《电磁场与电磁波》试题12及标准答案
- 格式:docx
- 大小:220.40 KB
- 文档页数:9
电磁场与微波技术基础试题一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号。
每小题2分,共20分)1.设一个矢量场=x x+2y y+3z z,则散度为()A. 0B. 2C. 3D. 62.人们规定电流的方向是()运动方向。
A.电子B.离子C.正电荷D.负电荷3.在物质中没有自由电子,称这种物质为()A.导体B.半导体C.绝缘体D.等离子体4.静电场能量的来源是()A.损耗B.感应C.极化D.做功5.对于各向同性介质,若介电常数为ε,则能量密度we为()A. •B.E2C.εE2D. εE26.电容器的大小()A.与导体的形状有关B.与导体的形状无关C.与导体所带的电荷有关D.与导体所带的电荷无关7.电矩为的电偶极子在均匀电场中所受的作用力和库仑力矩为()A.=0,Tq= •B.=0, = ×C.= •,= ×D.= •,=08.在=0的磁介质区域中的磁场满足下列方程()A.× =0, • =0B.×≠0, •≠0C.×≠0, • =0D.× =0, •≠09.洛伦兹条件人为地规定的()A.散度B.旋度C.源D.均不是10.传输线的工作状态与负载有关,当负载短路时,传输线工作在何种状态?()A.行波B.驻波C.混合波D.都不是二、填空题(每空2分,共20分)1.两个矢量的乘法有______和______两种。
2.面电荷密度ρs( )的定义是______,用它来描述电荷在______的分布。
3.由库仑定律可知,电荷间作用力与电荷的大小成线性关系,因此电荷间的作用力可以用______原理来求。
4.矢量场的性质由它的______决定。
5.在静电场中,电位相同的点集合形成的面称为______。
6.永久磁铁所产生的磁场,称之为______。
7.在电场中电介质在外电场的作用下会产生______,使电场发生变化。
一、单选 (共16题,每题1分,共16分)1.根据亥姆霍兹定理,一个矢量位由它的()唯一确定。
A.旋度和散度B.梯度和散度C.旋度和梯度D.旋度2.时变电场是______,静电场是______。
A.无旋场;有旋场B.无旋场;无旋场C.有旋场;有旋场D.有旋场;无旋场3.由N 个导体组成的系统中,导体两两间都存在电容。
这些电容与()有关A.各导体的相对位置B.同时选择A 和BC.各导体的电位D.各导体所带电量4.下面的说法不正确的是()A.群速是指信号包络上恒定相位点的移动速度B.相速是指信号恒定相位点的移动速度C.相速代表信号的能量传播的速度D.在导电媒质中,相速与频率有关5.在恒定电场中,分界面两边电流密度矢量的法向方向是()A.不连续的B.不确定的C.等于零D.连续的6.两个点电荷对试验电荷的作用力可表示为两个力的()。
A.算术和B.代数和C.矢量和D.平方和7.关于良导体中的平面波,下列描述中错误的是()A.是衰减波。
频率越高,电导率越大,衰减越快B.磁场能量密度小于电场能量密度C.是TEM 波D.电场强度、磁场强度和传播方向两两垂直,且满足右手定则8.给定两个矢量,,则()。
A.见图B.见图C.见图D.见图9.已知某区域V 中电场强度满足,则一定有()A.V 中电荷均匀分布B.V 中电荷处处为0C.为静电场D.为时变场10.在分界面上电场强度的切向分量总是()A.连续的B.不确定的C.等于零D.不连续的11.下述描述中,错误的是()A.在分界面上磁感应强度的法向分量是不连续的B.若分界面上没有自由电荷,则电位移矢量的法向分量是连续的C.空间任意一点的能流密度由该点处的电场强度和磁场强度确定D.理想导体内部不存在时变的电磁场zy x e e e A 32-+=zy e e B +-=4=⨯B AE E 0∇=E E12.关于理想导体表面上的垂直入射,下列描述不正确的是()A.合成波的相位沿传播方向是连续变化的B.分界面上有表面电流存在C.在理想导体表面上,垂直入射波发生全反射现象D.合成波的电场和磁场均为驻波13.平行板电容器之间的电流属于()A.线电流B.位移电流C.运流电流D.传导电流14.静电场中的介质产生极化现象,与外加电场相比,介质内电场()A.不变B.变大C.不确定D.变小15.静电场的旋度等于()A.电荷密度与介电常数之比B.零C.电荷密度D.电位16.下面关于复数形式的麦克斯韦方程的描述中,有错误的是()A.磁场强度的旋度不等于零。
