向光滑弧,函数,在 L 上有界,定义,、向量形式:2、计算:设在有向光滑弧上有定义且连续, 的参数方程为,其中在上具有一阶连续导数,且,则3、两类曲线积分之间的关系:设平面有向曲线弧为,上点处的切向量的方向角为:,,,则、(三)格林公式1、格林公式:设区域 D 是由分段光滑正向曲线 L 围成,函数在D 上具有连续一阶偏导数, 则有2、为一个单连通区域,函数在上具有连续一阶偏导数,则曲线积分在内与路径无关(四)对面积的曲面积分1、定义:设为光滑曲面,函数是定义在上的一个有界函数,定义2、计算:—“一投二代三定号”,,在上具有一阶连续偏导数,在上连续,则,为上侧取“ + ”,为下侧取“级数:(二)函数项级数1、定义:函数项级数,收敛域,收敛半径,和函数;2、幂级数:3、收敛半径的求法:,则收敛半径4、泰勒级数展开步骤:(直接展开法)1)求出;2)求出;3)写出;4)验证是否成立。
高数下册复习知识点总结:§8空间解析几乎与向量代数1. 给定向量的坐标表达式,如何表示单位向量、方向数与方向余弦、投影。
2. 向量的数量积、向量积的定义式与坐标式,掌握两个向量垂直和平行的条件。
3.了解常用二次曲面的方程及其图形,以坐标轴为旋转轴的旋转曲面方程。
空间曲线在坐标平面上的投影方程。
4.平面方程和直线方程及其求法。
5. 平面与平面、平面与直线、直线与直线之间的夹角,利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。
6.点到直线以及点到平面的距离。
§9 多元函数微分法及其应用1.有关偏导数和全微分的求解方法,偏导要求求到二阶。
2.复合函数的链式法则,隐函数求导公式和方法。
3.空间曲线的切线和法平面方程,空间曲面的切平面与法线方程;函数沿着一条直线的方向导数与梯度。
4.利用充分条件判断函数的极值问题;利用拉格朗日乘子法(即条件极值)分析实际问题或给定函数的最值问题。
§10 重积分1.二重积分直角坐标交换积分次序;选择合适的坐标系计算二重积分。
2.选择合适的坐标系计算三重积分。
3.利用二重积分计算曲面的面积;利用三重积分计算立体体积;4.利用质心和转动惯量公式求解问题。
§11曲面积分与曲线积分1.两类曲线积分的计算与联系;2.两类曲面积分的计算与联系;3.格林公式和高斯公式的应用。
§12曲面积分与曲线积分1.常数项积分的敛散性判别:(1)正项级数;(2)交错级数;(3)一般级数2.幂级数的收敛域(1)标准型(2)非标准型幂级数的和函数,幂级数展开3. 傅里叶级数的和函数以及展开式。
高等数学(向量代数—>无穷级数)知识点向量与空间几何向量:向量表示((a^b));向量运算(向量积);向量的方向和投影空间方程:曲面方程(旋转曲面和垂直柱面);直线方程(参数方程和投影方程)平面方程:点法式(法向量)、一般式、截距式;平面夹角和距离直线方程:一般式、对称式(方向向量)、参数式;直线夹角;平面交线(法向量积)切平面和切线:切线与法平面;切平面与法线多元函数微分学多元函数极限:趋近方式,等阶代换偏微分和全微分:高阶微分(连续则可等);复合函数求导(Jacobi行列式);多元函数极值:偏导数判定;拉格朗日乘数法(条件极值)重积分二重积分:直角坐标和极坐标;对称性;换元法三重积分:直角坐标、柱坐标和球坐标;对称性重积分的应用:曲面面积;质心;转动惯量;引力曲线与曲面积分曲线积分:弧长积分;坐标曲线积分(参数方程);格林公式面积积分:对面积积分;坐标面积积分;高斯公式无穷级数级数收敛:通项极限正项级数:调和级数;比较法和比较极限法;根值法;极限法;绝对收敛和条件收敛幂级数:收敛半径和收敛域;和函数;麦克劳林级数(二次展开)Fourier级数:傅里叶系数(高次三角函数积分);奇偶延拓;正弦和余弦级数;一般周期的傅里叶级数矢量分析与场论(空间场基础)方向导数与梯度方向导数:向量参数式;偏导数;方向余弦梯度(grad):方向导数的最值;梯度方向;物理意义(热导方向与电场方向)格林公式:曲线积分—>二重积分;曲线方向与曲面方向全微分原函数:场的还原;折线积分通量与散度高斯公式:闭合曲面—>三重积分;曲面外侧定向;曲面补齐;向量表达(通量)散度(div):通量的体积元微分;物理意义(有源场(电场)) 环流量与旋度斯托克斯公式:闭合曲线—>曲面积分;向量积定向;行列式表达;向量表达;物理意义(环通量)旋度(rot):行列式斯托克斯公式;物理意义(有旋场(磁场))向量代数定义 定义与运算的几何表达 在直角坐标系下的表示向量 有大小、有方向. 