模拟电子技术基础_01绪论
- 格式:ppt
- 大小:921.51 KB
- 文档页数:25
电子技术基础模拟部分 第一章 绪论1、写出下列正弦电压信号的表达式(设初始相角为零): (1)峰-峰值10V ,频率10 kHz; (2)有效值220 V ,频率50 Hz; (3)峰-峰值100 mV ,周期1 ms ; (4)峰-峰值0.25 V ,角频率1000 rad/s;解:正弦波电压表达式为 )t sin(V = (t)m θω+v ,由于0=θ,于是得到: (1) V )105sin(2 = (t)4t v π⨯; (2) V 001sin 2220 = (t)t v π; (3) V 00020.05sin = (t)t v π;(4) V 00010.125sin= (t)t v ;2、电压放大电路模型如图( 主教材图 1.4. 2a ) 所示,设输出开路电压增益10=vo A 。
试分别计算下列条件下的源电压增益s vs A υυο=:( 1 ) si i R R 10= ,οR R L 10=; ( 2) si i R R = ,οR R i =; ( 3) 10si i R R = ,10οR R L =; ( 4 ) si i R R 10= ,10οR R L =。
电压放大电路模型解:由图可知,)(i si i i s R R R v v +=,i v LLA R R R v νοοο⋅+=,所以可得以下结果: (1)si i R R 10=,οR R L 10=时,i i si i i s v R R R v v 1011)(=+=,i i v L L v A R R R v 101110⨯=⋅+=νοοο,则源电压增益为26.8101111100≈==i i s vs v v v v A ο。
同理可得: (2)5.225===ii s vs v v v v A ο (3)0826.0111110≈==i i s vs v v v v A ο (4)826.010111110≈==i i s vs v v v v A ο3、在某放大电路输入端测量到输入正弦信号电流和电压的峰-峰值分别为5μA 和5mV ,输出端接2k Ω电阻负载,测量到正弦电压信号峰-峰值为1V 。
模拟电子技术根底主编:黄瑞祥副主编:周选昌、查丽斌、郑利君杨慧梅、肖铎、赵胜颖目录绪论第1章集成运算放大器1.1 抱负运算放大器的功能与特性抱负运算放大器的电路符号与端口抱负运算放大器的功能与特性1.2 运算放大器的反相输入阐发闭环增益输入、输出阻抗有限开环增益的影响加权加法器运算放大器的同相输入阐发闭环增益输入、输出阻抗有限开环增益的影响电压跟随器1.4 运算放大器的差分输入阐发1.5 仪表放大器1.6 积分器与微分器1.6.1 具有通用阻抗的反相输入方式1.6.2 反相积分器1.6.3 反相微分器1.7 运算放大器的电源供电1.7.1 运算放大器的双电源供电1.7.2 运算放大器的单电源供电本章小结习题第2章半导体二极管及其底子电路2.1 半导体根底常识2 本征半导体2 杂质半导体2 两种导电机理——扩散和漂移2.2 PN结的形成和特性2.2.1 PN结的形成2.2.2 PN结的单向导电性2.2.3 PN结的反向击穿2.2.4 PN结的电容特性2.3 半导体二极管的布局及指标参数2 半导体二极管的布局2 二极管的主要参数2 半导体器件型号定名方法2.4 二极管电路的阐发方法与应用2.4.1 二极管电路模型2.4.2 二极管电路的阐发方法2 二极管应用电路2.5 特殊二极管2.5.1 肖特基二极管2.5.2 光电子器件本章小结习题第3章三极管放大电路根底3.1 三极管的物理布局与工作模式3 物理布局与电路符号3 三极管的工作模式3.2 三极管放大模式的工作道理3.2.1 三极管内部载流子的传递3.2.2 三极管的各极电流3.3 