《电磁场与电磁波》试题(12)1. (12分)无限长同轴电缆内导体半径为R 1,外导体半径为R 2,内外导体之间的电压为U 。
现固定外导体半径R 2,调整内导体半径R 1,问:(1)内外导体半径的比值R 1 /R 2为多少时内导体表面上的电场强度最小,和最小电场强度E min =?;(2)此时电缆的特性阻抗Z 0为多少?(设该同轴电缆中介质的参数为μ0和ε0)。
2. (12分)距半径为R 的导体球心d (d >R )处有一点电荷q 。
问需要在球上加多少电荷Q 才可以使作用于q 上的力为零,此时球面电位ϕ为多少?3. (10分)半径为R 的薄金属圆柱壳等分为二,互相绝缘又紧密靠近,如图所示。
上半圆柱壳的电位为(+U ),下半圆柱壳的电位为(-U )。
圆柱壳内充满介电常数为ε的均匀电介质,且无空间电荷分布。
写出阴影区内静电场的边值问题。
题3图 题4图4. (10分)图示装置用以测量磁性材料的特性,上下为两个几何形状对称,相对磁导率为μr1的U 形磁轭,被测样品的相对磁导率为μr2(磁轭和样品的磁导率均远大于μ0),磁化线圈的匝数为N ,电流为I ,尺寸如图所示。
求:(1)样品中的磁场强度H ;(2)样品中的磁化强度M 与线圈电流I 间的关系。
5. (12分)面积为A 的平行圆形极板电容器,板间距离为d ,外加低频电压,板间介质的电导率为γ,介电常数为ε。
求电源提供的复功率S 。
6. (12分)一内阻为50Ω的信号源,通过50cm 长的无损耗传输线向负载馈电,传输线上电磁波的波长为100cm ,传输线终端负载Z L =50+j100Ω,信号源的电压t U u m S ωcos =,传输线单位长度的电感L 0=0.25μH ,单位长度的电容C 0=100pF 。
求:(1)电源的频率;(2)传输线始端和终端的电压、电流相量; (3)负载与传输线上电压最大值处间的距离;(4)传输线上的驻波比。
7. (10分)均匀平面波从理想介质(μr =1,εr =16)垂直入射到理想导体表面上,测得理想介质中电场强度最大值为200V/m ,第一个最大电场强度值与理想导体表面的距离为1m ,求:(1)该平面波的频率和相位常数;(2)试写出介质中电场和磁场的瞬时表达式。
1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ=、20n E ⨯=、2s n H J ⨯=、20n B =)1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。
2. 答矢量位,0B A A =∇⨯∇⋅=;动态矢量位A E t ϕ∂=-∇-∂或AE tϕ∂+=-∇∂。
库仑规范与洛仑兹规范的作用都是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。
1. 简述穿过闭合曲面的通量及其物理定义 2.sA ds φ=⋅⎰⎰ 是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。
2. 证明在直角坐标系里计算 ,则有()()xy z x y z r r e e e e x e y e z x y z ⎛⎫∂∂∂∇⋅=++⋅++ ⎪∂∂∂⎝⎭3x y z x y z∂∂∂=++=∂∂∂ 若在球坐标系里计算,则 232211()()()3r r r r r r r r r∂∂∇⋅===∂∂由此说明了矢量场的散度与坐标的选择无关。
2010-2011-2学期《电磁场与电磁波》课程考试试卷参考答案及评分标准命题教师:李学军 审题教师:米燕一、判断题(10分)(每题1分)1.旋度就是任意方向的环量密度 ( × )2. 某一方向的的方向导数是描述标量场沿该方向的变化情况 ( √ )3. 点电荷仅仅指直径非常小的带电体 ( × )4. 静电场中介质的相对介电常数总是大于 1 ( √ )5. 静电场的电场力只能通过库仑定律进行计算 ( × )6.理想介质和导电媒质都是色散媒质 ( × )7. 均匀平面电磁波在无耗媒质里电场强度和磁场强度保持同相位 ( √ )8. 复坡印廷矢量的模值是通过单位面积上的电磁功率 ( × )9. 在真空中电磁波的群速与相速的大小总是相同的 ( √ ) 10 趋肤深度是电磁波进入导体后能量衰减为零所能够达到的深度 ( × ) 二、选择填空(10分)1. 已知标量场u 的梯度为G ,则u 沿l 方向的方向导数为( B )。
