地下洞室围岩稳定性分析
- 格式:docx
- 大小:37.03 KB
- 文档页数:2
地下厂房洞室群围岩稳定性方法研究地下厂房洞室群围岩稳定性是指地下厂房洞室周围岩体的稳定性问题。
地下厂房洞室通常是为了满足人们的生产、生活和储存需求,因此洞室群围岩的稳定性对于地下厂房的长期运行、人员安全和资产保障至关重要。
在研究地下厂房洞室群围岩稳定性时,需要考虑以下几个方面的问题:首先,需要分析洞室群围岩的物理力学特性,包括岩石的强度、变形特性和破坏模式。
通过适当的岩石力学试验和野外观测,可以获取岩石的力学参数,如抗压强度、抗拉强度、抗剪强度等。
这些参数对于稳定性分析和设计起着重要的作用。
其次,需要考虑工程参数的影响,如洞室尺寸、埋深和周边岩性的条件。
洞室尺寸对岩体稳定性有直接影响,尤其是高宽比较大的洞室,容易导致岩体的变形和破坏。
洞室的埋深也会影响岩体的应力状态,从而影响岩体的稳定性。
周边岩性的条件决定了岩体的强度和变形特性,需要对周边岩性进行综合分析。
此外,岩体的结构面、节理和隐伏断层等地质构造的影响也需要考虑。
岩体中存在的结构面和节理体,会导致岩体的开裂和滑动,对岩体的稳定性产生不利影响。
隐伏断层的活动可能导致岩体的滑动和破坏,需要对其进行综合分析和评估。
最后,需要进行数值模拟和力学分析,包括有限元分析、离散元分析和解析方法等。
通过数值模拟可以模拟地下厂房洞室群围岩的应力-应变状态,预测岩体的破坏形态和稳定性。
数值模拟还可以进行灵敏度分析,评估不同参数对岩体稳定性的影响,为优化设计和工程措施提供依据。
综上所述,地下厂房洞室群围岩稳定性的研究是一项复杂的工作,需要考虑岩石力学特性、洞室尺寸与周边岩性、地质构造和数值模拟等多个方面的问题。
通过综合分析和评估,可以为地下厂房洞室的设计和建设提供科学依据,保障其长期稳定和安全运行。
洞顶位移底鼓在岩石地下工程中,受开应力状态发生改二、地下洞室开挖所产生的岩体力学问题向新的平衡应力状态调整,应力状态的调整过程,称(redistribution of stress)。
洞顶位移底鼓由于洞径方向的变形远大于洞轴方向的变形,当洞室半径远小于洞长时,洞轴方向的变形可以忽略不计,因此地下洞室问题可视为平面应变问题深埋于弹性岩体中的水平圆形洞室,其围岩重分布应力按柯西课题求解(1)柯西课题概化模型无限大弹性薄板,其边界上受到沿方向的外力作用,薄板中有一半径为的小圆孔。
x p R 弹性薄板柯西课题分析示意图pp 1.深埋圆形水平洞室围岩重分布应力以圆的圆心为原点取极坐标,由弹性理论,若不考虑体积力,可求得薄板中任一点的应力及其方向。
(,)M r θ弹性薄板柯西课题分析示意图p p若应力函数为φ22211r r r r φφσθ∂∂=+∂∂径向应力:22rθφσ∂=∂环向应力:2211r r r r θφφτθθ∂∂=−∂∂∂剪切应力:(2)柯西课题解弹性薄板柯西课题分析示意图p p边界条件:()cos 222r r b p pσθ==+()sin 22r r b pθτθ==−0b R >>()()0r r r b r b θτσ====0b R =0b R >>vσxθMvσ0R r弹性薄板pp柯西课题力学模型中极坐标轴与力的作用方向相同。
因此,需进行极角变换。
2420002423411cos22v r R R R r r r σσθ⎡⎤⎛⎞⎛⎞=−−+−⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦240024311cos22v R R r r θσσθ⎡⎤⎛⎞⎛⎞=+++⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦420042321sin22v r R R rr θστθ⎛⎞=−+⎜⎟⎝⎠2)由柯西课题解得到作用下圆形洞室围岩重分布应力v σ22θθπ→−2θσσ=④随着距离增大,增大,减小,并且都逐渐趋近于天然应力。
