与共轭复数有关的问题汇总
- 格式:ppt
- 大小:1.04 MB
- 文档页数:14
共轭复数的运算专项练习(2016—2018高考)(附答案)2018年1、(全国卷1)设z=i i+-11+2i , 则z =( ) A. 0 B. 21C. 1D.22、(全国卷2)=-+ii2121( )A.i 5354--B.i 5354+-C.i 5453--D.i 5453+-3、(全国卷3)(1+i )(2-i )=( )A.-3-iB.-3+iC.3-iD.3+i 4、(浙江卷)复数i-12(i 为虚数单位)的共轭复数是( ) A.1+i B.1-i C.-1+i D.-1-i5、(江苏卷)若复数z 满足i ·z=1+2i,其中i 是虚数单位,则z 的实部为_______6、(天津卷)i 是虚数单位,复数=++i i2176_______ 7、(北京卷)在复平面内,复数i-11的共轭复数对应的点位于( )A. 第一象限B.第二象限C.第三象限D.第四象限2018答案1、 因为,22)1)(1(211)1(2i i i i i i i i iz i =+-=+-+=++-=-所以,1=z 故选C 。
2、i i i i i i i 5453)21)(21()21)(21(2121+-=+-++=-+,故选D 3、 i i i i i i +=-+-=-+322)2)(1(2,选D 4、 因为i i i i i i i+=-+=+-+=-11)1(2)1)(1()1(2122,所以复数i -12的共轭复数为1-I,故选B.5、 复数i i i iiz -=-+=+=2))(21(21的实部是2. 6、 i ii i i i i i -=-=-+-+=++45520)21)(21()21)(76(2176 7、i i i 21212111+=+=-,其共轭复数为i 2121-,对应的点为(21,21-),故选D. 2017年1、设有下面四个命题1P :若复数z 满足R z∈1,则R z ∈2P :若复数z 满足R z ∈2,则R z ∈ 3P : 若复数21,z z 满足R z z ∈21,则21z z =4P : 若复数R z ∈,则R z ∈.其中的真命题为A. 1P ,3P B 1P .4P C. 2P ,3P D. 2P ,4P 2、=++ii13 A.1+2i B.1-2i C.2+i D. 2-i 3、设复数z 满足(1+i )z=2i,则z = A.21 B.22C. 2D. 24、已知R a ∈,i 是虚数单位,若i a z 3+=,4=⋅z z ,则a= A.1或-1 B. 7-7或 C. 3- D. 35、已知R a ∈,i 为虚数单位,若ii+-2a 为实数,则a 的值为________. 6、已知i R b a bi a 43,,)(2+=∈+(i 是虚数单位),则=+22b a ________,ab=___________。
复数共轭知识点总结归纳一、复数的定义和性质在复数的定义中,复数通常表示为a+bi的形式,其中a和b分别是实数部分和虚数部分,而i则是虚数单位。
复数可以在复平面上表示为坐标点(a,b),并且复数可以进行加法、减法、乘法和除法等运算。
1.1 复数共轭的定义复数的共轭定义如下:设z=a+bi是一个复数,那么与z关于实轴对称的复数是z的共轭,记作z*=a-bi。
即对于任意复数z=a+bi,其共轭为z*=a-bi。
1.2 复数共轭的性质复数共轭具有以下性质:(1)定义性质:对于任意复数z=a+bi,其共轭z*=a-bi。
(2)共轭的共轭:(z*)*=z。
(3)共轭与实部、虚部的关系:a) 实部:Re(z)=1/2(z+z*);b) 虚部:Im(z)=1/2(z-z*)。
二、复数共轭的运算在复数的运算中,复数共轭具有一些重要的运算性质,这些性质对于复数的运算和化简有着重要的作用。
2.1 复数共轭的加法和减法对于复数z1=a1+b1i和z2=a2+b2i,其共轭的加法和减法性质如下:(1)加法性质:(z1+z2)*=z1*+z2*;(2)减法性质:(z1-z2)*=z1*-z2*。
2.2 复数共轭的乘法和除法对于复数z1=a1+b1i和z2=a2+b2i,其共轭的乘法和除法性质如下:(1)乘法性质:(z1*z2)*=z1*z2*;(2)除法性质:(z1/z2)*=z1*/z2*。
2.3 共轭的倒数对于非零复数z=a+bi,其共轭的倒数为:(1/z)*=1/z*。
三、复数共轭的应用在实际问题中,复数共轭有着广泛的应用,尤其在复数的运算、方程的求解和函数的性质中发挥着重要的作用。
3.1 复数方程的求解在复数方程的求解中,复数共轭可以帮助我们简化方程,并且解出方程的实数解和虚数解。
例:解方程z^2+2z+2=0。
解:令z=a+bi,代入方程中得到(a+bi)^2+2(a+bi)+2=0。
展开化简得到(a^2-b^2+2a+2)+i(2ab+2b)=0。
如何求解复数的模辐角和共轭复数复数是数学中的一个重要概念,它由实部和虚部组成。
在求解复数的模、辐角和共轭复数方面,我们可以通过一系列数学方法来实现。
本文将详细介绍如何求解复数的模、辐角和共轭复数,并结合实际例子进行说明。
一、求解复数的模复数的模是指复数到原点的距离,也可以理解为复数的绝对值。
求解复数的模有如下公式:|z| = √(a^2 + b^2)其中,z = a + bi,a为复数的实部,b为复数的虚部。
通过上述公式,我们可以计算出任意复数的模。
例如,对于复数 z = 3 + 4i,实部为 3,虚部为 4。
根据公式计算:|3 + 4i| = √(3^2 + 4^2) = √(9 + 16) = √25 = 5因此,复数 3 + 4i 的模为 5。
二、求解复数的辐角复数的辐角是指复数相对于正实轴的角度,也可以理解为复数与正实轴的夹角。
求解复数的辐角有如下公式:arg(z) = arctan(b/a)其中,z = a + bi,a为复数的实部,b为复数的虚部。
通过上述公式,我们可以计算出任意复数的辐角。
例如,对于复数 z = 3 + 4i,实部为 3,虚部为 4。
根据公式计算:arg(3 + 4i) = arctan(4/3)利用计算器,我们可得到:arg(3 + 4i) ≈ 0.93 弧度因此,复数 3 + 4i 的辐角约为 0.93 弧度。
三、求解共轭复数共轭复数是指保持实部不变,虚部变号的复数。
求解共轭复数非常简单,只需改变复数的虚部的符号即可。
例如,对于复数 z = 3 + 4i,它的共轭复数为:z* = 3 - 4i无论是正实部还是负实部的复数,通过改变虚部的符号,我们都可以求得对应的共轭复数。
综上所述,我们可以通过简单的数学公式来求解复数的模、辐角和共轭复数。
这些数学方法在工程学、物理学等领域中都有着广泛的应用。