记作a 或AB a (,,)x y z x y z a i a j a k a a a =++=,,x x y y z z a prj a a prj a a prj a ===模向量a 的模记作aa 222x y z a a a =++和差c a b =+c a b =-=+c a b {},,=±±±x x y y z z a b a b a b单位向量0a ≠,则a ae a=a e 222(,,)=++x y z x y z a a a a a a方向余弦设a 与,,x y z 轴的夹角分别为αβγ,,,则方向余弦分别为cos αβγ,cos ,coscos y x z a a a aaaαβγ===,cos ,coscos a e αβγ=(,cos ,cos ) 222cos 1αβγ+=+cos cos 点乘(数量积) θcos b a b a =⋅,θ为向量a 与b 的夹角 z z y y x x b a b a b a ++=⋅b a叉乘(向量积)b ac ⨯=θsin b a c =θ为向量a 与b 的夹角向量c 与a ,b 都垂直 zyxz y xb b b a a a k j ib a =⨯ 定理与公式垂直 0a b a b ⊥⇔⋅= 0x x y y z z a b a b a b a b ⊥⇔++=平行 //0a b a b ⇔⨯=//y zx x y za a a ab b b b ⇔== 交角余弦两向量夹角余弦ba ba ⋅=θcos222222cos x x y y z zx y z x y za b a b a b a a a b b b θ++=++⋅++投影向量a 在非零向量b 上的投影cos()b a bprj a a a b b∧⋅==222x x y y z zb x y za b a b a b prj a b b b ++=++空间曲面∑:0),,(=z y x F法向量000000000((,,),(,,),(,,))x y z n F x y z F x y z F x y z = 切平“面”方程:000000000000(,,)()(,,)()(,,)()0x x x F x y z x x F x y z y y F x y z z z -+-+-=法“线“方程:),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=- ),(y x f z = 0000((,),(,),1)x y n f x y f x y =--或0000((,),(,),1)x y n f x y f x y =-切平“面”方程:0)())(,())(,(0000000=---+-z z y y y x f x x y x f y x法“线“方程:1),(),(0000000--=-=-z z y x f y y y x f x x y x 重积分 积分类型计算方法典型例题二重积分()σd ,⎰⎰=Dy x f I平面薄片的质量质量=面密度⨯面积(1) 利用直角坐标系X —型⎰⎰⎰⎰=Dbax x dy y x f dx dxdy y x f )()(21),(),(φφY —型⎰⎰⎰⎰=dcy y Ddx y x f dy dxdy y x f )()(21),(),(ϕϕP141—例1、例3(2)利用极坐标系 使用原则(1) 积分区域的边界曲线易于用极坐标方程表示(含圆弧,直线段 ); (2) 被积函数用极坐标变量表示较简单(含22()x y α+,α为实数)21()()(cos ,sin )(cos ,sin )Df d d d f d βϕθαϕθρθρθρρθθρθρθρρ=⎰⎰⎰⎰02θπ≤≤0θπ≤≤2πθπ≤≤P147—例5(3)利用积分区域的对称性与被积函数的奇偶性当D 关于y 轴对称时,(关于x 轴对称时,有类似结论)P141—例2应用该性质更方便所有类型的积分:○1定义:四步法——分割、代替、求和、取极限;○2性质:对积分的范围具有可加性,具有线性性;○3对坐标的积分,积分区域对称与被积函数的奇偶性。