第八章地下洞室围岩稳定性分析第一节概述地下洞室(underground cavity)是指人工开挖或天然存在于岩土体中作为各种用途的构筑物。
从围岩稳定性研究角度来看,这些地下构筑物是一些不同断面形态和尺寸的地下空间。
较早出现的地下洞室是人类为了居住而开挖的窑洞和采掘地下资源而挖掘的矿山巷道。
如我国铜绿山古铜矿遗址留下的地下采矿巷道,最大埋深60余米,其开采年代至迟始于西周(距今约3000年)。
但从总体来看,早期的地下洞室埋深和规模都很小。
随着生产的不断发展,地下洞室的规模和埋深都在不断增大。
目前,地下洞室的最大埋深已达2 500m,跨度已超过30m;同时还出了多条洞室并列的群洞和巨型地下采空系统,如小浪底水库的泄洪、发电和排砂洞就集中分布在左坝肩,形成由16条隧洞(最大洞径14.5m)并列组成的洞群。
地下洞室的用途也越来越广。
地下洞室按其用途可分为交通隧道、水工隧洞、矿山巷道、地下厂房和仓库、地下铁道及地下军事工程等类型。
按其内壁是否有内水压力作用可分为有压洞室和无压洞室两类。
按其断面形状可分为圆形、矩形、城门洞形和马蹄形洞室等类型。
按洞室轴线与水平面的关系可分为水平洞室、竖井和倾斜洞室三类。
按围岩介质类型可分为土洞和岩洞两类。
另外,还有人工洞室、天然洞室、单式洞室和群洞等类型。
各种类型的洞室所产生的岩体力学问题及对岩体条件的要求各不相同,因而所采用的研究方法和内容也不尽相同。
由于开挖形成了地下空间,破坏了岩体原有的相对平衡状态,因而将产生一系列复杂的岩体力学作用,这些作用可归纳为:(1)地下开挖破坏了岩体天然应力的相对平衡状态,洞室周边岩体将向开挖空间松胀变形,使围岩中的应力产生重分布作用,形成新的应力状态,称为重分布应力状态。
(2)在重分布应力作用下,洞室围岩将向洞内变形位移。
如果围岩重分布应力超过了岩体的承受能力,围岩将产生破坏。
(3)围岩变形破坏将给地下洞室的稳定性带来危害,因而,需对围岩进行支护衬砌,变形破坏的围岩将对支衬结构施加一定的荷载,称为围岩压力(或称山岩压力、地压等)。
地下洞室围岩稳定性分析
在进行地下洞室围岩稳定性分析时,一般需要考虑以下几个主要因素:
1.岩层的力学性质:岩层的力学性质是岩石稳定性的基础。
要进行稳
定性分析,首先需要获取岩层的力学参数,如岩石的强度、弹性模量和剪
胀性等。
通常可以通过室内试验、现场调查和实测等方法获得这些参数,
或者借助已有的类似工程的资料进行评估。
2.地下水:地下水是地下洞室稳定性分析中重要的一项因素。
地下水
对围岩的稳定性产生的主要影响是增加孔隙水压,降低岩层的有效应力,
促使岩体产生破坏。
因此,需要充分考虑地下水对岩层的影响,包括水位
高度、水质状况、渗流特性等。
3.岩体结构:岩体的结构对于岩层稳定性具有重要影响。
岩体的结构
主要表现为节理、裂隙、岩体层理等。
这些结构特征对洞室的稳定性有直
接影响,形成控制洞室稳定的主要因素之一、因此,在进行稳定性分析时,需要对岩体的结构特征进行详细调查和分析,选择合适的建模方法进行模拟。
4.洞室开挖方式和支护措施:洞室的开挖过程和支护措施对围岩稳定
性有着直接的影响。
开挖过程中,洞室周围会受到剪切应力和变形等影响,进而对围岩稳定性产生影响。
因此,在稳定性分析中需要考虑洞室开挖方
式和支护措施的影响,选择合适的岩体应力场和支护材料。
在进行地下洞室围岩稳定性分析时,常用的方法包括力学分析法、数
值模拟法和现场监测法等。
力学分析法通过分析力学参数和地质参数,计
算岩体的稳定系数,从而评估围岩的稳定性。
数值模拟法通过建立数学模型,采用有限元或边界元方法,模拟洞室周围围岩的变形和破坏过程,预
测洞室的稳定性。
现场监测法是指通过安装监测点,对洞室周围的围岩变形和破坏进行实时监测,从而评估围岩的稳定性。
综上所述,地下洞室围岩稳定性分析是一个复杂的工程问题,需要考虑多个因素的综合影响。
只有充分了解地下洞室周围的地质和力学条件,选择合适的分析方法和模型,才能有效评估围岩的稳定性,并制定出合理的支护措施,确保地下洞室的安全和持续稳定。