通过对复数的理解和求解,我们可以更好地解决实际问题,在科学研究和工程实践中发挥重要作用。
复数练习题(有答案)1.复数选择题1.若复数 $z=1+i$,则 $z$ 的共轭复数为()解析:$z$ 的共轭复数为 $\bar{z}=1-i$。
答案:C2.若复数 $z=1-i$,则 $z$ 的共轭复数为()解析:$z$ 的共轭复数为 $\bar{z}=1+i$。
答案:D3.在复平面内,复数 $z=3+4i$ 对应的点的坐标为()解析:$z$ 对应的点的坐标为 $(3,4)$。
答案:A4.已知复数 $z=\frac{1}{1+i}$,则 $z$ 的共轭复数为()解析:$\bar{z}=\frac{1}{1-i}=\frac{1+i}{2}$。
答案:B5.已知复数 $z=\frac{3-2i}{5}$,则 $z$ 的虚部是()解析:$z$ 的虚部为$\operatorname{Im}(z)=\frac{-2}{5}$。
答案:C6.已知复数 $z$ 满足 $z(1+i)=1-i$,则复数 $z$ 对应的点在直线 $y=-\frac{1}{2}x$ 上。
解析:将 $z$ 的实部和虚部表示出来,得到 $z=\frac{-1}{2}+\frac{1}{2}i$,对应的点在直线 $y=-\frac{1}{2}x$ 上。
答案:A7.已知复数 $z$ 满足 $z^2=2i$,则 $z\cdot\bar{z}$ 的值为$4$。
解析:$z\cdot\bar{z}=|z|^2=2$,$z^2\cdot\bar{z}^2=(2i)(-2i)=-4$,因此 $z\cdot\bar{z}=\sqrt{-4}=2i$,$|z\cdot\bar{z}|=2$,所以 $z\cdot\bar{z}=4$。
答案:B8.已知复数 $z$ 满足 $z(1-i)=2i$,则在复平面内 $z$ 对应的点位于第二象限。
解析:将 $z$ 的实部和虚部表示出来,得到 $z=-\frac{2}{2i}-i=-1-i$,对应的点在第二象限。
答案:B9.满足 $i^3\cdot z=1-3i$ 的复数 $z$ 的共轭复数是 $3+i$。
复数公式经典题型1. 计算复数的乘积要计算两个复数的乘积,可以按照以下步骤进行:1. 将两个复数写成实部和虚部的形式,如z1 = a1 + b1i, z2 = a2 + b2i。
2. 用分配律展开乘法:z1 * z2 = (a1 + b1i) * (a2 + b2i)。
3. 计算各项之间的乘积:a1 * a2, a1 * b2i, b1i * a2, b1i * b2i。
4. 合并实部和虚部的结果:z1 * z2 = (a1 * a2 - b1 * b2) + (a1 * b2 + b1 * a2)i。
2. 计算复数的倒数要计算一个复数的倒数,可以按照以下步骤进行:1. 将复数写成实部和虚部的形式,如z = a + bi。
2. 计算复数的共轭复数:z* = a - bi。
3. 计算倒数:1/z = (1 / (a + bi))。
4. 乘以共轭复数:1/z = (1 / (a + bi)) * (a - bi)。
5. 用分配律展开乘法并合并结果:1/z = (a / (a^2 + b^2)) - (b / (a^2 + b^2))i。
3. 解复数方程要解一个复数方程,可以按照以下步骤进行:1. 将方程移项,将所有项移到一个侧边,使等式等于零。
2. 将复数写成实部和虚部的形式,如z = a + bi。
3. 将复数方程转化为实数方程,对实部和虚部分别设置等式:- 实部的等式:Re(z) = Re(a + bi) = a = 实数部分。
- 虚部的等式:Im(z) = Im(a + bi) = b = 虚数部分。
4. 解实数方程得到实部和虚部的值,得到复数的解。
以上是复数公式的经典题型,希望能对你的学习有所帮助。
共轭复数怎么求它有哪些性质
共轭复数的求法:共轭复数,两个实部相等,虚部互为相反数的复数互为共轭复数。
当虚部不为零时,共轭复数就是实部相等,虚部相反,如果虚部为零,其共轭复数就是自身(当虚部不等于0时也叫共轭虚数)。
复数z的共轭复数记作z(上加一横),有时也可表示为Z*。
共轭复数怎么求
共轭复数,两个实部相等,虚部互为相反数的复数互为共轭复数。
当虚部不为零时,共轭复数就是实部相等,虚部相反,如果虚部为零,其共轭复数就是自身(当虚部不等于0时也叫共轭虚数)。
复数z的共轭复数记作z(上加一横),有时也可表示为Z*。
同时,复数z(上加一横)称为复数z的复共轭。
共轭复数的性质
(1)︱x+yi︱=︱x-yi︱
(2)(x+yi)*(x-yi)=x2+y2=︱x+yi︱2=︱x-yi︱2
定义:共轭复数,两个实部相等,虚部互为相反数的复数互为共轭复数。
共轭的法则
z=x+iy的共轭,标注为z*就是共轭数z*=x-iy
即:zz*=(x+iy)(x-iy)=x2-xyi+xyi-y2i2=x2+y2
即,当一个复数乘以他的共轭数,结果是实数。
z=x+iy和z*=x-iy被称作共轭对。
现在用复数乘法计算(a+bi)(a-bi)得到(a+bi)(a-bi)=a2+b2,结果是非负实数。
这个结果很重要,因为两个复数相乘后变成了实数。
这两个复数a-bi与a+bi实部相等,虚部互为相反数,称它们互为共轭复数。
共轭复数知识点总结《共轭复数知识点总结:那不只是数学,更是一场奇妙冒险》嘿,朋友们!今天咱要唠唠共轭复数这个知识点。
听起来好像很玄乎,但其实啊,没那么神秘,跟着我一起探索这奇妙世界吧!首先呢,共轭复数就像是一对好兄弟,长得很像,但又有那么一点点不同。
一个复数的实部相同,虚部互为相反数,嘿,它们俩就共轭啦!比如说,3+4i 和3-4i,这就是一对共轭复数。
你说这有啥用?嘿,用处可大了去了!想象一下,在数学的世界里,它们就像是两个默契十足的小伙伴,一唱一和,能帮我们解决好多问题呢!咱就说计算复数的模的时候,共轭复数就能派上用场。
通过它们的乘积,就能轻松算出那个神奇的模长。
这就好比你找到了一把钥匙,一下子就打开了数学大门上的锁。
而且,共轭复数还有一种对称美。
它们就像是镜子里的影像,相互呼应。
这种对称美在几何意义上也有体现哦,别小看它,有时候就是这种小细节让数学变得更加有趣。
说到这儿,我就想起我刚开始学共轭复数的时候,那真是一头雾水啊。
看着那些符号和公式,感觉就像看天书一样。
但后来啊,我慢慢琢磨,跟它们交上了朋友,才发现其实它们也没那么可怕嘛。
学习共轭复数就像是一场冒险,有时候会遇到一些小困难,但只要你勇敢地向前冲,总能找到解决问题的办法。
就像打游戏一样,每过一关都特别有成就感!总之呢,共轭复数知识点虽然看起来有点复杂,但只要我们用心去学,就会发现它的魅力所在。
