谷氨酸棒杆菌发酵成缬氨酸的反应式
- 格式:docx
- 大小:16.29 KB
- 文档页数:1
二、谷氨酸发酵的工艺流程菌种的选育,培养基配制,斜面培养,一级种子培养,二级种子培养,发酵(发酵过程参数控制通风量、pH、温度、泡沫),发酵液分离提取。
2.1谷氨酸生产菌种棒状杆菌属谷氨酸棒状杆菌:生物素缺陷型、温度敏感型;北京棒杆菌、钝齿棒杆菌;短杆菌属:黄色短杆菌、天津短杆菌。
2.2生产原料玉米、小麦、甘薯、大米等。
其中甘薯和淀粉最为常用,大米进行浸泡磨浆,再调成15Bx,调pH6.0,加细菌α-淀粉酶进行液化,85℃30min,加糖化酶60℃糖化24h,过滤后可供配置培养基。
甘蔗糖蜜、甜菜糖蜜。
糖蜜原料因含丰富的生物素,不宜直接用来作为谷氨酸发酵的碳源。
2.3.培养基制备谷氨酸发酵培养基组成包括碳源、氮源、水、无机盐和生长因子等。
2.3.1碳源目前使用的谷氨酸生产菌均不能利用淀粉,只能利用葡萄糖、果糖等,有些菌种还能利用醋酸、正烷烃等做碳源。
2.3.2氮源常见无机氮源:尿素,液氨,碳酸氢铵。
常见有机碳源:玉米浆,豆浓,糖蜜。
碳氮比一般控制在100:15—30。
2.3.3生物素含硫水溶性维生素,是B族维生素的一种,又叫做维生素H或辅酶R。
生物素的作用主要影响谷氨酸生产菌细胞膜的通透性,同时也影响菌体的代谢途径。
生物素对发酵的影响是全面的,在发酵过程中要严格控制其浓度。
2.4培养基保藏斜面培养基:牛肉膏l%,蛋白胨l%,氯化钠0.5%,琼脂2%,pH7.0。
活化斜面培养基:葡萄糖0.1%,牛肉膏l%,蛋白胨l%,氯化钠0.5%,琼脂2%,pH7.0。
一级种子培养基:葡萄糖2.5%,玉米浆3.1%;,尿素0.55%,磷酸氢二钾0.12%,硫酸镁0.06%,pH7.0。
2.4.3.1谷氨酸菌种的分离挑一环生产斜面到装有生理盐水,、小玻璃珠三角瓶中,振荡摇匀,稀释,10。
5~10。
6涂平板_挑选30个单菌落移接到生产斜面上(每个菌落接2支斜面)培养48h_其中30支斜面存入超低温冰箱保存,另外相同顺序编号的30支斜面则进行摇瓶产酸试验。
缬氨酸生产工艺
缬氨酸(Xylose lysine deoxycholate agar,简称XLD)是一种富含氨基酸缬氨酸的培养基,常用于肠道细菌的分离和鉴定。
下面将介绍缬氨酸的生产工艺。
缬氨酸的生产工艺主要分为以下几个步骤:
1. 原料准备:选择优质的缬氨酸发酵菌株,如大肠杆菌等。
购买缬氨酸发酵培养基,如缬氨酸粉末。
将培养基按照要求加入适量的水,并加热至沸腾搅拌溶解使其均匀。
2. 接种培养基:将培养基倒入消毒的发酵罐中,接种适量的缬氨酸发酵菌株。
并将发酵罐放入恒温恒湿的培养箱中,提供适量的氧气和营养物质。
3. 发酵培养:调节培养基的温度、pH值和搅拌速度等条件,使其适合于缬氨酸发酵菌株的生长和代谢。
同时定期采样检测培养液中的缬氨酸浓度以及细菌的生长情况。
4. 分离和提取:当发酵液中的缬氨酸达到一定浓度时,停止发酵过程。
使用离心机将发酵液离心分离得到细胞渣和发酵液。
5. 精制和纯化:将细胞渣用适量的溶剂进行提取,使得缬氨酸与其他有机物分离。
然后利用蒸馏、结晶、过滤等方法对提取液进行精制和纯化,得到纯度较高的缬氨酸产品。
6. 干燥和包装:将纯化的缬氨酸产品进行干燥处理,除去其中
的水分。
然后按照客户要求进行包装,一般采用密封的塑料袋或瓶子进行包装。
通过以上几个步骤,就可以得到纯度较高的缬氨酸产品。