三极管的实际布局与等效电路模型3.3.1 三极管的实际布局3.3.2 三极管的等效电路模型3.4 三极管的饱和与截止模式3.4.1 三极管的饱和模式3.4.2 三极管的截止模式3.5 三极管特性的图形暗示3.5.1 输入特性曲线3.5.2 输出特性曲线3.5.3 转移特性曲线3.6 三极管电路的直流阐发3.6.1 三极管直流电路的阐发方法3.6.2 三极管直流电路阐发实例3.7 三极管放大器的主要参数3.7.1 三极管放大器电路3.7.2 集电极电流与跨导3.7.3 基极电流与基极的输入电阻发射极电流与发射极的输入电阻电压放大倍数3.8 三极管的交流小信号等效模型3.8.1 混合∏型模型3.8.2 T型模型3.8.3 交流小信号等效模型应用3.9 放大器电路的图解阐发3.10 三极管放大器的直流偏置3.10.1 单电源供电的直流偏置3.10.2 双电源供电的偏置电路集电极与基极接电阻的偏置电路恒流源偏置电路3.11 三极管放大器电路3.11.1 放大器的性能指标3.11.2 三极管放大器的底子组态共发射极放大器发射极接有电阻的共发射极放大器共基极放大器共集电极放大器本章小结习题第4章场效应管及其放大电路4.1 MOS场效应管及其特性4 增强型MOSFET〔EMOSFET〕4 耗尽型MOSFET〔DMOSFET〕4 四种MOSFET的比较4 小信号等效电路模型4.2 结型场效应管及其特性4 工作道理4 伏安特性4 JFET的小信号模型4.3 场效应管放大电路中的偏置4 直流状态下的场效应管电路4 分立元件场效应管放大器的偏置4 集成电路中场效应管放大器的偏置4.4 场效应管放大电路阐发4 FET放大电路的三种底子组态4 共源放大电路4 共栅放大电路4 共漏放大电路4 有源电阻本章小结习题第5章差分放大器与多级放大器5.1 电流源5 镜像电流源5 微电流源比例电流源5.2 差分放大器差分放大器模型差分放大器电路差分放大器的主要指标差分放大器的传输特性5.2.5 FET差分放大器5.2.6 差分放大器的零点漂移5.3 多级放大器5 多级放大器的一般布局5 多级放大器级间耦合方式5 多级放大器的阐发计算5.4 模拟集成电路读图操练5.4.1 模拟集成电路内部布局框图5.4.2 简单集成运放电路道理通用型模拟集成电路读图操练集成运算放大器的主要技术指标集成运算放大器的分类正确选择集成运算放大器集成运算放大器的使用要点本章小结习题第6章滤波电路及放大电路的频率响应6.1 有源滤波电路6 滤波电路的底子概念与分类6 低通滤波器高通滤波器带通滤波器带阻滤波器6.2 放大电路的频率响应6 三极管的高频等效模型6 单管共射极放大电路的频率特性阐发多级放大电路的频率特性本章小结习题第7章反响放大电路7.1 反响的底子概念与判断方法7 反响的底子概念7 负反响放大电路的四种底子组态反响的判断方法7.2 负反响放大电路的方框图及一般表达式7.2.1 负反响放大电路的方框图7.2.2 负反响放大电路的一般表达式7.3 负反响对放大电路性能的影响7.3.1 提高增益的不变性7.3.2 改变输入电阻和输出电阻7.3.3 减小非线性掉真和扩展频带7.4 深度负反响放大电路的阐发深度负反响条件下增益的近似计算虚短路和虚断路7.5 负反响放大电路的不变性问题负反响放大电路自激振荡及不变工作的条件负反响放大电路不变性的阐发负反响放大电路自激振荡的消除方法本章小结习题第8章功率放大电路8.1 概述8 功率放大电路的主要特点8 功率放大电路的工作状态与效率的关系8.2 互补对称功率放大电路8.2.1 双电源互补对称电路〔OCL电路〕8.2.2 单电源互补对称功率放大器〔OTL〕8.2.3 甲乙类互补对称功率放大器8.2.4 复合管互补对称功率放大器8.2.5 实际功率放大电路举例8.3 集成功率放大器8.3.1 集成功率放大器概述8.3.2 集成功放应用简介8.4 