A. G l ⋅B. 0G l ⋅ C. G l ⨯2. 半径为a 导体球,带电量为Q ,球外套有外半径为b ,介电常数为ε的同心介质球壳,壳外是空气,则介质球壳内的电场强度E 等于( C )。
A.24Q r π B. 204Q r πε C. 24Qr πε3. 一个半径为a 的均匀带电圆柱(无限长)的电荷密度是ρ,则圆柱体内的电场强度E 为( C )。
A.22aE r ρε=B. 202r E a ρε= C. 02r E ρε= 4. 半径为a 的无限长直导线,载有电流I ,则导体内的磁感应强度B 为( C )。
A.02I r μπB. 02Ir a μπC. 022Ir aμπ 5. 已知复数场矢量0x e E =E ,则其瞬时值表述式为( B )。
A.()0cos y x e E t ωϕ+ B. ()0cos x x e E t ωϕ+ C. ()0sin x x e E t ωϕ+6. 已知无界理想媒质(ε=9ε0, μ=μ0,σ=0)中正弦均匀平面电磁波的频率f=108 Hz ,则电磁波的波长为( C )。
电磁波与电磁场期末复习题(试题+答案)电磁波与电磁场期末试题一、填空题(20分)1.旋度矢量的散度恒等与零,梯度矢量的旋度恒等与零。
2.在理想导体与介质分界面上,法线矢量n r由理想导体2指向介质1,则磁场满足的边界条件:01=?B n ρρ,s J H n =?1ρρ。
3.在静电场中,导体表面的电荷密度σ与导体外的电位函数?满足的关系式n ??=?εσ-。
4.极化介质体积内的束缚电荷密度σ与极化强度P 之间的关系式为P ?-?=σ。
5.在解析法求解静态场的边值问题中,分离变量法是求解拉普拉斯方程的最基本方法;在某些特定情况下,还可用镜像法求拉普拉斯方程的特解。
6.若密绕的线圈匝数为N ,则产生的磁通为单匝时的N 倍,其自感为单匝的2N 倍。
7.麦克斯韦关于位移电流的假说反映出变化的电场要产生磁场。
8.表征时变场中电磁能量的守恒关系是坡印廷定理。
9.如果将导波装置的两端短路,使电磁波在两端来回反射以产生振荡的装置称为谐振腔。
10.写出下列两种情况下,介电常数为ε的均匀无界媒质中电场强度的量值随距离r 的变化规律:带电金属球(带电荷量为Q )E = 24r Qπε;无限长线电荷(电荷线密度为λ)E =r2。
11.电介质的极性分子在无外电场作用下,所有正、负电荷的作用中心不相重合,而形成电偶极子,但由于电偶极矩方向不规则,电偶极矩的矢量和为零。
在外电场作用下,极性分子的电矩发生转向,使电偶极矩的矢量和不再为零,而产生极化。
12.根据场的唯一性定理在静态场的边值问题中,只要满足给定的边界条件,则泊松方程或拉普拉斯方程的解是唯一的。
二、判断题(每空2分,共10分)1.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。
(×)2.一个点电荷Q 放在球形高斯面中心处。
如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。
(×)3.在线性磁介质中,由IL ψ=的关系可知,电感系数不仅与导线的几何尺寸、材料特性有关,还与通过线圈的电流有关。
11 麦克斯韦I 方程组.的微分形式 是:J . H =J JD,\ E = _。
「|_B =0,七出=:2静电场的基本方程积分形式为:性£虏=03理想导体(设为媒质 2)与空气(设为媒质 1)分界 面上,电磁场的边界条件为:4线性且各向同性媒质的 本构关系方程是:5电流连续性方程的微分形式为:。
6电位满足的泊松方程为;在两种完纯介质分界面上 电位满足的边界 。
7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。
