高频开关电源电路原理分析
- 格式:doc
- 大小:16.51 KB
- 文档页数:3
UC3844开关电源电路原理分析引言UC3844是美国Unitrode公司(已被TI公司收购)生产的高性能电流型脉宽调制器(PWM)控制器。
早期的PWM控制器是电压控制型的,常用的电压型PWM控制器有TL494、TL495、SG3524、SG3525等。
电压型PWM是指控制器按反馈电压来调节输出脉宽,电流型PWM是指控制器按反馈电流来调节输出脉宽。
电流型PWM是在脉宽比较器的输入端,直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比,使输出的电感峰值电流跟随误差电压变化而变化。
由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型PWM控制器。
1 电流型PWM控制与电压型PWM控制原理及性能比较1. 1 电压型PWM控制电压型PWM控制系统框图如图1所示。
电源输出反馈电压U f与基准电压U g比较放大得到误差电压U e,该误差电压再与锯齿波发生器产生的锯齿波信号进行比较,产生占空比变化的矩形波驱动信号。
这种结构属于典型的单闭环系统,缺点是控制过程中主电路的电流没有参入输出控制。
由于电感的作用,电流滞后于电压的变化,因而系统响应速度慢,稳定性差。
图1 电压型PWM控制系统框图1. 2 电流型PWM控制电流型PWM正是针对电压PWM型的缺点发展起来的。
它在原有的电压环上增加了电流反馈环节,构成电压电流双闭环控制。
内环为电流控制环,外环为电压控制环。
无论电流的变化,还是电压的变化,都会使PWM 输出脉冲占空比发生变化。
这种控制方式可改善系统的电压调整率,提高系统的瞬态响应速度,增加系统的稳定性。
其控制系统框图如图2所示。
图2 电流型PWM控制系统框图1. 3 电流型PWM控制的优点a) 电压调整率好。
输入电压的变化立即引起电感电流的变化,电感电流的变化立即反映到电流控制回路而被抑制。
不像电压控制要经过输出电压反馈到误差放大器,然后再调节的复杂过程,所以响应快。
开关电源电路图原理讲解图解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4 为安规电容,L2、L3为差模电感。
②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
并联型高频开关直流电源的系统设计关键字:开关电源 PWM 并联均流模块随着模块化电源系统的发展,开关电源并联技术的重要性日见重要。
这里介绍了一种新型并联型高频开关电源整流模块的系统设计方案。
其中,对开关电源的驱动电路、缓冲电路、控制电路及主要磁元件进行优化、设计。
控制电路以UC3525为核心,构成电流内环、电压外环的双环控制模式,实现系统稳压和限流。
并且通过小信号模型分析,对电压电流环的PI调节器进行设计。
近几年来,各式各样的开关电源以其小巧的体积、较高的功率密度和高效率越来越得到广泛的应用。
随着电力系统自动化程度的提高,特别是其保护装置的微机化,通讯装置的程控化,对电源的体积和效率的要求不断提高。
电源中磁性元件和散热器件成了提高功率密度的巨大障碍。
开关频率的提高可以使开关变换器(特别是变压器、电感等磁性元件以及电容)的体积、重量大为减小,从而提高变换器的功率密度。
另外,提高开关频率可以降低开关电源的音频噪声和改善动态响应。
但是由于开关管的通断控制与开关管上流过的电流和两端所加的电压无关,而早期的脉宽调制(PWM)开关电源工作在硬开关模式,在硬开关中功率开关管的开通或关断是在器件上的电压或电流不等于零的状态下强迫进行的,电路的开关损耗很大,开关频率越高,损耗越大,不但增加了热设计的难度而且大大降低了系统得可靠性,这使得PWM开关技术的高频化受到了许多的限制。
根据高频电力操作电源的设计要求,结合实际的经验和实验结果选择合适的开关器件,设计出稳定可靠、性能优越的控制电路、驱动电路、缓冲电路以及主要的磁性元器件。
对最大电流自动均流法的工作原理以及系统稳定性进行了较为深入的研究。
采用均流控制芯片UC3907设计了电源的均流控制电路,使模块单元具有可并联功能,可以实现多电源模块并联组成更大功率的电源系统。
1、系统原理的设计思想在设计大型的开关电源模块时,首先需要对系统有一个整体的规划,以便于设计整体结构及相应的辅助电源。
【很完整】⽜⼈教你开关电源各功能部分原理分析、计算与选型1 开关电源介绍此⽂档是作为张占松⾼级开关电源设计之后的强化培训,基于计划安排,由申⼯讲解了变压器设计之后,在此⽂章中简单带过变压器设计原理,重点讲解电路⼯作原理和设计过程中关键器件计算与选型。
