[医学]研究生班医学统计学-计数资料
- 格式:ppt
- 大小:676.50 KB
- 文档页数:8
医学统计学计数资料的统计描述(一)医学统计学计数资料的统计描述计数资料是医学研究中常见的数据类型,例如统计某种疾病的患病人数、治愈人数等。
如何对这些数据进行科学统计描述,成为了医学研究不可避免的问题。
一、计数资料的基本概念计数资料是指由离散数据组成的一种数据类型,这些数据仅取有限个数值,如某类疾病的患病人数(自然数)或治愈人数(非负整数)。
计数资料是医学研究中常见的数据类型,对于这些数据的科学统计描述极为重要。
二、计数资料的统计描述1. 频数频数是指计数资料中各取值出现的次数,常以小写字母n表示。
例如患病人数为0的样本数为n0,患病人数为1的样本数为n1,以此类推。
2. 频率频率是指频数与总样本数的比值,常以小写字母f表示。
例如患病人数为0的频率为f0=n0/n,患病人数为1的频率为f1=n1/n,以此类推。
频率可以体现每个取值在样本中的分布情况,是比较常用的统计指标,其和为1。
3. 百分比百分比是指频数与总样本数的比值乘以100,常以百分号表示。
例如患病人数为0的百分比为f0×100%,患病人数为1的百分比为f1×100%,以此类推。
4. 累计频率累计频率是指某一取值及其以下所有取值的频率之和,常以小写字母F 表示。
例如患病人数小于等于3的累计频率为F3=f0+f1+f2+f3。
累计频率可以体现小于等于某个取值的样本在总样本中所占比例。
三、总结计数资料是医学研究中常见的数据类型,对于这些数据的科学统计描述有益于研究者更加深入地了解样本的分布情况,进而提出相应的研究假设。
频数、频率、百分比和累计频率是计数资料的常用统计指标,可分析每个取值在样本中的分布情况和各个取值间的差异。
在实际研究中,研究者应根据实际情况选择合适的统计方法进行分析,以期得到更为科学的结论。
第一章绪论1、数据 / 资料的分类:①、计量资料,又称定量资料也许数值变量;为观察每个观察单位某项治疗的大小而获取的资料。
②、计数资料,又称定性资料也许无序分类变量;为将观察单位依照某种属性也许种类分组计数,分组汇总各组观察单位数后而获取的资料。
③、等级资料,又称半定量资料也许有序分类变量。
为将观察单位按某种属性的不相同程度分成等级后分组计数,分类汇总各组观察单位数后而获取的资料。
2、统计学常用基本看法:①、统计学( statistics)是关于数据的科学与艺术,包括设计、收集、整理、解析和表达等步骤,从数据中提炼新的有科学价值的信息。
②、整体( population )指的是依照研究目的而确定的同质观察单位的全体。
③、医学统计学( medical statistics):用统计学的原理和方法办理医学资料中的同质性和变异性的科学和艺术,经过一定数量的观察、比较、解析,揭穿那些迷惑难懂的医学问题背后的规律性。
④、样本( sample):指的是从整体中随机抽取的部分观察单位。
⑤、变量( variable):对观察单位某项特点进行测量也许观察,这类特点称为变量。
⑥、频率( frequency ):指的是样本的本质发生率。
⑦、概率( probability):指的是随机事件发生的可能性大小。
用大写的 P 表示。
3、统计工作的基本步骤:①、统计设计:包括对资料的收集、整理和解析全过程的设想④、分组划记并统计频数。
与安排;频数分布的种类包括对称分布和偏态分布;②、收集资料:采用措施获取正确可靠的原始数据;偏态分布主要分为右偏态分布(也称正偏态分布)和左偏态分③、整理资料:将原始数据净化、系统化和条理化;布(也称负偏态分布)。
④、解析资料:包括统计描述和统计推断两个方面。
频数表的用途包括以下几个方面:①、描述频数分布的种类;第二章计量资料的统计描述②、描述频数分布的特点;1.频数表的编制方法,频数分布的种类及频数表的用途③、便于发现一些特大或特小的离群值;①、求极差( range ):也称全距,即最大值和最小值之差,记④、便于进一步做统计解析和办理。
1.标准化法:为了比较两个不同人群的患病率、发病率、死亡率等资料时,消除其内部构成的影响。
2.总体与样本:总体是同质的个体所构成的全体。
样本是指从总体中抽取的一部分个体(或按随机化原则从总体中抽出的部分观察单位的某变量值的集合)。
3.负偏态分布:频数分布的高峰向右偏移,长尾向左侧延伸的偏态分布,称为负偏态分布。
4.计数资料与计量资料:计数资料是先将研究对象的观察指标按性质或类别进行分组,然后计数各组该观察指标的数目所得的资料;计量资料是对每个观察对象德观察指标用定量方法测定其数值大小所得的资料。
5.均数的标准误:由抽样而造成的样本均数与总体均数之差异称为均数的抽样误差。
6.齐同可比性:两组间除处理因素不同外,其他可能影响实验结果的因素要求基本齐同。
7.参数与统计量:总体的指标值称为参数。
样本的指标值称为统计量。
8.正偏态分布:频数分布的高峰向左偏移,长尾向右侧延伸的偏态分布,称为正偏态分布。
9.区间估计与点估计:按预先给定的的概率估计未知总体均数的可能范围称为区间估计,用样本统计量直接作为总体参数的估计值称为点估计。
10.standard error of rate:率的标准误。
由抽样而造成的样本率与总体率之差异或各样本率之差异称为率的抽样误差。
11.P值:P值是指在H0规定的总体随机抽得等于或大于(或等于或小于)现有样本统计量值的概率。
(或拒绝H0时可能犯错误的实际概率大小)12.均数抽样误差:由抽样造成的样本均数与总体均数的差异。
13.率和构成比:构成比表示一事物内部各组成部分所占整体的比重。
率为表示某事物发生频率或强度的指标。
14.非参数检验:不考虑总体的参数和总体的分布类型,而对总体的分布或分布位置进行检验的统计方法。
15.P值与检验水准:P值是指在H0规定的总体随机抽得等于或大于(或等于或小于)现有样本统计量值的概率(或拒绝H0时可能犯错误的实际概率大小);检验水准是指在检验前预先人为规定的拒绝H0时可能犯错误的最大概率。