功率放大器实际应用电路OCL功率放大器实际应用电路OTL功率放大器实际应用电路集成功率放大器实际应用电路功率放大器应用中的几个问题本章小结习题第9章信号发生电路9.1 正弦波发生电路9.1.1 正弦波发生电路的工作道理和条件9.1.2 RC正弦波振荡电路9.1.3 LC正弦波振荡电路9.1.4 石英晶体正弦波振荡电路9.2 电压比较器单门限电压比较器迟滞比较器窗口比较器集成电压比较器9.3 非正弦波发生电路9.3.1 方波发生电路9.3.2 三角波发生电路9.3.3 锯齿波发生电路集成函数发生器简介本章小结习题第10章直流稳压电源10.1 引言10.2 整流电路10.2.1 单相半波整流电路单相全波整流电路10.2.3 单相桥式整流电路10.3 滤波电路10.3.1 电容滤波电路10.3.2 电感滤波电路10.3.3 LC滤波电路Π型滤波电路10.4 线性稳压电路10.4.1 直流稳压电源的主要性能指标10.4.2 串联型三极管稳压电路10.4.3 提高稳压性能的办法和庇护电路10.4.4 三端集成稳压器10.5 开关式稳压电路10.5.1 开关电源的控制方式10.5.2 开关式稳压电路的工作道理及应用电路10.5.3 脉宽调制式开关电源的应用电路本章小结习题。
模拟电子技术基础复习提纲第一章绪论)信号、模拟信号、放大电路、三大指标。
(放大倍数、输入电阻、输出电阻)第三章二极管及其基本电路)本征半导体:纯净结构完整的半导体晶体。
在本征半导体内,电子和空穴总是成对出现的。
N型半导体和P型半导体。
在N型半导体内,电子是多数载流子;在P型半导体内,空穴是多数载流子。
载流子在电场作用下的运动称为漂移;载流子由高浓度区向低浓度区的运动称为扩散。
P型半导体和N型半导体的接触区形成PN结,在该区域中,多数载流子扩散到对方区域,被对方的多数载流子复合,形成空间电荷区,也称耗尽区或高阻区。
空间电荷区内电场产生的漂移最终与扩散达到平衡。
PN结最重要的电特性是单向导电性,PN结加正向电压时,电阻值很小,PN结导通;PN结加反向电压时,电阻值很大,PN结截止。
PN 结反向击穿包括雪崩击穿和齐纳击穿;PN结的电容效应包括扩散电容和势垒电容,前者是正向偏置电容,后者是反向偏置电容。
)二极管的V-I 特性(理论表达式和特性曲线))二极管的三种模型表示方法。
(理想模型、恒压降模型、折线模型)。
(V BE=)第四章双极结型三极管及放大电路基础)BJT的结构、电路符号、输入输出特性曲线。
(由三端的直流电压值判断各端的名称。
由三端的流入电流判断三端名称电流放大倍数))什么是直流负载线什么是直流工作点)共射极电路中直流工作点的分析与计算。
有关公式。
(工作点过高,输出信号顶部失真,饱和失真,工作点过低,输出信号底部被截,截止失真)。
)小信号模型中h ie和h fe含义。
)用h参数分析共射极放大电路。
(画小信号等效电路,求电压放大倍数、输入电阻、输出电阻)。
)常用的BJT放大电路有哪些组态(共射极、共基极、共集电极)。
各种组态的特点及用途。
P147。
(共射极:兼有电压和电流放大,输入输出电阻适中,多做信号中间放大;共集电极(也称射极输出器),电压增益略小于1,输入电阻大,输出电阻小,有较大的电流放大倍数,多做输入级,中间缓冲级和输出级;共基极:只有电压放大,没有电流放大,有电流跟随作用,高频特性较好。
《模拟电子技术基础》教学教案第一章:绪论1.1 课程简介介绍模拟电子技术的基本概念、特点和应用领域。
强调模拟电子技术在工程实践中的重要性。
1.2 教学目标让学生了解模拟电子技术的基本概念。
使学生掌握模拟电子技术的基本原理和应用。
1.3 教学内容模拟电子技术的定义和特点。
模拟电子技术的应用领域。
模拟电子技术的发展趋势。
1.4 教学方法采用讲授法,讲解模拟电子技术的基本概念和原理。
通过案例分析,使学生了解模拟电子技术的应用。