开关电源的⼯作过程相当容易理解,其拥有三个明显特征:开关:电⼒电⼦器件⼯作在开关状态⽽不是线性状态⾼频:电⼒电⼦器件⼯作在⾼频⽽不是接近⼯频的低频直流:开关电源输出的是直流⽽不是交流也可以输出⾼频交流如电⼦变压器1.1 开关电源基本组成部分1.2 开关电源分类:开关电源按照拓扑分很多类型:buck boost 正激反激半桥全桥 LLC 等等,但是从本质上区分,开关电源只有两种⼯作⽅式:正激:是开关管开通时传输能量,反激:开关管关断时传输能量。
下⾯将以反激电源为例进⾏讲解。
1.3 反激开关电源简介反激⼜被称为隔离buck-boost 电路。
基本⼯作原理:开关管打开时变压器存储能量,开关管关断时释放存储的能量反激开关电源根据开关管数⽬可分为双端和单端反激。
根据反激变压器⼯作模式可分为CCM 和DCM 模式反激电源。
根据控制⽅式可分为PFM 和PWM 型反激电源。
根据驱动占空⽐的产⽣⽅式可分为电压型和电流型反激开关电源。
我们所要讲的反激电源精确定义为:电流型PWM 单端反激电源。
1.4 电流型PWM 单端反激电源此类反激电源优点:结构简单价格便宜,适⽤⼩功率电源。
此类反激电源缺点:功率较⼩,⼀般在150w 以下,纹波较⼤,电压负载调整率低,⼀般⼤于5%。
此类反激电源设计难点主要是变压器的设计,特别是宽输⼊电压,多路输出的变压器。
2 举例讲解设计过程为了更清楚了解设计中详细计算过程,我们将以220VAC-380VAC 输⼊,+5V±3%(5A),±15±5%(0.5A)三路共地输出反激电源为例讲解设计过程。
提出上⾯要求,选择思路如下:提出上⾯要求,选择思路如下:电源总输出功率P=5*5W+15*0.5*2=40W 功率较⼩,可以选择反激开关电源。
第一节高频开关电源电路原理高频开关电源由以下几个部分组成:一、主电路从交流电网输入、直流输出的全过程,包括:1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。
2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。
3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。
4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。
二、控制电路一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对整机进行各种保护措施。
三、检测电路除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表数据。
四、辅助电源提供所有单一电路的不同要求电源。
第二节开关控制稳压原理开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。
可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。
图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。
电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。
在AB间的电压平均值EAB可用下式表示:EAB=TON/T*E式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。
由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。
高频开关电源原理
高频开关电源是一种常用的电源设计方案,采用高频开关器件(如MOSFET或IGBT)作为开关元件,在高频范围内进行开关操作。
其工作原理如下:
1. 输入电源:高频开关电源的输入通常为交流电源,如220V
的市电。
首先,接入整流电路将交流电转换为直流电。
整流电路通常使用二极管桥整流器,将交流电的负半周整流为正半周的直流电。
2. 输入滤波:为了消除输入电源的干扰和波动,需要进行输入滤波。
输入滤波电路通常采用电容和电感的组合,能够削弱输入信号的高频成分和脉冲噪声。
3. 控制电路:高频开关电源需要一套精确的控制电路来实现高频开关器件的开关操作。
此控制电路通常包括PWM(脉宽调制)控制器,用于产生高频开关信号,以及反馈电路,用于监测输出电压并调节控制信号。
4. 高频开关器件:在高频开关电源中,常使用MOSFET或IGBT等器件作为开关元件。
这些器件具有较低的开关损耗和
较高的开关速度,能够在高频范围内进行有效的开关操作。
5. 输出变换:高频开关电源的输出通常需要进行变换,以适应不同电路的需求。
输出变换电路包括变压器及滤波电路,能够将输入电压变换为合适的输出电压,并滤除输出中的高频噪声。
6. 输出调节:高频开关电源需要对输出电压进行精确的调节。
通过反馈电路监测输出电压,并通过PWM控制器调节开关器件的开关频率和占空比,实现输出电压的稳定性。
总结起来,高频开关电源通过高频开关器件的开关操作,在输入电源经过整流、滤波、变换和调节等处理后,得到稳定的输出电压。
