2021届高三上学期第二次月考数学(理)试题
- 格式:doc
- 大小:576.44 KB
- 文档页数:9
一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合U={1,2,3,4,5,6},A={1,2,3},B={2,3,4,5},则(∁U A)∩(∁U B)=A.{6}B.{1,6}C.{2,3}D.{1,4,5,6}2.在复平面内,复数6+5i与-3+4i对应向量OA与OB,则向量AB对应的复数是A.-1+9iB.9+iC.-9-iD.9-i3.在第十三届女排世界杯赛中,中国女排以不败战绩夺得冠军,女排精神一直激励着全国人民在各行各业为祖国的腾飞而努力拼搏。
在女排世界杯赛闭幕后,某收视调查机构对某社区内2000名居民收看比赛的情况用随机抽样方式进行调查,样本容量为100,将数据分组整理后,列表如下:从表中可以得出正确的结论为A.表中m的值为8B.估计观看比赛不低于5场的人数是860人C.估计观看比赛场数的众数为8D.估计观看比赛不高于3场的人数是280人4.如图,①②③④中不属于函数y=log2x,y=log0.5x,y=-log3x的一个是A.①B.②C.③D.④5.右面程序框图,输出的结果为S=132,则判断框中应填A.i ≥10?B.i ≥11?C.i ≤11?D.i ≤12?6.已知等比数列{a n }中,a 1+a 2=94,a 4+a 5=18,则其前5项的积为 A.64 B.81 C.192 D.2437.已知圆柱上下底面圆周均在球面上,且圆柱底面直径和高相等,则该球与圆柱的体积之比为 A.553 B.556 C.423 D.4268.学校从高一、高二、高三中各选派10名同学参加“建党100周年党史宣讲”系列报告会,其中三个年级参会同学中女生人数分别为5、6、7,学习后学校随机选取一名同学汇报学习心得,结果选出一名女同学,则该名女同学来自高三年级的概率为 A.718 B.730 C.915 D.13 9.等差数列{a n }的前n 项和为S n ,若∀n ∈N *,S n ≤S 7,则数列{a n }的通项公式可能是A.a n =16-3nB.a n =15-2nC.a n =2n -14D.a n =2n -1510.摩天轮是一种大型转轮状的机械游乐设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色某摩天轮设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周需要30min 。
秘密★启用前重庆市第八中学2023届高考适应性月考卷(二)数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,集合{}=02A x x ≤≤,{}=240x B x -≥,则集合()UA B = ð()A.()0,2 B.(]0,2 C.[)0,2 D.[]0,22.设x =R ,则“01x <<”是“2230x x --<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.记事件k A 表示“第k 只飞出笼的是苍蝇”,1,2,,8k =⋅⋅⋅,则()52|P A A 为()A.15B.16C.17D.254.定义在R 上的函数()f x 满足()()121f x f x x +=-++,则下列是周期函数的是()A.()y f x x=+ B.()y f x x=- C.()2y f x x=+ D.()2y f x x=-5.我国古代数学家僧一行应用“九服晷影算法”在《大衍历》中建立了晷影长l 与太阳天顶距θ(0180θ︒≤≤︒)的对应数表,这是世界数学史上较早的一张正切函数表,根据三角学知识可知,晷影长度l 等于表高h 与太阳天顶距θ正切值的乘积,即tan l h θ=.对同一“表高”两次测量,第一次和第二次太阳天顶距分别为α,β,若第一次的“晷影长”是“表高”的2倍,且()1tan 3αβ-=,则第二次的“晷影长”是“表高”的()倍A.1B.2C.3D.46.已知81log 32a =,0.01b π=,sin1c =,则,,a b c 的大小关系是()A.c b a <<B.c a b<< C.a b c<< D.a c b<<7.在ABC 中,π3A =,G 为ABC 的重心,若12AG AB AG AC ⋅=⋅= ,则ABC 外接圆的半径为()A.B.2C.D.8.