1.5 教学资源教材:《模拟电子技术基础》课件:模拟电子技术的基本概念和原理。
第二章:常用半导体器件2.1 教学目标使学生了解半导体器件的基本概念和分类。
让学生掌握常用半导体器件的结构、特性和应用。
2.2 教学内容半导体器件的基本概念和分类。
常用半导体器件的结构、特性和应用。
2.3 教学方法采用讲授法,讲解半导体器件的基本概念和分类。
通过实验演示,使学生了解常用半导体器件的结构和特性。
2.4 教学资源教材:《模拟电子技术基础》实验设备:常用半导体器件。
第三章:基本放大电路3.1 教学目标使学生掌握放大电路的基本原理和分类。
让学生了解基本放大电路的设计和应用。
3.2 教学内容放大电路的基本原理和分类。
基本放大电路的设计和应用。
3.3 教学方法采用讲授法,讲解放大电路的基本原理和分类。
通过实验演示,使学生了解基本放大电路的设计和应用。
3.4 教学资源教材:《模拟电子技术基础》实验设备:放大电路实验套件。
第四章:集成运算放大器4.1 教学目标使学生了解集成运算放大器的基本概念和特性。
让学生掌握集成运算放大器的应用和设计方法。
4.2 教学内容集成运算放大器的基本概念和特性。
集成运算放大器的应用和设计方法。
4.3 教学方法采用讲授法,讲解集成运算放大器的基本概念和特性。
通过实验演示,使学生了解集成运算放大器的应用和设计方法。
4.4 教学资源教材:《模拟电子技术基础》实验设备:集成运算放大器实验套件。
电子技术基础模拟部分 第一章 绪论1、写出下列正弦电压信号的表达式(设初始相角为零): (1)峰-峰值10V ,频率10 kHz; (2)有效值220 V ,频率50 Hz; (3)峰-峰值100 mV ,周期1 ms ; (4)峰-峰值0.25 V ,角频率1000 rad/s;解:正弦波电压表达式为 )t sin(V = (t)m θω+v ,由于0=θ,于是得到: (1) V )105sin(2 = (t)4t v π⨯; (2) V 001sin 2220 = (t)t v π; (3) V 00020.05sin = (t)t v π; (4) V 00010.125sin = (t)t v ;2、电压放大电路模型如图( 主教材图 1.4. 2a ) 所示,设输出开路电压增益10=vo A 。
试分别计算下列条件下的源电压增益s vs A υυο=:( 1 ) si i R R 10= ,οR R L 10=; ( 2) si i R R = ,οR R i =; ( 3) 10si i R R = ,10οR R L =; ( 4 ) si i R R 10= ,10οR R L =。
电压放大电路模型解:由图可知,)(i si i i s R R R v v +=,i v LLA R R R v νοοο⋅+=,所以可得以下结果: (1)si i R R 10=,οR R L 10=时,i i si i i s v R R R v v 1011)(=+=,i i v L L v A R R R v 101110⨯=⋅+=νοοο,则源电压增益为26.8101111100≈==i i s vs v v v v A ο。
同理可得: (2)5.225===iis vs v v v v A ο (3)0826.0111110≈==i i s vs v v v v A ο (4)826.010111110≈==i i s vs v v v v A ο3、在某放大电路输入端测量到输入正弦信号电流和电压的峰-峰值分别为5μA 和5mV ,输出端接2k Ω电阻负载,测量到正弦电压信号峰-峰值为1V 。
绪论电子技术的基本任务就是研究电信号的产生、信号的传输、信号的处理,任务的完成取决于对电子器件、电子电路、电子系统的性能的研究。
按照功能和构成原理的不同,电子电路可分为模拟电路和数字电路两大类。
