稳定判据和裕度
- 格式:pptx
- 大小:1.27 MB
- 文档页数:3
1.自控系统的基本要求:稳定性、快速性、准确性(P13)稳定性是由系统结构和参数决定的,与外界因素无关,这是因为控制系统一般含有储能元件或者惯性元件,其储能元件的能量不能突变。
因此系统收到扰动或者输入量时,控制过程不会立即完成,有一定的延缓,这就使被控量恢复期望值或有输入量有一个时间过程,称为过渡过程。
快速性对过渡过程的形式和快慢提出要求,一般称为动态性能。
准确性过渡过程结束后,被控量达到的稳态值(即平衡状态)应与期望值一致。
但由于系统结构,外作用形式及摩擦,间隙等非线性因素的影响,被控量的稳态值与期望值之间会有误差的存在,称为稳态误差。
+2.选作典型外作用的函数应具备的条件:1)这种函数在现场或试验室中容易得到2)控制系统在这种函数作用下的性能应代表在实际工作条件下的性能。
3)这种函数的数学表达式简单,便于理论计算。
常用典型函数:阶跃函数,幅值为1的阶跃称为单位阶跃函数斜坡函数脉冲函数,其强度通常用其面积表示,面积为1的称为单位脉冲函数或δ函数正弦函数,f(t)=Asin(ωt-φ),A角频率,ω角频率,φ初相角3.控制系统的数学模型是描述系统内部物理量(或变量)之间关系的数学表达式。
(P21)静态数学模型:在静态条件下(即变量各阶导数为零),描述变量之间关系的代数方程动态数学模型:描述变量各阶导数之间关系的微分方程建立数学模型的方法:分析法根据系统运动机理、物理规律列写运动方程实验法人为给系统施加某种测试信号,记录其输出响应,并用合适的数学模型去逼近,也称为系统辨识。
时域中的数学模型有:微分方程、差分方程、状态方程复域中的数学模型有:传递函数、结构图频域中的数学模型有:频率特性4.非线性微分方程的线性化:切线法或称为小偏差法(P27)小偏差法其实质是在一个很小的范围内,将非线性特性用一段直线来代替。
连续变化的非线性函数y=f(x),取平衡状态A为工作点,在A点处用泰勒级数展开,当增量很小时略去高次幂可得函数y=f(x)在A点附近的增量线性化方程y=Kx,其中K是函数f(x)在A 点的切线斜率。
控制系统的稳定性分析简介控制系统的稳定性是指系统在受到干扰时,能够保持从初始状态返回到稳定的平衡状态的能力。
稳定性是控制系统设计和分析的重要指标之一,对于确保系统正常运行具有重要意义。
在本文档中,我们将探讨控制系统的稳定性分析方法。
稳定性概念在控制系统中,稳定性可以分为两种类型:绝对稳定和相对稳定。
1.绝对稳定:当系统在受到干扰后能够恢复到初始的平衡状态并保持在该状态时,我们称系统是绝对稳定的。
2.相对稳定:当系统在受到干扰后能够恢复到新的平衡状态并保持在该状态时,我们称系统是相对稳定的。
稳定性分析方法为了评估控制系统的稳定性,我们通常使用以下几种分析方法:1. 传递函数分析传递函数分析是一种常用的稳定性分析方法,它通过将控制系统转化为传递函数的形式,进行频域和时域的分析。
在频域分析中,我们可以使用频率响应函数(Bode图)来评估系统的稳定性。
Bode图由幅度曲线和相位曲线组成,通过分析这两个曲线可以判断系统是否稳定。
在时域分析中,我们可以使用单位斯蒂文斯响应函数来评估系统的稳定性。
单位斯蒂文斯响应函数是指控制系统对于单位阶跃输入的响应。
2. 决策稳定性分析决策稳定性分析方法是一种直观的稳定性评估方法,它通过观察控制系统的反馈回路来判断系统的稳定性。
如果控制系统的反馈回路中存在零点或极点位于右半平面,则系统将是不稳定的。
另外,如果控制系统的相位裕度和增益裕度分别小于零和一,则系统也将是不稳定的。
3. 根轨迹分析根轨迹分析是一种图形化的稳定性分析方法,它通过绘制系统传递函数的根轨迹来评估系统的稳定性。
根轨迹是表示系统极点随控制参数变化的轨迹图,它可以直观地显示系统的稳定性和响应特性。
如果根轨迹上的所有极点都位于左半平面,则系统是稳定的。
4. Nyquist稳定性判据Nyquist稳定性判据是一种基于频域分析的稳定性判据,它利用开放式系统的频率响应来评估系统的稳定性。