它就像是数学世界里的一颗明珠,等着我们去发掘它的光芒。
所以啊,朋友们,不要害怕共轭复数。
大胆地去探索,去发现,你会感受到数学的奇妙和乐趣。
相信我,这场冒险绝对值得你一试!准备好了吗?让我们一起在共轭复数的世界里畅游吧!。
高三数学复数多选题专项训练知识点总结附解析一、复数多选题1.已知复数1z =-(i 为虚数单位),z 为z 的共轭复数,若复数zw z=,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 答案:ABC 【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解. 【详解】 对选项由题得 .所以复数对应的点为,在第二象限,所以选项正确解析:ABC 【分析】对选项,A 求出1=22w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 的虚部为2,判断得解. 【详解】对选项,A 由题得1,z =-1=2w ∴===-.所以复数w 对应的点为1(,22-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 所以选项D 错误. 故选:ABC【点睛】本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平. 2.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数 B .若32a bi i -=+,则3,2a b == C .若0b =,则a bi +为实数D .纯虚数z 的共轭复数是z -答案:AB 【分析】由复数的代数形式的运算,逐个选项验证可得. 【详解】 解:因为当且时复数为纯虚数,此时,故A 错误,D 正确; 当时,复数为实数,故C 正确; 对于B :,则即,故B 错误; 故错误的有AB解析:AB 【分析】由复数的代数形式的运算,逐个选项验证可得. 【详解】解:因为(,)z a bi a b R =+∈当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确; 当0b =时,复数为实数,故C 正确; 对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩,故B 错误;故错误的有AB ; 故选:AB 【点睛】本题考查复数的代数形式及几何意义,属于基础题.3.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z =B .12i5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限答案:BD 【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断. 【详解】因为复数满足, 所以所以,故A 错误; ,故B 正确;复数的实部为 ,故C 错误; 复数对应复平面上的点在第二象限解析:BD 【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==,故A 错误;1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误;复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD 【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题.4.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限答案:AB 【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项. 【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确; ,所以C 选项错误;,对应点为,在第三象限,故D 选项错误. 故选解析:AB 【分析】求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项.【详解】依题意1ω==,所以A 选项正确;2211312442ω⎛⎫=-+=-=- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222222ωωω⎛⎫⎛⎫⎛⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;221111222212ω---====--⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,22⎛⎫-- ⎪ ⎪⎝⎭,在第三象限,故D 选项错误. 故选:AB 【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题. 5.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( ) A.||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根答案:ABCD 【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确. 【详解】因为(1﹣i )z =解析:ABCD 【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确. 【详解】因为(1﹣i )z =2i ,所以21i z i =-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确;所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确; 因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确. 故选:ABCD. 【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.6.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( )A .20zB .2z z =C .31z =D .1z =答案:BCD 【分析】利用复数的运算法则直接求解. 【详解】解:复数(其中为虚数单位), ,故错误; ,故正确; ,故正确; .故正确. 故选:. 