若函数()32f x ax bx cx d=+++()0a >有极值点1x ,2x ,且()22f x x =,则关于x 的方程()()2320a f x bf x c ++=⎡⎤⎣⎦的不同实数根个数是()A.3B.4C.5D.6二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知0a b >>,且1ab =,则下列式子正确的有()A.22log log 0a b ->B.22log log 1a b +>C.22log log 0a b ⋅< D.224a b +>10.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S +=+,则下列结论正确的是()A.数列{}1n S +为等比数列B.数列{}n a 不是等比数列C.21n n S a =-D.{}n a 中任意三项不能构成等差数列11.已知函数()4f x x πω⎛⎫=+ ⎪⎝⎭()0ω>,则下列说法正确的是()A.若函数()f x 的最小正周期为π,则其图象关于直线π8=x 对称B.若函数()f x 的最小正周期为2π,则其图象关于点π,04⎛⎫ ⎪⎝⎭对称C.若函数()f x 在区间π0,8⎛⎫⎪⎝⎭上单调递增,则ω的最大值为2D.若函数()f x 在[]0,2π有且仅有4个零点,则ω的取值范围是151988ω≤<12.已知F 为椭圆C :221168x y +=的左焦点,直线l :=y kx ()0k ≠与椭圆C 交于A ,B 两点,AE x ⊥轴,垂足为E ,BE 与椭圆C 的另一个交点为P ,则()A.8AF BF +=B.14AF BF+的最小值为2C.直线BE 的斜率为12k D.PAB ∠为钝角三、填空题(本大题共4小题,每小题5分,共20分)13.复数z 满足:23i z z +=+,则=z ______.14.定义在R 上的函数()f x 满足以下两个性质:①()() f x f x -=,②()()20f x f x +-=,满足①②的一个函数是______.15.已知M 是边长为1的正ABC 的边AC 上的动点,N 为AB 的中点,则BM MN ⋅的最大值是_____.16.已知函数()()2log 41xf x x =+-,数列{}n a 是公差为4的等差数列,若()()()()112233440a f a a f a a f a a f a +++=,则数列{}n a 的前n 项和=n S ______.四、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.如图,在棱柱111ABC A B C -中,D 为棱BC 的中点.(1)证明:1//A B 平面1AC D ;(2)若该三棱柱为正三棱柱,且所有棱长均相等,求直线AC 与平面1AC D 所成角的正弦值.18.在ABC中,角A ,B ,C的对边分别为a ,b ,c ,已知()()()2sin sin sin sin sin sin cos cos C A B A B C A C B ----=-+.(1)求B ;(2)已知2a c -=,ABC S =△,求b .19.记n S 为数列{}n a 的前n 项和,已知1=2a ,{}32n n a S -是公差为2的等差数列.(1)求{}n a 的通项公式;(2)证明:121111na a a ++⋅⋅⋅+<.20.核电站某项具有高辐射危险的工作需要工作人员去完成,每次只派一人,每人只派一次,工作时长不超过15分钟,若某人15分钟内不能完成该工作,则撤出,再派下一人,现有小胡、小邱、小邓三人可派,且他们各自完成工作的概率分别为1p ,2p ,3p .假设1p ,2p ,3p 互不相等,且假定三人能否完成工作是相互独立.(1)任务能被完成的概率是否与三个人被派出的先后顺序有关?试说明理由;(2)若按某指定顺序派出,这三人各自能完成任务的概率依次为1q ,2q ,3q ,其中1q ,2q ,3q 是123,,p p p 的一个排列.①求所需派出人员数目X 的分布列和数学期望()E X ;②假定1231>>>p p p ,为使所需派出的人员数目的数学期望达到最小,应以怎么样的顺序派出?21.已知函数()()()ln 3f x x a x =++()a ∈R .(1)若函数()f x 在定义域内单调递增,求a 的取值范围;(2)若=2a ,()f x kx >在()1,x ∈+∞上恒成立,求整数k 的最大值.(参考数据:ln 20.69≈,ln 3 1.1≈)22.已知双曲线E :22221x y a b-=0a >,0b >)一个顶点为()2,0A -,直线l 过点()3,0Q 交双曲线右支于M ,N 两点,记AMN ,AOM △,AON △的面积分别为S ,1S ,2S .当l 与x 轴垂直时,1S 的值为152.