本课程着重讨论模拟电路的基本概念、基本原理、基本分析方法及基本应用。
本章首先简要地介绍信号与电子系统的基本概念,然后讨论模拟电路的基本单元电路——放大器(模型)及其性能。
课内学时:学习指导这一章主是为学习模拟电路与数字电路提供引导性的背景知识。
重点掌握第二节放大电路的基本知识,为学习本课程后续章节打下基础。
参考资源1.陈大钦主编,《电子技术基础》模拟部分,华中理工大学出版社2.童诗白、华成英主编,《模拟电子技术基础》高等教育出版社3.王远编《模拟电子技术基础学习指导书》主要内容1.1 电子学发展史1.2 信号的传输与电子系统1.3 放大电路的基本知识1.4 学习方法与要求1 绪论1.1 电子学发展史1750年,富兰克林指出:雷电与摩擦生电是一回事1800年,伏打创立了电位差理论1820年,奥斯特发现导线通电磁针偏转1831年,法拉第完成磁生电实验1865年,麦克斯韦发表电磁理论公式1896年,马可尼发明电报,获1908年诺贝尔奖1897年,汤姆荪发现电子,获1906年诺贝尔奖1947年,萧克利、巴丁、布拉顿发明晶体管,获1956年诺贝尔奖1958年,基尔比发明集成电路,获2000年诺贝尔奖1.2 信号的传输与电子系统一般地说,信号是信息的载体。
例如,声音信号可以传达语言、音乐或其他信息,图像信号可以传达人类视觉系统能够接受的图像信息1.2.1 电子系统传输信号,由三部分组成:信号获取信号处理信号执行1.2.2 信号及其频谱1.2.3 模拟信号和数字信号信号的基本特性电信号是随时间变化的电压或电流。
它可用其电压或电流幅值与时间的函数关系来表示,也可用波形直观的表达。
下面以正弦波电压信号和方波信号为例说明信号的表达方式及其基本特性。
模拟电子技术习题答案电工电子教学部2012.2第一章 绪论一、填空题:1. 自然界的各种物理量必须首先经过 传感器 将非电量转换为电量,即 电信号 。
2. 信号在频域中表示的图形或曲线称为信号的 频谱 。
3. 通过傅立叶变换可以实现信号从 时域 到频域的变换。
4. 各种信号各频率分量的 振幅 随角频率变化的分布,称为该信号的幅度频谱。
5. 各种信号各频率分量的 相位 随角频率变化的分布,称为该信号的相位频谱。
6. 周期信号的频谱都由 直流分量 、基波分量 以及 无穷多项高次谐波分量 组成。
7. 在时间上和幅值上均是连续的信号 称为模拟信号。
8. 在时间上和幅值上均是离散的信号 称为数字信号。
9. 放大电路分为 电压放大电路 、电流放大电路、互阻放大电路 以及 互导放大电路 四类。
10. 输入电阻 、输出电阻 、增益 、 频率响应 和 非线性失真 等主要性能指标是衡量放大电路的标准。
11. 放大电路的增益实际上反映了 电路在输入信号控制下,将供电电源能量转换为信号能量 的能力。
12. 放大电路的电压增益和电流增益在工程上常用“分贝”表示,其表达式分别是 dB lg 20v A =电压增益 、dB lg 20i A =电流增益 。
13. 放大电路的频率响应指的是,在输入正弦信号情况下,输出随 输入信号频率连续变化 的稳态响应。
14. 幅频响应是指 电压增益的模与角频率 之间的关系 。
15. 相频响应是指 放大电路输出与输入正弦电压信号的相位差与角频率 之间的关系 。
二、某放大电路输入信号为10pA 时,输出为500mV ,它的增益是多少?属于哪一类放大电路? 解: Ω105A10V50pA 10mV 5001011i o r ⨯====-.i v A 属于互阻放大电路三、某电唱机拾音头内阻为1MΩ,输出电压为1V (有效值),如果直接将它与10Ω扬声器连接,扬声器上的电压为多少?如果在拾音头与扬声器之间接入一个放大电路,它的输入电阻R i =1MΩ,输出电阻R o =10Ω,电压增益为1,试求这时扬声器上的电压。