在整个生产过程中需要注意卫生和生产环境的控制,以确保产品的质量和安全。
缬氨酸作为一种重要的氨基酸,在生物医药、食品等领域具有广泛的应用前景。
因此,缬氨酸的生产工艺也需要不断优化和改进,以提高产量和质量,满足市场需求。
兰州大学生命科学学院发酵工程实验谷氨酸发酵实验摘要:谷氨酸棒杆菌在合适的培养基中经摇瓶培养能快速生长,为发酵实验准备菌种。
还原糖的消耗和谷氨酸的生成是衡量谷氨酸发酵是否正常的重要标志,所以在发酵过程中,要求每两个小时测定一次还原糖的含量,并据此作出发酵的糖耗曲线。
关键字:种子的制备、发酵罐、谷氨酸棒杆菌、PH的调节引言:了解发酵工业菌种制备工艺和质量控制,为发酵实验准备菌种。
了解发酵罐罐体构造和管道系统,掌握对发酵罐及其管道系统的灭菌方法。
了解发酵罐的操作,完成谷氨酸发酵的全过程。
还原糖的消耗和谷氨酸的生成是衡量谷氨酸发酵是否正常的重要标志,在发酵后期当还原糖降至1%以下时,表明谷氨酸发酵已经完成。
所以在发酵过程中,要定时测定还原糖的含量,要求每两个小时测定一次,并据此作出发酵的糖耗曲线。
掌握还原糖和总糖的测定原理,学习用比色法测定还原糖的方法。
学习使用茚三酮比色法检测发酵液中谷氨酸浓度的方法。
谷氨酸棒杆菌通常在0-12小时为生长期,12小时后为产酸期,所以应该从12小时以后开始检测谷氨酸的含量,每两个小时取一次样。
原理:谷氨酸棒杆菌在合适的培养基中经摇瓶培养能快速生长,得到大量健壮的种子。
谷氨酸棒杆菌生长速度较快,接种量一般在1-2%。
谷氨酸发酵是有氧发酵,发酵罐由蒸汽管道、空气管道、加料出料管道等组成,在实验之前必须先对发酵罐进行空消。
谷氨酸产生菌是代谢异常化的菌种,对环境因素的变化很敏感,在适宜的培养条件下,谷氨酸产生菌能够将50%以上的糖转化成谷氨酸,而只有极少量的副产物。
如果培养条件不适宜,则几乎不产生谷氨酸,仅得到大量的菌体或者由发酵产生的乳酸、琥珀酸、а-酮戊二酸、丙氨酸、谷氨酰胺、乙酰谷氨酰胺等产物。
生产上的中间分析只测定一些主要数据,只能显示微生物代谢的一般概况而不能反映细微的生化变化。
因此,进一步完善生化分析项目,从生化角度对发酵进行控制,从而确定最适宜的工艺条件是提高发酵水平的重要课题之一。
代谢工程之利用谷氨酸棒状杆菌来生产L-精氨酸精氨酸是一种为不同工业和医疗产品所应用的重要的氨基酸。
这里我们报道了代谢工程中利用谷氨酸棒状杆菌来生产精氨酸的改进方法。
首先进行的是随机诱变,来增加谷氨酸棒状杆菌对精氨酸类似物的耐受性。
接下来进行是系统性的代谢工程来进一步对菌株进行改良。
涉及精氨酸操纵子调控阻遏物的去除,NADPH水平的最优化,破坏L-谷氨酸的生成来增加精氨酸的前体物质还有限制精氨酸合成反应的通量优化。
最终菌株的流加培养发酵在5L和大规模1500L的生物反应器中进行,分别允许生产92.5g/L和81.2g/L的精氨酸,产量为每g 碳源(葡萄糖加蔗糖)可分别产出0.40g和0.35g精氨酸。
这里描述的系统代谢工程结构对于构建棒状杆菌菌株来进行精氨酸及相关产品的工业生产是有用的。
L-精氨酸是一种工业中重要的半必需氨基酸,它在食品和补加健康食品、制药以及化妆品中有很多应用。
与其他的氨基酸和有价值的化学物质相比,利用谷氨酸棒状杆菌作为精氨酸生产工程菌有很大优势,因为它带有强烈的面向L-谷氨酸形成的通量。
跟大肠杆菌相比,谷氨酸棒状杆菌不含有argA和argE基因,但取而代之,它含有可以编码乙酰转移酶的argJ基因,可以催化两种不同的精氨酸生物合成途径的生化反应。