高数下知识点总结一、微积分1. 函数和极限函数是自然界和社会现象中的一般规律性联系的数学抽象。
以实数域为定义域和值域的实函数是微积分的主要研究对象。
极限是微积分的基本概念,它是描述函数在某点附近的性质的数学工具。
在微积分中,我们讨论函数在某一点的极限,以及函数在无穷远处的极限和无穷大的极限等各种情况。
2. 导数和微分导数是函数在某一点的变化率的极限,用来描述函数的局部性质。
微分是导数的几何意义,它是关于函数的线性逼近的一种数学方法。
在微积分中,我们讨论导数的定义、求导法则、高阶导数、微分和微分中值定理等内容。
3. 积分和微积分基本定理积分是导数的逆运算,它描述了函数在一定区间内的总体变化量。
微积分基本定理是微积分中的核心定理,它建立了积分和导数之间的联系。
在微积分中,我们讨论不定积分、定积分、变限积分、积分中值定理等内容。
4. 微分方程微分方程是微积分的一个重要应用领域,它是描述自然和社会现象中变化规律的数学模型。
微分方程可以分为常微分方程和偏微分方程两大类,涵盖了许多重要的理论和方法。
在微积分中,我们讨论微分方程的基本概念、解的存在唯一性、解的性质、微分方程的分类和常见的解法等内容。
二、矩阵论1. 矩阵和行列式矩阵是线性代数的基本工具,它是一个按照矩形排列的数的集合。
行列式是矩阵的一个重要性质,它是由矩阵的元素按照一定规则组合而成的一个数。
在矩阵论中,我们讨论矩阵的基本操作、矩阵的性质、矩阵的代数运算、矩阵的逆、行列式的性质和展开等内容。
2. 线性方程组线性方程组是矩阵论的一个重要应用领域,它是由线性方程组成的一种数学模型。
线性方程组的解是矩阵的一个重要性质,它描述了线性方程组的解空间和解的个数。
在矩阵论中,我们讨论线性方程组的标准形、增广矩阵、线性方程组的解的性质、线性方程组的解的分类和解的存在唯一性等内容。
3. 特征值和特征向量特征值和特征向量是矩阵的一个重要性质,它描述了矩阵的变换规律和对称性质。
高等数学下知识点总结一、极限与连续1. 极限的概念极限是描述函数趋于某个特定值的概念。
对于实数函数f(x),当自变量x无限接近某个实数a时,如果函数值f(x)无限接近某个实数L,则称L为函数f(x)在x趋于a时的极限,记作$\\lim\\limits_{x\\to a}f(x)=L$。
2. 极限的性质•唯一性:一个函数在某一点的极限唯一。
•有界性:函数在某一点的极限存在,则函数在该点的附近有界。
•局部有界性:函数在无穷远处的极限存在,则函数在某一点的局部有界。
•夹逼定理:若函数在某一点的两边夹逼住一个数,则该数为函数在该点的极限。
3. 连续的概念若函数f(x)在某一点a的极限存在且等于f(a),则称函数f(x)在点a处连续。
4. 连续函数的性质•若两个函数均在某一点连续,则它们的和、差、积、商(除分母为0外)也在该点连续。
•若两个函数均在某一点连续,则它们的复合函数也在该点连续。
•若函数在闭区间[a,b]上连续,则它在该闭区间上有界。
二、导数与微分1. 导数的概念函数f(x)在点x=a处的导数,表示函数曲线在该点处的切线的斜率,记作f′(a)或$\\frac{{dy}}{{dx}}|_{x=a}$。
2. 导数的性质•可导性:若函数在某一点导数存在,则该点可导。
•右导数和左导数:对于单侧不连续点,可以讨论右导数和左导数。
•导函数:若函数在某一区间上处处可导,则该区间上存在一函数,称为原函数的导函数,记作f′(x)。
3. 常见函数的导数公式•常数函数导数为0:$f(x) = c, \\quad f'(x) = 0$。
•幂函数导数:1.$f(x) = x^n, \\quad f'(x) = nx^{n-1}, (n \ eq 0)$。
2.$f(x) = \\frac{1}{x^n}, \\quad f'(x) = -\\frac{n}{x^{n+1}}, (n \eq 0)$。
高等数学下册知识点归纳高等数学下册知识点归纳高等数学下册作为大学数学课程中的重要一环,其课程内容涵盖了微积分以及线性代数等多个重要领域,相信对于每个学习高等数学的学生来说,都必须要掌握其相应的知识点。
本文将从微积分和线性代数两个方面,对高等数学下册的知识点进行归纳总结,以供大家参考学习。
一、微积分1.导数与微分导数是微积分的核心概念之一,可以帮助我们研究函数的斜率、速度、加速度以及最值等问题。