《模拟电子技术基础》教学教案第一章:绪论1.1 课程介绍1.2 模拟电子技术的基本概念1.3 模拟电子技术的发展历程1.4 模拟电子技术的应用领域第二章:常用半导体器件2.1 半导体基础知识2.2 晶体管的结构与工作原理2.3 场效应晶体管的结构与工作原理2.4 晶体二极管的结构与工作原理2.5 晶体三极管的结构与工作原理第三章:放大电路基础3.1 放大电路的基本概念3.2 放大电路的分类与性能指标3.3 放大电路的基本分析方法3.4 放大电路的频率响应3.5 放大电路的稳定性与调整第四章:集成运算放大器4.1 运算放大器的基本概念4.2 运算放大器的内部结构与工作原理4.3 运算放大器的性质与参数4.4 运算放大器的基本应用电路4.5 运算放大器的线性应用与非线性应用第五章:模拟信号处理5.1 滤波器的基本概念5.2 滤波器的分类与性能指标5.3 低通滤波器的原理与设计5.4 高通滤波器的原理与设计5.5 带通滤波器和带阻滤波器的原理与设计5.6 滤波器的应用实例第六章:直流稳压电源6.1 稳压电源的基本概念6.2 稳压电源的电路组成6.3 稳压二极管与稳压电路6.4 线性稳压电源的工作原理6.5 开关稳压电源的工作原理第七章:信号运算与处理7.1 模拟运算放大器的基本应用7.2 模拟信号运算与处理的基本概念7.3 模拟信号运算放大器的比例运算7.4 模拟信号运算放大器的积分与微分运算7.5 模拟信号运算放大器的对数与指数运算第八章:模拟信号转换8.1 模数转换器(ADC)的基本概念8.2 模数转换器的工作原理与类型8.3 模拟信号到数字信号的转换过程8.4 数模转换器(DAC)的基本概念8.5 数模转换器的工作原理与类型第九章:振荡电路9.1 振荡电路的基本概念9.2 LC振荡电路的工作原理9.3 RC振荡电路的工作原理9.4 石英晶体振荡电路的工作原理9.5 振荡电路的应用实例第十章:调制与解调10.1 调制与解调的基本概念10.2 调幅(AM)的原理与实现10.3 调频(FM)的原理与实现10.4 调相(PM)的原理与实现10.5 解调电路的原理与实现第十一章:功率放大器11.1 功率放大器的基本概念11.2 功率放大器的分类与性能指标11.3 甲类功率放大器的工作原理11.4 乙类功率放大器的工作原理11.5 甲乙类功率放大器的应用与选择第十二章:模拟集成电路12.1 集成电路的基本概念12.2 模拟集成电路的分类与性能12.3 集成电路的制造工艺12.4 常用模拟集成电路的功能与原理12.5 模拟集成电路的应用与设计第十三章:数字电路与模拟电路的接口13.1 数字电路与模拟电路的接口概念13.2 模拟信号与数字信号的转换原理13.3 数字模拟转换器(DAC)的原理与应用13.4 模拟数字转换器(ADC)的原理与应用13.5 数字电路与模拟电路接口电路的设计与分析第十四章:噪声与滤波14.1 电子系统中的噪声来源14.2 噪声的度量与控制14.3 滤波器在电子系统中的应用14.4 线性滤波器的设计与分析14.5 非线性滤波器的设计与分析第十五章:模拟电子技术在实际应用中的案例分析15.1 模拟电子技术在通信系统中的应用15.2 模拟电子技术在信号处理中的应用15.3 模拟电子技术在医疗设备中的应用15.4 模拟电子技术在消费电子产品中的应用15.5 模拟电子技术在工业控制中的应用重点和难点解析重点:1. 模拟电子技术的基本概念、发展历程和应用领域。
电子技术基础模拟部分电子技术基础模拟部分第一章 绪论1、写出下列正弦电压信号的表达式(设初始相角为零):(1)峰-峰值10V ,频率10 kHz;(2)有效值220 V ,频率50 Hz;(3)峰-峰值100 mV ,周期1 ms ;(4)峰-峰值0.25 V ,角频率1000 rad/s;解:正弦波电压表达式为 )t sin(V = (t)m θω+v ,由于0=θ,于是得到:(1) V )105sin(2 = (t)4t v π⨯;(2) V 001sin 2220 = (t)t v π;(3) V 00020.05sin = (t)t v π;(4) V 00010.125sin = (t)t v ;2、电压放大电路模型如图( 主教材图 1.4. 2a ) 所示,设输出开路电压增益10=vo A 。