8.电场强度E Aj 单位是,电位移D t 勺单位是。
9.静电场的两个基本方程的微分 形式为“黑E =0 Q D = P ; 10.—个直流电流回路除 受到另一个直流电流回路的库仑力作用外还将受到安 培力作用1 .在分析恒定磁场时,引入矢量磁位A,并令冒=%,的依据是(c.V 值=0)2 . “某处的电位 中=0,则该处的电场强度 E=0的说法是(错误的)。
3 .自由空间中的平行双线传输线,导线半径为a ,线间距为D ,则传输线单位长度的电容为4 .点电荷产生的电场强度随距离变化的规律为( 1/r2)。
5 . N 个导体组成的系统的能量 W =1£ q * ,其中e i 2 t i i 是(除i 个导体外的其他导体)产生的电位。
6 .为了描述电荷分布在空间流动的状态, 定义体积电流密度J,其国际单位为(a/m2 )7 .应用高斯定理求解静电场要求电场具有(对称性)分布。
8 .如果某一点的电场强度为零,则该点电位的(不一 定为零 )。
9 .真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为( 1/r2 )。
10.半径为a 的球形电荷分布产生的电场的能量储存于(整个空间)。
三、海水的电导率为 4S/m,相对介电常数为 81,求频 率为1MHz 时,位幅与导幅比值?三、解:设电场随时间作正弦变化,表示为:E = e x E m cos t则位移电流密度为:J d =— = -ex :-. ■ 0 r E m Sin t;t其振幅彳1为:J dm = 网 5E m = 4.5X10- E m 传导电 流的振幅值为: J cm -二- E m = 4E m 因此:Jm =1.125/0J -cm四、自由空间中,有一半径为a 、带电荷量q 的导体球。
11 麦克斯韦I 方程组.的微分形式 是:J . H =J JD,\ E = _。
「|_B =0,七出=:2静电场的基本方程积分形式为:性£虏=03理想导体(设为媒质 2)与空气(设为媒质 1)分界 面上,电磁场的边界条件为:4线性且各向同性媒质的 本构关系方程是:5电流连续性方程的微分形式为:。
6电位满足的泊松方程为;在两种完纯介质分界面上 电位满足的边界 。
7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。
8.电场强度E Aj 单位是,电位移D t 勺单位是。
9.静电场的两个基本方程的微分 形式为“黑E =0 Q D = P ; 10.—个直流电流回路除 受到另一个直流电流回路的库仑力作用外还将受到安 培力作用1 .在分析恒定磁场时,引入矢量磁位A,并令冒=%,的依据是(c.V 值=0)2 . “某处的电位 中=0,则该处的电场强度 E=0的说法是(错误的)。
3 .自由空间中的平行双线传输线,导线半径为a ,线间距为D ,则传输线单位长度的电容为4 .点电荷产生的电场强度随距离变化的规律为( 1/r2)。
5 . N 个导体组成的系统的能量 W =1£ q * ,其中e i 2 t i i 是(除i 个导体外的其他导体)产生的电位。
6 .为了描述电荷分布在空间流动的状态, 定义体积电流密度J,其国际单位为(a/m2 )7 .应用高斯定理求解静电场要求电场具有(对称性)分布。
8 .如果某一点的电场强度为零,则该点电位的(不一 定为零 )。
9 .真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为( 1/r2 )。
10.半径为a 的球形电荷分布产生的电场的能量储存于(整个空间)。
三、海水的电导率为 4S/m,相对介电常数为 81,求频 率为1MHz 时,位幅与导幅比值?三、解:设电场随时间作正弦变化,表示为:E = e x E m cos t则位移电流密度为:J d =— = -ex :-. ■ 0 r E m Sin t;t其振幅彳1为:J dm = 网 5E m = 4.5X10- E m 传导电 流的振幅值为: J cm -二- E m = 4E m 因此:Jm =1.125/0J -cm四、自由空间中,有一半径为a 、带电荷量q 的导体球。
《电磁场与电磁波》试题(12)1. (12分)无限长同轴电缆内导体半径为R 1,外导体半径为R 2,内外导体之间的电压为U 。