【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD 【分析】利用复数的运算法则直接求解. 【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD . 【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.7.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数 B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12答案:BC 【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项. 【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC 【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项. 【详解】当0a =时,1b =,此时zi 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC 【点睛】本小题主要考查复数的有关知识,属于基础题.8.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =,则12=z z B .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >答案:BCD 【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案. 【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD 【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案. 【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等,比如11i i -=+,但是11i i -≠+,所以B 项是错误的; 因为当两个复数相等时,模一定相等,所以A 项正确; 故选:BCD. 【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.9.i 是虚数单位,下列说法中正确的有( ) A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限答案:AD 【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD 【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果. 【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0ab ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+,所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--,所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.10.下列说法正确的是( ) A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件答案:AD 【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确. 【详解】若,则,故A 正确; 设, 由,可得则,而不一定为0,故B 错误; 当时解析:AD 【分析】由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误; 若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠±所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确;故选:AD 【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.11.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 答案:BC 【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项. 【详解】因为,所以,所以,所以,所以A 选解析:BC 【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈-⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项. 【详解】因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误; 当sin 20θ=,,22ππθ⎛⎫∈-⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC 【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.12.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点答案:BC 【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误. 【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD. 【点睛】 本题考解析:BC 【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误. 【详解】()234z i i +=+,34232iz i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限. 故选:BD. 【点睛】本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.13.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =答案:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确. 故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题.14.