在学习导数时,需要了解导数的定义与性质、基本初等函数的导数公式、高阶导数、隐函数的导数、参数方程的导数以及向量值函数的导数等内容。
而微分则是求导数的方法之一,其重要性在于可以将函数的微小变化与函数值联系起来,从而更好地理解函数的变化规律。
在学习微分时,需要认识微分的定义及其性质、微分的基本公式、微分中值定理以及微分中的应用。
2.积分与定积分积分是微分的逆运算,其运用十分广泛,可以帮助我们求出函数的面积、体积、重心、质心以及积累效应等问题。
在学习积分时,需要了解积分的定义、基本计算公式、换元积分法、分部积分法、定积分的性质以及定积分的应用等内容。
而定积分则是积分的一种形式,旨在求解有限区间内的面积与体积等问题。
在学习定积分时,需要掌握定积分的本质及其性质、定积分的计算方法、定积分的应用以及牛顿-莱布尼茨公式等重点内容。
3.微积分基本定理微积分基本定理包括牛顿-莱布尼茨公式和积分中值定理。
在牛顿-莱布尼茨公式中,当函数f在[a,b]上连续可导时,积分f(x)dx在[a,b]上的值等于F(b)-F(a),其中F(x)是f(x)的一个原函数。
而在积分中值定理中,则指存在一个c∈[a,b],使得f(c)×(b-a)=∫abf(x)dx。
这两个定理是微积分的核心,为高等数学学习提供了基础。
二、线性代数1.向量空间与线性变换向量空间和线性变换是线性代数中的重要概念,向量空间是指一些向量的集合,满足一定的条件和性质;线性变换是指两个向量空间之间的映射,满足一定的线性性质。
《高等数学下册知识点全解析》高等数学作为理工科专业的重要基础课程,其下册内容涵盖了多元函数微积分学、无穷级数、常微分方程等重要知识领域。
掌握这些知识点,对于深入理解和应用数学及相关学科至关重要。
一、多元函数微积分学1. 多元函数的概念多元函数是指含有多个自变量的函数。
例如,二元函数 z =f(x,y),其中 x,y 是自变量,z 是因变量。
多元函数的定义域是自变量取值的集合,值域是因变量取值的集合。
2. 偏导数对于多元函数 z = f(x,y),在某一点处对其中一个自变量求导,而保持其他自变量不变,得到的导数称为偏导数。
偏导数的计算方法与一元函数导数的计算方法类似,只是在求导过程中只对一个变量进行求导。
3. 全微分全微分是多元函数在某一点处的微小变化量的近似表达式。
对于二元函数 z = f(x,y),如果函数在某一点处可微,则全微分为dz = fx(x,y)dx + fy(x,y)dy,其中 fx(x,y)和 fy(x,y)分别是函数对 x 和 y 的偏导数。
4. 多元复合函数求导法则当一个多元函数是由多个函数复合而成时,需要使用多元复合函数求导法则来求导。
例如,对于函数 z = f(u,v),其中 u =u(x,y),v = v(x,y),则根据复合函数求导法则,有∂z/∂x = ∂z/∂u* ∂u/∂x + ∂z/∂v * ∂v/∂x,∂z/∂y = ∂z/∂u * ∂u/∂y + ∂z/∂v * ∂v/∂y。
5. 隐函数求导法对于由方程 F(x,y,z)=0 所确定的隐函数 z = z(x,y),可以通过对方程两边同时对 x 和 y 求导,来求出隐函数的偏导数。
在求导过程中,需要注意将 z 看作是 x 和 y 的函数,使用复合函数求导法则。
6. 多元函数的极值与最值多元函数的极值是指函数在某一点处取得的局部最大值或最小值。
求多元函数极值的方法是先求出函数的驻点(即偏导数为零的点),然后再判断驻点是否为极值点。
高数下册知识点高等数学下册包含了许多重要的知识点,这些知识点不仅在数学领域有着广泛的应用,也为其他学科的学习和研究提供了重要的工具。
以下是对高数下册一些关键知识点的详细介绍。
一、多元函数微分学多元函数微分学是研究多元函数的导数和微分的学科。
其中,偏导数是重点之一。
对于多元函数 z = f(x, y),偏导数∂z/∂x 表示固定 y 时,函数 z 对 x 的变化率;∂z/∂y 则表示固定 x 时,函数 z 对 y 的变化率。
全微分是另一个重要概念。
如果函数 z = f(x, y)在点(x, y)处的全增量Δz 可以表示为Δz =AΔx +BΔy +o(ρ)(其中ρ =√(Δx² +Δy²),A、B 与Δx、Δy 无关),则称函数 z 在点(x, y)处可微分,AΔx +BΔy 称为函数 z 在点(x, y)处的全微分,记为 dz =AΔx +BΔy。