现固定外导体半径R 2,调整内导体半径R 1,问:(1)内外导体半径的比值R 1 /R 2为多少时内导体表面上的电场强度最小,和最小电场强度E min =?;(2)此时电缆的特性阻抗Z 0为多少?(设该同轴电缆中介质的参数为μ0和ε0)。
2. (12分)距半径为R 的导体球心d (d >R )处有一点电荷q 。
问需要在球上加多少电荷Q才可以使作用于q 上的力为零,此时球面电位ϕ为多少?3. (10分)半径为R 的薄金属圆柱壳等分为二,互相绝缘又紧密靠近,如图所示。
上半圆柱壳的电位为(+U ),下半圆柱壳的电位为(-U )。
圆柱壳内充满介电常数为ε的均匀电介质,且无空间电荷分布。
写出阴影区内静电场的边值问题。
题3图 题4图4. (10分)图示装置用以测量磁性材料的特性,上下为两个几何形状对称,相对磁导率为μr1的U 形磁轭,被测样品的相对磁导率为μr2(磁轭和样品的磁导率均远大于μ0),磁化线圈的匝数为N ,电流为I ,尺寸如图所示。
求: (1)样品中的磁场强度H ;(2)样品中的磁化强度M 与线圈电流I 间的关系。
5. (12分)面积为A 的平行圆形极板电容器,板间距离为d ,外加低频电压,板间介质的电导率为γ,介电常数为ε。
求电源提供的复功率S 。
6. (12分)一内阻为50Ω的信号源,通过50cm 长的无损耗传输线向负载馈电,传输线上电磁波的波长为100cm ,传输线终端负载Z L =50+j100Ω,信号源的电压t U u m S ωcos =,传输线单位长度的电感L 0=0.25μH ,单位长度的电容C 0=100pF 。
求:(1)电源的频率;(2)传输线始端和终端的电压、电流相量;(3)负载与传输线上电压最大值处间的距离; (4)传输线上的驻波比。
7. (10分)均匀平面波从理想介质(μr =1,εr =16)垂直入射到理想导体表面上,测得理想介质中电场强度最大值为200V/m ,第一个最大电场强度值与理想导体表面的距离为1m ,求:(1)该平面波的频率和相位常数;(2)试写出介质中电场和磁场的瞬时表达式。
8. (12分) y 方向线性极化的均匀平面电磁波在ε=9ε0的理想介质中沿x 方向传播,在x =0处垂直入射到ε=4ε0的理想介质表面,如图所示。
若入射波的角频率ω=300rad/s ,在介质分界面处电场强度的最大值为0.1V/m 。
求: (1)反射系数和透射系数;(2)两种介质中电场、磁场的瞬时表达式; (3)两种介质中坡印亭矢量的平均值。
9. (10分)如图所示,有两对短传输线平行放置。
传输线1接低频电源,传输线1与传输线2之间存在电容性耦合干扰和电感性耦合干扰。
试: (1)标出该系统中的部分电容并说明抑制电干扰的方式; (2)说明抑制磁干扰的方式。
t u S ωcos 102=题8图 题9图《电磁场与电磁波》试题(12)参考答案1.解:(1)由高斯定律可得,内外导体间的电场强度沿径向方向,且大小为ρE ετπ2=)(21R ρR <<电介质中电场强度的最大值出现在内导体表面上,有1max 2R E πετ=(1)内外导体间的电压12lnπ221R R d U R R ετ⎰=⋅=ρE (2)把式(1)代入式(2),可得2R 和max E 一定时,电压U 与内导体半径1R 之间的关系 121max lnR R R E U = (3)为了求出1R 取什么数值时电压为最大值,令0)1(ln d d 12max 1=-=R RE R U由此得xue 12=R R即当内外导体半径的比值e 12=R R 时,内导体表面的电场强度最小。
且最小电场强度1min R U E =(2)此时电缆的特性阻抗Ω==60lnπ2112000R R Z εμ2.解:根据镜象法,导体球外的电场为图中3个点电荷(q Q '+,q '-,q )产生的电场强度的叠加。
其中d R b 2= 和 qd Rq ='点电荷q 所受的力为q b d q d q Q F ])([π41220-'-+'+=ε])()2R ([π422222320R d d d q R Q dq--+=ε 因此,当在球上所加电荷为q R d d R d R Q 222223)()2(--=时,才可以使作用于q 上的力为零。