它具有高效率、小体积、轻重量等优点,广泛应用于电子设备、通信设备等领域。
随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。
传统的线性稳压电源虽然电路结构简单、工作可靠,但它存在着效率低(只有40% -50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。
为了提高效率,人们研制出了开关式稳压电源,它的效率可达85% 以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。
正因为如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的工作原理作一阐述。
一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。
因此下面就主要介绍调宽式开关稳压电源。
调宽式开关稳压电源的基本原理可参见下图。
对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。
直流平均电压U。
可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。
从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。
这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。
二、开关式稳压电源的原理电路1、基本电路图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。
交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。
控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。
这部分电路目前已集成化,制成了各种开关电源用集成电路。
控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
机载高频开关电源工作原理及设计简介机载高频开关电源产品专门用于输入交流400Hz的场合,这是特意为了满足军用雷达、航空航天、舰船、机车以及导弹发射等专门用途所设计的。
应用户要求,研制出机载高频开关电源产品对电子武器装备系统的国产化,打破国际封锁,提高我军装备的机动性,高性能都有重要的意义。
机上可供选择的供电电源有两种输入方式:115V/400Hz中频交流电源和28V 直流电源。
两种输入方式各有优缺点,115V/400Hz电源波动小,需要器件的耐压相对较高;而28V直流电源却相反,一般不能直接提供给设备部件使用,必须将供电电源进行隔离并稳压成为需要的直流电源才能使用。
机载电源的使用环境比较恶劣,必须适应宽范围温度正常工作,并能经受冲击、震动、潮湿等应力筛选试验,因此设计机载电源的可靠性给我们提出了更高的要求。
下面主要介绍115V/400Hz中频交流输入方式所研制的开关电源,它的输出电压270~380Vdc可以调节,输出功率不小于3000W,环境温度可宽至-40℃~+55℃,完全适应军品级电源的需要。
系统构成及主回路设计图1所示为整机电路原理框图。
它的设计主要通过升压功率因数校正电路及DC/DC变换电路两部分完成。
115Vac/400Hz中频交流电源经输入滤波,通过升压功率因数校正(PFC)电路完成功率因数校正及升压预稳、能量存储,再通过DC/DC半桥变换、高频整流滤波器、输出滤波电路以及反馈控制回路实现270~380Vdc可调节输出稳压的性能要求。
图1 整机电路原理框图升压功率因数校正电路主要使输入功率因数满足指标要求,同时实现升压预稳功能。
本部分设计兼顾功率因数电路达到0.92的要求,又使DC/DC输入电压适当,不致使功率因数校正电路工作负担过重,因此设定在330~350Vdc。
隔离式DC/DC变换器电路拓扑结构形式主要有以下几种:正激、反激、全桥、半桥和推挽。
反激和正激拓扑主要应用在中小功率电源中,不适合本电源的3000W输出功率要求。
开关电源电路图工作原理及维修详解析一、开关电源的工作原理开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。
开关元件以一定的时间间隔重复地接通和断开,在开关无件接通时输入电源Vi通过开关S和滤波电路向负载RL提供能量,当开关S断开时,电路中的储能装置(L1、C2、二极管D组成的电路)向负载RL释放在开关接通时所储存的能量,使负载得到连续而稳定的能量.开关电源原理图VO=TON/T*Vi,VO 为负载两端的电压平均值,TON 为开关每次接通的时间,T 为开关通断的工作周期;由式可知,改变开关接通时间和工作周期的比例,VO间电压平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便使输出电压VO维持不变。
