概率的意义 课件
- 格式:ppt
- 大小:285.50 KB
- 文档页数:9
《概率的意义》(一)
使用教材:义务教育课程标准实验教科书
授课教师:曲靖市数学骨干教师培训班陈谷慧
教材分析:
小学阶段,学生对事件发生的可能性的大小已有了初步的认识:知道事件发生的可能性是有大小的,会求简单事件发生的可能性.初中阶段,主要学习随机事件及概率的定义,掌握计算简单事件概率的方法,从中体会随机观念和概率思想.
概率研究随机事件发生的可能性的大小.这里既有随机性,更有随机性中表现出的规律性,这是学生理解的重点与难点.根据学生的年龄特点和认知水平,本节课就从学生熟悉并感兴趣的抛掷硬币入手,让学生亲自动手操作,在相同条件下重复进行试验,在实践过程中形成对随机事件的随机性以及随机性中表现出的规律性的直接感知,从而形成对概念的正确理解.
教学目标:
教材处理:
从随机现象中寻找规律,这对学生来说是一种全新的观念,如果缺乏对随机现象的丰富体验,学生较难建立起这一观念.因此,教材设计了“抛掷硬币”这样一个数学活动,使学生逐步丰富对随机现象规律性的体验,从而对概率的认识和理解从感性向理性过渡;而且在这个充满探索和自主体验的过程中,学生将逐步学会数学的思想方法和如何用数学解决问题,获得成功的体验,这样也可以培养学生用数学的眼光观察世界、从数学的角度进行思考的思维习惯.
活动过程:
教学反思:
每次抛掷硬币的过程都是一个随机事件,由于众多偶然因素的影响,每次测得的结果具有偶然性;但随着试验次数的增加,大量重复后频率却几乎必然地稳定于某一定数.也就是说,随机事件在一次试验中发生与否是随机的,但随机性中含有规律性.正如马克思所说:必然性与偶然性(即随机性)是对立统一的,在表面上是偶然性起作用的地方,这种偶然性始终是受内部隐蔽着的规律支配的,而问题只是在于发现这些规律;反过来被断定为必然的东西,是由纯粹的偶然性构成的.。
概率的意义:
一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫
做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。
事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。
注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;
(2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;
(3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;
(4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。
题文
用自己的语言解释下列问题:
(1)一种彩票的中奖率为,你买1000张,一定中奖吗?
(2)一种彩票的中奖率为五百万分之一,你买一张一定不能中奖吗?
答案(找作业答案--->>上魔方格)
(1)不一定,因为不知道彩票发行总数。
(2)因为概率不是0,所以是可能中奖的,只是几率小。