此时球面电位Rd Rq dQ 0π4εϕ+=dq22230)(π41R d q d -=ε 3.解:阴影区内的静电场边值问题为01)(1222=∂∂+∂∂∂∂φϕρρϕρρρ{)20()02(),(πφφπφϕ<<+<<--=U UR)0,2(=∂∂<≤±=R ρπφρϕ4.解:(1)设样品中的磁场强度为H ,U 形磁轭中的磁场强度为H 1,则利用安培环路定律和磁通连续性原理,分别有I H l l Hl N )2(1121=++1r10r202ahH hdH μμμμ=由此得样品中的磁场强度d l d l al Ia H r 1r22r21r11)2(N 2μμμμ++=(2)样品中的磁化强度d l d l al Ia H H M 1r22r21r1r2r1r2m2)(2N )1(2)1(μμμμμμχ++-=-==5.解:由于电容器填充有损媒质,所以电容器不仅储存电能,还以焦耳热的形式损耗能量。
该电容器可以等效为一个电阻R 和一个电容C 相并联的电路模型。
其中A dR γ=d AC ε=因此,电源提供的复功率为22j j U C R U Q P S ω-=+=6.解:m/s 1021800⨯==C L vΩ==5000C L Zm 1=λ(1) 电源频率Hz1028⨯==λvf(2)该传输线的入端阻抗Ω+==++=j100502tan j 2tanj L L 00L 0in Z lZ Z lZ Z Z Z λπλπ因此,始端电流相量A)j 1(05.0100j 5050101-=++=I始端电压相量为V5.2j 5.7)2j 1(50)j 1(05.0in11+=+⨯-==Z I U而终端电压、电流相量为V 5.2j 5.712--=-=U U A .050j 05.02+-=I(3)反射系数︒=+-=45j 0L 0L L 22eZ Z Z Z Γ即︒=45L ϕ因此,负载端与出现第一个电压最大值的距离为m 1614ππ41π4L max =⨯==ϕλz(4) 传输线上的驻波比83.511LL≈-+=ΓΓS7. 解:m/s107516⨯==μεvΩ==π300εμZ(1)第一个最大电场强度值离理想导体表面的距离应为4λ,即14=λ因此,该平面波的波长m 4=λ所以,该平面波的频率、角频率分别为Hz10875.14107576⨯=⨯==λvff π2=ω相位常数rad/m2π2πλβ==(2) 介质中电场和磁场的瞬时表达式()()V/m90cos sin 200,y -=t x t x E ωβ()A/m cos cos 320,z t x t x H ωβπ=8.解:V /m 1.0max =EΩ==π401101εμZ Ω==π602202εμZrad/m 1036111-⨯==εμωβrad/m 1026222-⨯==εμωβ(1)反射系数2.001020102=+-=Z Z Z Z Γ透射系数2.12010202=+=Z Z Z T(2)由于反射系数Γ大于零,因此在两种介质分界面处出现电场强度的最大值,即()ΓE E +=+1max因此V/m 1211max =+=+ΓE E且V/m 601==+-ΓE E V/m101'==+TE E那末,介质1中的电场、磁场的瞬时表达式()()()V/m 103300cos 601103300cos 121,661y x t x t t x E --⨯++⨯-=()()()A/m103300cos π24001103300cos π4801,66z1x t x t t x H --⨯++⨯-=而介质2中的电场、磁场的瞬时表达式()()V/m 102300cos 101,62y x t t x E -⨯-=()()A/m102300cos π6001,62z x t t x H -⨯-=(3)介质1中的坡印亭矢量的平均值()()25012012av1W/m 1065.222--+⨯≈-=Z E Z E S介质2中的坡印亭矢量的平均值()25022av2W/m 1065.22-⨯≈'=Z E S9.解:(1)各部分电容如图所示。
抑制电干扰的方式是采用静电屏蔽,用一接地导体壳将某一根传输线包住。
(2)对干扰对象和干扰源进行磁屏蔽,亦可以减少互磁链和耦合互感,起到抑制磁干扰的作用。
u。