Nyquist稳定性判据通过绘制控制系统的开环频率响应曲线,并计算曲线绕原点的圈数来判断系统是否稳定。
控制工程基础第4版孔祥东课后习题答案第一章控制系统概述1. 在控制系统中,反馈是什么?在控制系统中,反馈是指从输出端采集到的信息再反馈给输入端,用于校正系统输出与期望输出之间的误差。
通过反馈,控制系统可以对输出进行调整,以达到期望的控制效果。
2. 什么是开环和闭环系统?开环系统是指输出不会对系统的输入产生反馈影响的系统。
开环系统的控制过程是单向的,只能由输入来决定输出。
闭环系统是指输出会对系统的输入产生反馈影响的系统。
闭环系统的控制过程是双向的,可以通过输出的反馈来调整输入。
3. 开环控制和闭环控制有什么区别?开环控制和闭环控制的区别在于是否存在输出的反馈。
开环控制没有输出的反馈,输入和输出之间的关系是固定的,依赖于系统的数学模型。
闭环控制有输出的反馈,可以不断根据输出的反馈信息来调整输入,使输出更接近期望值。
开环控制的优点是简单、快速,但容易受到外界干扰的影响,稳定性较差。
闭环控制可以更精确地控制输出,具有较好的稳定性和鲁棒性。
4. 什么是控制对象和控制器?控制对象是指需要控制的物理系统或过程,它是待控制的主体。
控制对象可以是机械系统、电气系统、化工过程等等。
控制器是指用来控制控制对象的设备或算法。
控制器可以根据输入和反馈信息来计算出适当的输出,以实现对控制对象的控制。
5. 什么是开环传递函数和闭环传递函数?开环传递函数是指在开环控制下,从控制器的输入到控制对象输出之间的传递函数关系。
它反映了输入和输出之间的数学关系。
闭环传递函数是指在闭环控制下,从控制器的输入到控制对象输出之间的传递函数关系。
闭环传递函数考虑了输出的反馈,更准确地描述了控制系统的动态特性。
第二章传递函数与系统稳定性1. 什么是传递函数?传递函数是指输入和输出之间的数学关系函数,可以用来描述线性时不变系统的动态特性。
传递函数通常用符号G(s)表示,其中s为复变量。
传递函数可以通过对系统进行数学建模和信号处理等方法得到。
它可以表示系统的频率响应和时域响应等信息。
控制系统稳定性控制控制系统的稳定性是指在系统输入和干扰的作用下,系统输出能够保持在一定范围内,并且不会发生剧烈的波动或不稳定的情况。
稳定性是控制系统设计和优化中的重要考虑因素,它直接关系到系统的性能和可靠性。
一、稳定性的基本概念在控制系统中,稳定性可以分为两类:绝对稳定性和相对稳定性。
绝对稳定性是指当系统的任何初始条件和参数变化都不会引起系统的输出超出一定范围,系统始终保持稳定。
相对稳定性是指系统在参数变化或干扰作用下,虽然会有一定的波动或震荡,但最终输出会趋于稳定。
二、稳定性判断的方法常用的判断控制系统稳定性的方法有两种:时域方法和频域方法。
1. 时域方法时域方法是通过分析系统的状态方程或差分方程来判断系统的稳定性。
常用的判断方法有:极点位置判据、Nyquist稳定性判据、Hurwitz 稳定性判据等。
极点位置判据是指通过分析系统极点的位置来判断系统的稳定性。
当系统的所有极点的实部都小于零时,系统是稳定的。
Nyquist稳定性判据是将控制系统的开环传递函数绘制在复平面上,通过分析曲线的轨迹来判断系统的稳定性。
Hurwitz稳定性判据是通过分析系统特征方程的Jacobi矩阵行列式来判断系统的稳定性。
2. 频域方法频域方法是通过分析系统的频率响应来判断系统的稳定性。
常用的判断方法有:Bode稳定性判据、Nyquist稳定性判据等。
Bode稳定性判据是通过分析系统的频率响应曲线的相角和幅值来判断系统的稳定性。
当系统幅值曲线超过0dB的频率点相角为-180°时,系统是稳定的。
三、控制系统稳定性的控制方法为了保证控制系统的稳定性,通常采取以下方法进行控制:1. 增加稳定裕度稳定裕度是指系统在保持稳定的前提下,对参数变化或负载波动的容忍能力。
通过增加稳定裕度,可以提高系统的鲁棒性和可靠性。
常用的方法有:采用PID控制器、增加系统正反馈等。
2. 优化控制器参数优化控制器参数是通过对系统的传递函数进行分析和调节,使系统的性能指标达到最优。