重要的是,谷氨酸棒状杆菌缺乏精氨酸降解酶以及在大肠杆菌中发现的精氨酸脱氨酶,因此,细胞内生产的精氨酸不能被积极地降解。
可被谷氨酸棒状杆菌利用的碳源范围也相对广阔,包括己糖和戊糖两种。
对于精氨酸的过度生产来说,调节子对精氨酸生物合成操纵子的抑制以及精氨酸对乙酰谷氨酸激酶的反馈抑制在谷氨酸棒状杆菌中被显著地移除了。
在这次研究中,我们针对谷氨酸棒状杆菌ATCC 21831菌株进行代谢工程研究,最初经过随机诱变来增强精氨酸的产量。
逐步地合理地代谢工程建立在针对通过菌株工程步骤实现的精氨酸产量逐步增加的代谢结果的分析的基础上。
由本次研究建立的最终菌株的流加培养获得了有效的精氨酸产量,使用5L和大规模1500L生物反应器使浓度分别达到92.5和81.2g/L。
种子培养基:每升含葡萄糖60g,KH2PO4 2.5g , MgSO4.7H2O 0.5g (NH4)2SO4 5g ,玉米浆30g ,pH 7.2 115℃ 20min发酵培养基:每升含葡萄糖70g,KH2PO4 2.5g, K2HPO4 2.5g, MgSO4.7H2O 0.5g, (NH4)2SO4 25g ,玉米浆45g ,pH7.0 (四)罐上的工艺控制1)预热:打开夹套蒸汽进汽阀,微开排污阀,将罐温加热至100℃2)灭菌:关闭夹套蒸汽进汽阀,开启蒸汽进罐阀,使罐温升至121℃;打开空气管路蒸汽阀门对空气过滤器进行灭菌;调整蒸汽进罐阀、排气阀的开度使罐压保持在0.12MPa左右(如此时温度与121℃相差较大,则可用121℃重新标定罐内温度);保持30min;关闭所有蒸汽阀门,让罐压下降至0.01MPa,打开空气进气阀,引无菌空气保压(0.03~0.05MPa),确保罐压小于过滤器空气压。
3)发酵准备阶段:开启冷却模式,开启进水阀,快速降温至28℃;退出冷却模式,开启发酵模式,保温运作;开启搅拌器(100rpm),如果排气阀没有过度的逃液,则可加大搅拌速率,或加大空气进气量。
4)发酵:采用火焰法接种,调节排气阀、进气阀开度,还有搅拌器速率,在不过分逃液的前提下,保持较高的DO值;发酵过程中微开取样管路(蒸汽进罐阀紧闭)保持较小的蒸汽排出(时刻保持取样管路无菌)。
5)取样:关闭蒸汽排出阀,关闭蒸汽进汽阀,开启蒸汽排出阀,开启蒸汽进罐阀,并调节该两阀门的开度使发酵液以适宜的流量流出,用三角瓶接约20mL;关闭蒸汽进罐阀门,开启蒸汽进汽阀。
6)放罐:关闭空气进气管路,开启夹套加热管路,关闭冷凝水管路,关闭蒸汽排出阀,引蒸汽进罐,待罐温升至100℃后,计时3min;关闭蒸汽进罐阀,关闭蒸汽进汽阀;开启空气进气管路,开启蒸汽进罐阀,利用压强将液体放出;放完后,关闭空气进气管路;通自来水按以上步骤洗罐3次;通入自来水,待下次发酵开始。
谷氨酸棒杆菌氨基酸
谷氨酸棒杆菌(Lactobacillus glutamicus)是一种革兰氏阳性杆菌,属于乳酸菌。
它是一种产生谷氨酸的细菌,在食品发酵和生物技术中具有重要作用。
谷氨酸(Glutamic acid)是一种氨基酸,属于非必需氨基酸,也是人体蛋白质的组成部分之一。
谷氨酸在机体内起到多种重要角色,包括神经递质和代谢的参与等。
在食品发酵过程中,谷氨酸棒杆菌可以利用一些碳源和氮源,通过发酵作用合成谷氨酸。
这种发酵一般是利用谷氨酸棒杆菌对谷氨酸的高产能力。
谷氨酸在食品工业中常被用作增香剂和调味剂,添加到食品中可以增加食品的鲜味和美味。
另外,氨基酸(Amino acids)是构成蛋白质的组成单元。
人体需要通过食物摄取氨基酸来满足生理需求。