下面是关于复数21i z =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1- 答案:ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.15.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( )A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅= 答案:AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD16.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()11i i -+ B .11i i -+ C .11i i +- D .()21i - 答案:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解.17.设复数z 满足1z i z +=,则下列说法错误的是( ) A .z 为纯虚数 B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z = 答案:AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】 由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误; 复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.18.复数z 满足233232i z i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =答案:AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】 解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.19.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .|z |=B .z 的实部是2C .z 的虚部是1D .复数z 在复平面内对应的点在第一象限 答案:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.【详解】,,,故选项正确,的实部是,故选项正确,的虚部是,故选项错误,复解析:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.【详解】(1i)3i z +=+,()()()()3134221112i i i i z i i i i +-+-∴====-++-,z ∴==,故选项A 正确,z 的实部是2,故选项B 正确,z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.故选:ABD .【点睛】本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.20.已知i 为虚数单位,则下列选项中正确的是( )A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z答案:AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误;对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】 本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题.21.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( )A .1B .4-C .0D .5答案:ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.22.已知i 为虚数单位,下列命题中正确的是( )A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y ==B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z ==D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数答案:BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。
复数的共轭与模长运算复数是由实数和虚数部分构成的数学概念,常用于物理学、工程学等领域。
在复数运算中,共轭和模长计算是两个常见而重要的操作。
本文将介绍复数的共轭和模长的定义、性质以及计算方法。
一、复数的共轭1. 定义对于一个复数z = a + bi,其中a为实部,b为虚部,共轭复数z*定义为z的实部保持不变,虚部取相反数,即z* = a - bi。
共轭复数可以简单地理解为将复数的虚部取负。
2. 性质(1)共轭的共轭:对于任意复数z,其共轭的共轭等于自身,即(z*)* = z。
(2)实数的共轭:对于实数a,其共轭等于本身,即(a*) = a。
(3)共轭的和与差:对于任意两个复数z1和z2,有(z1 + z2)* = z1* + z2*,(z1 - z2)* = z1* - z2*。
(4)共轭的积与商:对于任意两个复数z1和z2,有(z1 * z2)* = z1* * z2*,(z1 / z2)* = z1* / z2*。
二、复数的模长1. 定义对于一个复数z = a + bi,其模长定义为z到原点的距离,用|z|表示,计算公式为|z| = √(a^2 + b^2)。
模长可以简单地理解为复数所表示的向量的长度。
2. 性质(1)非负性:复数的模长非负,即|z| ≥ 0。
(2)零模长:当且仅当复数为零时,其模长为零,即|z| = 0 当且仅当z = 0。
(3)模长的共轭:对于任意复数z,其模长的共轭等于模长本身,即(|z|)* = |z|。
(4)模长的积与商:对于任意两个复数z1和z2,有|z1 * z2| = |z1|* |z2|,|z1 / z2| = |z1| / |z2|。
三、复数的共轭与模长的应用1. 共轭的应用(1)复数求和:对于两个复数z1 = a1 + b1i和z2 = a2 + b2i的求和,可以将两个复数的实部和虚部相加,即(z1 + z2) = (a1 + a2) + (b1 + b2)i。