多元复合函数求导法则也是必须掌握的。
比如,如果函数 u =φ(x, y),v =ψ(x, y),而 z = f(u, v),那么通过链式法则可以求出∂z/∂x 和∂z/∂y。
隐函数求导法则在解决一些方程所确定的隐函数的导数问题时非常有用。
二、重积分重积分包括二重积分和三重积分。
二重积分的概念可以通过曲顶柱体的体积来引入。
在直角坐标系下,计算二重积分通常可以将其化为累次积分。
在极坐标系下,对于一些具有圆形或扇形对称性的区域,使用极坐标计算二重积分会更加简便。
三重积分与二重积分类似,也有其定义和计算方法。
在直角坐标系下,三重积分可以化为三次累次积分;在柱面坐标系和球面坐标系下,对于具有相应对称性的区域,使用这些坐标系计算三重积分会更高效。
重积分在计算物体的质量、重心、转动惯量等方面有着广泛的应用。
三、曲线积分与曲面积分曲线积分分为对弧长的曲线积分和对坐标的曲线积分。
对弧长的曲线积分的物理意义可以理解为曲线形构件的质量。
对坐标的曲线积分与变力沿曲线做功的问题密切相关。
高等数学下知识点总结6篇高等数学下知识点总结6篇借鉴经验和教训,对自己的工作和生活进行反思和总结,从而不断进步。
深入学习,专攻某一领域有利于个人成长和职业发展。
下面就让小编给大家带来高等数学下知识点总结,希望大家喜欢!高等数学下知识点总结1第一,函数与导数。
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计。
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。
是高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。
针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。
以不变应万变。
对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。
对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。
考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。
训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。
第七章 无穷级数7.1 常数项级数的基本概念 1.常数项级数收敛和发散的定义 级数收敛与发散:若级数∑∞=1n nu的部分和数列}{n s 收敛于s ,即s s n n =∞→lim ,则称级数∑∞=1n nu收敛,其和为s ,记为∑∞==1n ns u.若级数的部分和数列}{n s 极限不存在,则称级数∑∞=1n n u 发散.典型例题 :判定级数∑∞=+1)1(1n n n 的敛散性. 注意:2、3记住结论2.几何级数(等比级数)的敛散性 无穷级数+++++=−∞=−∑1211n n n aq aq aq a aq叫做几何级数(又称为等比级数).其中,首项q a ,0≠称为级数的公比.(1) 当1q <时,级数收敛,其和为1aq−; (2) 当1q ≥时,级数发散. 3.调和级数11n n∞=∑发散. 4.级数的性质性质1 若级数∑∞=1n nu收敛于和s ,则级数∑∞=1n nku也收敛,其和为ks (k 为常数).即级数的每一项同乘一个常数后,它的收敛性不变.推论1 如果级数∑∞=1n nu发散,当0≠k 时,级数∑∞=1n nku也发散.性质 2 如果级数∑∞=1n nu、∑∞=1n nv收敛于和σ、s ,则级数∑∞=±1)(n n nv u也收敛,且其和为σ±s .即两个收敛级数可以逐项相加或相减,其敛散性不变.推论2 如果级数收敛,∑∞=1n nv发散,则级数∑∞=±1)(n n nv u发散.性质3 在级数中去掉、加上或改变有限项,不会改变级数的敛散性.∑∞=1n nu性质4 如果级数收敛,则在不改变其各项次序的情况下,对该级数的项任意添加括号后所形成的级数仍收敛,且其和不变.推论3 如果加括号后所形成的级数发散,则原级数也发散. 5.级数收敛的必要条件 如果级数∑∞=1n nu收敛,则它的一般项n u 趋于零,即0lim =∞→n n u ;如果lim 0n n u →∞≠,则级数∑∞=1n nu一定发散.7.2 常数项级数的审敛法1.正项级数收敛的充要条件是它的部分和数列有界。