改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法称为“时间比率控制”(TimeRationControl,缩写为TRC)。
按TRC控制原理,有三种方式:1、脉冲宽度调制(PulseWithModulation,缩写为PWM)开关周期恒定,通过改变脉冲宽度来改变占空比的方式。
2、脉冲频率调制(PulseFrequencyModulation,缩写为PFM)导通脉冲宽度恒定,通过改变开关工作频率来改变占空比的方式。
3、混合调制导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合。
二、开关电源的维修技巧和常见故障1、维修技巧开关电源的维修可分为两步进行:断电情况下,“看、闻、问、量” 看:打开电源的外壳,检查保险丝是否熔断,再观察电源的内部情况,如果发现电源的PCB板上有烧焦处或元件破裂,则应重点检查此处元件及相关电路元件.闻:闻一下电源内部是否有糊味,检查是否有烧焦的元器件.问:问一下电源损坏的经过,是否对电源进行违规操作.量:没通电前,用万用表量一下高压电容两端的电压先.如果是开关电源不起振或开关管开路引起的故障,则大多数情况下,高压滤波电容两端的电压未泄放悼,此电压有300多伏,需小心.用万用表测量AC电源线两端的正反向电阻及电容器充电情况,电阻值不应过低,否则电源内部可能存在短路。
开关电源工作原理解析及正反激电路图解
本文将介绍开关电源的工作流程,开关电源正激电路、反激电路原理图及工作过程分析,希望能对您有所帮助。
开关电源就是用通过电路控制开关管进行高速的导通与截止,将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压。
转为高频交流电的原因是高频交流在变压器变压电路中的效率要比
50HZ高很多.所以开关变压器可以做的很小,而且工作时不是很热,成本很低。
如果不将50HZ变为高频,那幺开关电源就没有意义。
开关电源的工作流程是:
电源→输入滤波器→全桥整流→直流滤波→开关管(振荡逆变)→开关变压器→输出整流与滤波。
交流电源输入经整流滤波成直流
通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上
开关变压器次级感应出高频电压,经整流滤波供给负载
输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的
交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰;
在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高;
开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出;。
开关电源工作原理如何理解及其电路图详细解析开关模式电源(Switch Mode Power Supply,简称SMPS),又称交换式电源、开关变换器,是一种高频化电能转换装置,是电源供应器的一种。
其功能是将一个位准的电压,透过不同形式的架构转换为用户端所需求的电压或电流。
开关电源的输入多半是交流电源(例如市电)或是直流电源,而输出多半是需要直流电源的设备,例如个人电脑,而开关电源就进行两者之间电压及电流的转换。
开关模式电源(Switch Mode Power Supply,简称SMPS),又称交换式电源、开关变换器,是一种高频化电能转换装置,是电源供应器的一种。
其功能是将一个位准的电压,透过不同形式的架构转换为用户端所需求的电压或电流。
开关电源的输入多半是交流电源(例如市电)或是直流电源,而输出多半是需要直流电源的设备,例如个人电脑,而开关电源就进行两者之间电压及电流的转换。
开关电源不同于线性电源,开关电源利用的切换晶体管多半是在全开模式(饱和区)及全闭模式(截止区)之间切换,这两个模式都有低耗散的特点,切换之间的转换会有较高的耗散,但时间很短,因此比较节省能源,产生废热较少。
理想上,开关电源本身是不会消耗电能的。
电压稳压是透过调整晶体管导通及断路的时间来达到。
相反的,线性电源在产生输出电压的过程中,晶体管工作在放大区,本身也会消耗电能。
开关电源的高转换效率是其一大优点,而且因为开关电源工作频率高,可以使用小尺寸、轻重量的变压器,因此开关电源也会比线性电源的尺寸要小,重量也会比较轻。
若电源的高效率、体积及重量是考虑重点时,开关电源比线性电源要好。
不过开关电源比较复杂,内部晶体管会频繁切换,若切换电流尚加以处理,可能会产生噪声及电磁干扰影响其他设备,而且若开关电源没有特别设计,其电源功率因数可能不高。