谷氨酸是人体内重要的氨基酸之一,人体通常可以通过蛋白质的消化和代谢来获取谷氨酸。
此外,人工合成的谷氨酸也作为一种添加剂被广泛应用在食品和医药等领域。
因此,谷氨酸棒杆菌是一种具有重要应用价值的细菌,可以通过其发酵作用产生谷氨酸,而谷氨酸作为一种氨基酸在食品和生物技术中有着广泛的应用。
谷氨酸发酵工程系列实验一、实验目的1、了解发酵工业菌种的制备工艺和质量控制,为发酵实验准备菌种。
2、了解发酵罐的操作,完成谷氨酸发酵的全过程操作、3、了解和掌握快速测定还原糖含量的方法。
4、了解和掌握快速测定发酵过程谷氨酸含量的方法5、了解用等电点法从发酵液中回收谷氨酸的方法二、实验原理谷氨酸是由谷氨酸棒杆菌以葡萄糖为原料生产的一种呈味氨基酸,其代谢机理为:葡萄糖先经EMP途径生成丙酮酸,丙酮酸经氧化脱氨基作用生成乙酰辅酶A,乙酰辅酶A进入三羧酸循环生成α—酮戊二酸,α—酮戊二酸再经氨基化作用生成谷氨酸。
由于谷氨酸棒杆菌为生物素缺陷型突变株,因此在发酵过程中要控制生物素亚适量。
三、实验材料、仪器与试剂1、材料:谷氨酸棒杆菌、发酵培养基、谷氨酸发酵液不同发酵时间所取的样品等。
2、仪器:三角瓶、烧杯、量筒、玻棒、pH试纸、天平、高压蒸汽灭菌锅、培养箱、显微镜、发酵罐及控制系统、蒸汽发生器、空气压缩机、补料瓶、补料针、硅胶管、滴定管、滴定架、电炉、容量瓶、高速离心机、分光光度计、恒温水浴锅、移液器及枪头、无极调速搅拌机、旋转蒸发器、冰箱等3、试剂:无水乙醇、牛肉膏、蛋白胨、蔗糖、可溶性淀粉、蛋白胨、酵母提取液、NaCl、NaOH、HCl、KNO3、去离子水、葡萄糖、尿素、消泡剂、硫酸铜、亚甲基蓝、酒石酸钾钠、氢氧化钠、亚铁氢化钾、盐酸、L-谷氨酸分析纯、茚三酮、丙酮、酒精等。
四、实验步骤1、培养基的制备(1)斜面培养基:葡萄糖0.1%;蛋白胨1%;牛肉膏1%;NaCl0.5%;琼脂2%(pH7.0)(2)一级培养基:蛋白胨1%;酵母浸出粉0.5%;NaCl1%(pH7.2)(3)二级培养基:葡萄糖 2.5%;尿素0.34%;K2HPO4·3H2O0.16%;MgSO4·7H2O;FeSO4·7H2O、MnSO4·H2O各0.0002%(pH7.0)各培养基分装到到三角瓶,用铝箔纸封口,高压灭菌。
谷氨酸棒杆菌发酵成缬氨酸的反应式
(原创版)
目录
1.引言:介绍谷氨酸棒杆菌和缬氨酸
2.反应式:展示谷氨酸棒杆菌发酵成缬氨酸的反应式
3.结论:总结谷氨酸棒杆菌发酵成缬氨酸的过程
正文
在生物技术领域,微生物发酵在生产重要化合物的过程中起着至关重要的作用。
谷氨酸棒杆菌是一种常用的发酵菌,它能将谷氨酸转化为缬氨酸。
缬氨酸是一种重要的氨基酸,广泛应用于医药、食品和饲料等领域。
本文将介绍谷氨酸棒杆菌发酵成缬氨酸的反应式。
首先,我们来了解一下谷氨酸棒杆菌和缬氨酸。
谷氨酸棒杆菌是一种杆状细菌,能利用谷氨酸为唯一氮源进行生长。
在发酵过程中,谷氨酸棒杆菌将谷氨酸转化为缬氨酸,同时产生一些副产物。
现在,让我们看一下谷氨酸棒杆菌发酵成缬氨酸的反应式:
谷氨酸 + 酶→缬氨酸 + 副产物
在这个反应过程中,谷氨酸棒杆菌利用自身的酶将谷氨酸转化为缬氨酸。
这个过程是单向的,也就是说,缬氨酸不能转化为谷氨酸。
这种反应具有较高的专一性,有利于提高缬氨酸的产率。
综上所述,谷氨酸棒杆菌发酵成缬氨酸的过程可以通过一个简单的反应式来描述。
这个过程对于生产缬氨酸具有重要意义,因为它为工业生产提供了一种高效、经济的方法。
第1页共1页。