高等数学下册知识点
《高等数学C2》考试大纲
一、考试内容与重点分布
1、向量代数与空间解析几何
(1) 空间向量的数量积与向量积计算方法(☆); (判断题2分, 计算题6分) ,,cos 是一个数量z z y y x x b a b a b a b a b a ++=⋅=⋅θ
,是个向量 注意:两者的运算律要会。
(2) 空间曲面方程的识别; (选择题3分)
几种常见的二次曲面
(3) 平面与直线方程及其求法(☆). (判断2分, 填空题3分, 计算题6分)
Ⅰ、平面的几种方程形式:
(1)点法式:过点),,(000z y x ,法向量为}C B,A,{=n 的平面方程:
k
j i x a y a z
a x
b y b z
b =⨯b a
-+-y B x x A ()(00)()00=-+z z C y ;
(2) 一般式:0=+++D Cz By Ax ,其中},,{C B A =n ;
(3) 截距式:
1=++c z b y a x ,其中平面与坐标轴交点),0,0(),0,,0(),0,0,(c b a ;
(4) 三点式:002020
2010
101000
=---------z z y y x x z z y y x x z z y y x x , 其中),,(000z y x ,),,(111z y x ,),,(222z y x 为平面上不在一条直线上的三点.
Ⅱ 、 直线的几种方程形式:
(1) 点向式:p
z z n y y m x x 000-=-=-,其中),,(000z y x 为 直线上定点,},,{p n m =s 为直线的方向向量;
(2) 参数式:⎪⎩
⎪⎨⎧+=+=+=;pt z z nt y y m t x x 000,, (3) 两点式:1
21121121z z z z y y y y x x x x --=--=--, 其中),,(111z y x ,),,(222z y x 为直线上不重合的两点;
(4) 一般式:⎩⎨⎧=+++=+++,0,
02222
1111D z C y B x A D z C y B x A 其中此二平面不平行.
注:线与线、线与面、面与面垂直或平行时直线的方向向量和平面的法向量之间的关系。
2、多元函数的微分学
(1) 二元函数极限求法(☆); (选择题3分, 计算题6分)
注:直接代值,分子分母有理化等方法。
(2) 偏导数、二元函数全微分的计算(☆); (判断2分, 填空题3分, 计算题6分) 全微分:dy y
z dx x z dz ∂∂+∂∂= (3) 函数的梯度计算方法. (填空题3分)
j y
f i x f y x f y x p y x f z ∂∂+∂∂==),(grad ),(),(的梯度:在一点函数 (4) 多元函数的极值的概念与拉格朗日条件极值(☆). (选择题3分, 解答题8分)
如求二元函数 在条件 下的极值,设拉
格朗日函数 解方程组 { 求驻点。
唯一驻点即为所求极值点
3、重积分 (1) 二重积分的性质与计算(含极坐标) (☆);
(判断2分, 选择题3分, 计算题6分, 附加题10分)
(1)直角坐标系下注意两种型:X-型与Y-型,要会找二次积分各自的上下限
(2)极坐标系下注意极坐标变换公式,换成极坐标时不要忘掉乘以那个rdrd Θ
(2) 三重积分计算(含球坐标) (☆); (填空题3分, 解答题8分)
145页第三大部分一直到例4都要认真看,要知道球体积用球坐标运算怎么推导的。
4、无穷级数
(1) 常数项级数收敛、发散的概念与正项级数审敛法; (判断2分, 填空题3分, 计算题6分) 常数项级数收敛的必要条件,第二节正项级数所有审敛法及相应的例题
(2) 函数的傅里叶级数展开和狄利克雷收敛定理. (选择题3分, 解答题8分)
第七节课本例一例二。
),(y x f z =0
),(=y x ϕ)
,(),(y x y x f F ϕλ+=0=+=y y y f F ϕλ0=+=x x x f F ϕλ0==ϕλ
F。