主要用途开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防监控,LED灯带,电脑机箱,数码产品和仪器类等领域。
开关电源原理及各功能电路详解一、开关电源的电路组成:开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM 控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路:1、AC输入整流滤波电路原理:① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。
② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③ 整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、 DC输入滤波电路原理:① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
高频开关电源工作原理高频开关电源是一种高效、稳定、可靠的电源,正在被广泛应用于各种电子设备中。
它的工作原理是将交流电压转换为高频脉冲信号后,在经过滤波、调整和反馈等电路处理之后,输出直流电压,从而为各种电子设备提供稳定的电力支持。
一、高频开关电源的基本构造高频开关电源的基本构造包括变压器、开关管、滤波电容、调整电路和反馈电路等五个部分。
1.变压器:变压器是高频开关电源的核心部件,它能够将输入的交流电压转换为高频脉冲信号,输出到开关管上。
因此,变压器的质量和性能是影响高频开关电源输出效果的关键因素之一。
2.开关管:高频开关电源采用晶体管或MOS管作为开关管,通过控制其导通和截止时间来实现电流的开断和转换。
由于开关管的开关频率很高,达到几十千赫,因此它的响应速度、频响特性和损耗情况对高频开关电源的性能有很大的影响。
3.滤波电容:滤波电容用于过滤高频干扰和跨越电压,将输出脉冲信号转换为直流电压。
它的作用是保证高频开关电源的输出稳定性和纹波电压小,也就是电源的纹波系数小。
4.调整电路:调整电路用于调整输出电压或电流,使高频开关电源能够满足不同的电子设备工作要求。
调整电路采用稳压器进行调整,可以通过电压分压器、电流限制器等方式实现输出电压或电流的稳定控制。
5.反馈电路:反馈电路也是高频开关电源关键部分之一,它通过检测输出电压或电流大小并输出反馈信号,控制开关管的工作状态,从而实现高频开关电源的自动稳压、限流和保护等功能。
二、高频开关电源的工作原理高频开关电源的工作原理可以分为三个步骤:输入、转换和输出。
1.输入阶段:高频开关电源的输入电源是交流电源,经过整流电路转换为直流电压,输入到变压器端口。
2.转换阶段:通过变压器将输入的电压转换为高频脉冲信号,输出到开关管上。
当开关管闭合时,电流会通过变压器和地线形成电磁场,从而将变压器中的能量存储在磁场中;当开关管断开时,电磁场就会将这些能量释放出来,形成一个脉冲信号输出到滤波电容上。
实验一单端隔离型高频开关电源实验一、实验目的1.了解单端反激式开关电源的主电路结构、工作原理;2.掌握单端反激式变压器设计和绕制方法;3.学会开关电源调试的基本方法。
二、实验原理单端反激式隔离变换器电路拓扑单端反激式隔离变换器图所示。
当VT导通时,输入电压Ui便加到变压器T的初级绕组N1上,根据变压器T对应端的极性,次级绕组N2为下正上负,二极管VD截止,次级绕组N2中没有电流流过。
当VT截止时,N2绕组电压极性变为上正下负,二极管VD导通,此时,VT导通期间储存在变压器(电感)中的能量使通过二极管VD向负载释放。
本次实验输入为工频交流220V,经过工频隔离变压器将电压降到交流35V,再经过二极管整流和大电解电容滤波变成约48V的直流电压。
采用UC3842作为PWM控制芯片,驱动功率MOSFET,控制高频变压器的原边通电,副边采用±15V和+15V三路输出,其中+15V 输出作为反馈端,实现电压稳压输出。
单端隔离型高频开关电源电路框图技术指标:输入:交流 220V±15%输出:+15V/0.2A,±15V /0.3A(实验者可调整)MOSFET 开关频率:100kHz(实验者可调整)实验者可观测的数据和波形:交流输入电压波形、二极管整流后电压波形、电容滤波后电压波形、MOSFET 的漏源极电压波形、输出电压波形、UC3842 的锯齿波振荡器波形、UC3842 的输出驱动波形。
实验者可调整的参数:可改变反馈电压分压比进而改变输出电压数值;可改变 RCD 吸收电路参数观测 MOSFET 的漏源极电压波形变化情况;可改变功率 MOSFET 的驱动电阻数值参数观测 MOSFET 的漏源极电压波形变化情况;可改变 UC3842 的锯齿波振荡器电阻值,观测 UC3842 的输出驱动波形频率的变化情况。
三、实验电路原理1.PWM控制芯片UC3842简介UC3842是一种单端输出控制电路芯片,其内部结构框图如图所示。