试分别计算下列条件下的源电压增益s vs A υυο=:( 1 ) si i R R 10= ,οR R L 10=;( 2) si i R R = ,οR R i =; ( 3) 10si i R R = ,10οR R L =;( 4 ) si i R R 10= ,10οR R L =。
电压放大电路模型 解:由图可知,)(i si i i s R R R v v +=,i v LL A R R R v νοοο⋅+=,所以可得以下结果: (1)si i R R 10=,οR R L 10=时,i i si i i s v R R R v v 1011)(=+=,i i v L L v A R R R v 101110⨯=⋅+=νοοο,则源电压增益为26.8101111100≈==i i s vs v v v v A ο。
同理可得:(2)5.225===ii s vs v v v v A ο (3)0826.0111110≈==ii s vs v v v v A ο (4)826.010111110≈==i i s vs v v v v A ο3、在某放大电路输入端测量到输入正弦信号电流和电压的峰-峰值分别为5μA 和5mV ,输出端接2k Ω电阻负载,测量到正弦电压信号峰-峰值为1V 。
电子技术基础模拟部分 第一章 绪论1、写出下列正弦电压信号的表达式(设初始相角为零): (1)峰-峰值10V ,频率10 kHz; (2)有效值220 V ,频率50 Hz; (3)峰-峰值100 mV ,周期1 ms ; (4)峰-峰值0.25 V ,角频率1000 rad/s;解:正弦波电压表达式为 )t sin(V = (t)m θω+v ,由于0=θ,于是得到: (1) V )105sin(2 = (t)4t v π⨯; (2) V 001sin 2220 = (t)t v π; (3) V 00020.05sin = (t)t v π; (4) V 00010.125sin = (t)t v ;2、电压放大电路模型如图( 主教材图 1.4. 2a ) 所示,设输出开路电压增益10=vo A 。
试分别计算下列条件下的源电压增益s vs A υυο=:( 1 ) si i R R 10= ,οR R L 10=; ( 2) si i R R = ,οR R i =; ( 3) 10si i R R = ,10οR R L =; ( 4 ) si i R R 10= ,10οR R L =。
电压放大电路模型解:由图可知,)(i si ii s R R R v v +=,i v L LA R R R v νοοο⋅+=,所以可得以下结果: (1)si i R R 10=,οR R L 10=时,i i si i i s v R R R v v 1011)(=+=,i i v L L v A R R R v 101110⨯=⋅+=νοοο,则源电压增益为26.8101111100≈==i i s vs v v v v A ο。
同理可得: (2)5.225===iis vs v v v v A ο (3)0826.0111110≈==ii s vs v v v v A ο (4)826.010111110≈==i i s vs v v v v A ο3、在某放大电路输入端测量到输入正弦信号电流和电压的峰-峰值分别为5μA 和5mV ,输出端接2k Ω电阻负载,测量到正弦电压信号峰-峰值为1V 。