高频开关电源电路原理分析
开关电源微介绍开关电源具有体积小、效率高的一系列优点。
已广泛应用于各种电子产品中。
然而,由于控制电路复杂,输出纹波电压高,开关电源的应用也受到限制。
它
电源小型化的关键是电源的小型化,因此必须尽可能地减少电源电路的损耗。
当开关电源工作在开关状态时,开关电源的开关损耗不可避免地存在,损耗随着开关频率的增加而增大。
另一方面,开关电源中的变压器和电抗器等磁性元件和电容元件的损耗随着频率的增加而增加。
它
在目前市场上,开关电源中的功率晶体管大多是双极型晶体管,开关频率可以达到几十kHz,MOSFET开关电源的开关频率可以达到几百kHz。
必须使用高速开关器件来提高开关频率。
对于开关频率高于MHz的电源,可以使用谐振电路,这被称为谐振开关模式。
它可以大大提高开关速度。
原则上,开关损耗为零,噪声非常小。
这是一种提高开关电源工作频率的方法。
采用谐振开关模式的兆赫变换器。
开关电源可以通过高频开关模式很好的解决这一问题。
对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。
随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。
这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。
需要说明的是,我们经常所说的开关电源其实是高频开关电源的缩写形式,和电源本身的关闭和开启式没有任何关系的。
开关电源分类介绍开关电源具有多种电路结构:(1)根据驱动方式,存在自激和自激。
它2)根据DC/DC变换器的工作方式:(1)单端正激和反激、推挽式、半桥式、全桥式等;2)降压式、升压式和升压式。
它
(3)根据电路的组成,有谐振和非谐振。
它
(4)根据控制方式分为:脉宽调制(PWM)、脉冲频率调制(PFM)、PWM和PFM混合。
(5)根据电源隔离和反馈控制信号耦合方式,存在隔离、非隔离和变压器耦合、光电耦合等问题。
这些组合可以形成各种开关模式电源。
因此,设计者需要根据各种模式的特点,
有效地结合起来,生产出高质量的开关稳压电源,以满足需要。
开关电源原理解析下图3和4描述的是开关电源的PWM反馈机制。
图3描述的是没有PFC(Power Factor Correction,功率因素校正) 电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。
通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220 V转换器,而且也没有电压倍压电路。
下文我们的重点将会是主动式PFC电源的讲解。
为了让读者能够更好的理解电源的工作原理,以上我们提供的是非常基本的图解,图中并未包含其他额外的电路,比如说短路保护、待机电路以及PG信号发生器等等。
当然了,如果您还想了解一下更加详尽的图解,请看图5。
如果看不懂也没关系,因为这张图本来就是为那些专业电源设计人员看的
你可能会问,图5设计图中为什么没有电压整流电路?事实上,PWM电路已经肩负起了电压整流的工作。
输入电压在经过开关管之前将会再次校正,而且进入变压器的电压已经成为方形波。
所以,变压器输出的波形也是方形波,而不是正弦波。
由于此时波形已经是方形波,所以电压可以轻而易举的被变压器转换为DC直流电压。
也就是说,当电压被变压器重新校正之后,输出电压已经变成了DC直流电压。
这就是为什么很多时候开关电源经常会被称之为DC-DC转换器。
馈送PWM控制电路的回路负责所有需要的调节功能。
如果输出电压错误时,PWM控制电路就会改变工作周期的控制信号以适应变压器,最终将输出电压校正过来。
这种情况经常会发生在PC功耗升高的时,此时输出电压趋于下降,或者PC功耗下降的时,此时输出电压趋于上升。
在看下一页是,我们有必要了解一下以下信息:
★在变压器之前的所有电路及模块称为primary(一次侧),在变压器之后的所有电路及模块称为secondary(二次侧);
★采用主动式PFC设计的电源不具备110 V/ 220 V转换器,同时也没有电压倍压器;
★对于没有PFC电路的电源而言,如果110 V / 220 V被设定为110 V时,电流在进入整流桥之前,电源本身将会利用电压倍压器将110 V提升至220 V左右;
★PC电源上的开关管由一对功率MOSFET管构成,当然也有其他的组合方式,之后我们将会详解;
★变压器所需波形为方形波,所以通过变压器后的电压波形都是方形波,而非正弦波;
★PWM控制电流往往都是集成电路,通常是通过一个小的变压器与一次侧隔离,而有时候也可能是通过耦合芯片(一种很小的带有LED和光电晶体管的IC芯片)和一次侧隔离;★PWM控制电路是根据电源的输出负载情况来控制电源的开关管的闭合的。
如果输出电压过高或者过低时,PWM控制电路将会改变电压的波形以适应开关管,从而达到校★正输出电压的目的。