(1)求双曲线E 的标准方程;(2)若l 交y 轴于点P ,PM MQ λ= ,PN NQ μ=,求证:λμ+为定值;(3)在(2)的条件下,若121625S S mS μ=+,当58λ<≤时,求实数m 的取值范围.秘密★启用前重庆市第八中学2023届高考适应性月考卷(二)数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)【1题答案】【答案】C【2题答案】【答案】A【3题答案】【答案】C【4题答案】【答案】B【5题答案】【答案】A【6题答案】【答案】D【7题答案】【答案】C【8题答案】【答案】A二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分)【9题答案】【答案】ACD 【10题答案】【答案】ACD 【11题答案】【答案】ACD 【12题答案】【答案】AC三、填空题(本大题共4小题,每小题5分,共20分)【13题答案】【答案】1+i ##i+1【14题答案】【答案】()πcos 2f x x =(答案不唯一)【15题答案】【答案】2364-【16题答案】【答案】228n n-四、解答题(共70分.【17题答案】【答案】(1)证明见解析(2)55【18题答案】【答案】(1)3π(2)b =【19题答案】【答案】(1)31nn a =-(2)证明见解析【20题答案】【答案】(1)无关;理由见解析(2)①分布列见解析;期望为121232q q q q --+;②完成任务概率大的人先派出【21题答案】【答案】(1))5e ,-⎡+∞⎣(2)6【22题答案】【答案】(1)22143x y -=(2)证明见解析(3)1832,55⎛⎤⎥⎝⎦第8页/共8页。
数学(二)试卷注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数1+3i1+i 在复平面内对应的点的坐标为()A.()2,4 B.()4,2 C.()1,2 D.()2,12.设集合{}=Z 2U x x ∈≤,{}1,0,1A =-,{}0,1B =,则()U A B = ð()A.{}2,1,0,1,2-- B.{}1,0,1- C.{}1- D.{}1,0-3.某游泳馆统计了10天内某小区居民每日到该游泳馆锻炼的人数,整理数据,得到如下所示的折线图.则根据此折线图,下面结论正确的是()A.这10天内,每日游泳人数的极差大于106B.这10天内,每日游泳人数的平均值大于135C.这10天内,每日游泳人数的中位数大于145D.前5天每日游泳人数的方差小于后5天每日游泳人数的方差4.一个礼堂的座位分左、中、右三组,左、右两组从第一排到最后一排每排依次增加1个座位,中间一组从第一排到最后一排每排依次增加2个座位,各组座位具有相同的排数,第一排共有16个座位,最后一排共有52个座位,则该礼堂的座位总数共有()A.442个B.408个C.340个D.306个5.已知1sin 23β=,()()2sin sin 3αβαβ++-=,则sin α=()A.37B.38 C.37- D.38-6.已知0.11.1a-=,ln 3b =,c =,则()A.a b c<< B.a c b<< C.c a b<< D.c b a<<7.已知双线()222210,0:6x y C a ba =>>=的左、右焦点分别为1F ,2F ,O 为坐标原点,点M 在C 的右支上运动,12MF F 的内心为I ,若2IO IF =,则C 的离心率为()A.2B.C.3D.8.已知1x ,2x 是方程e ln a x x =的根,且12x x <,则下列结论正确的是()A.(],1a ∈-∞- B.()10,1x ∈ C.21,e ex ⎛⎫ ⎪⎝⎭∈ D.122x x +>二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得5分,部分选对得2分,有选错的得0分9.在正三棱柱111ABC A B C -中,1AA AB =,则下列结论正确的是()A.1BC 与11A B 的夹角为45°B.1BC 与平面ABC 所成角为45°C.1BC 与1AA 的夹角为45°D.1BC 与平面11ABB A 所成角为45°10.已知椭圆22:195x y E +=的左焦点为F ,过F 的直线l 与E 交于A ,B 两点,则下列说法正确的是()A.若直线l 垂直于x 轴,则103AB =B.10,63AB ⎡⎤∈⎢⎥⎣⎦C.若5AB =,则直线l 的斜率为33D.若2AF BF =,则154AB =11.一个不透明的纸箱中放有大小、形状均相同的10个小球,其中白球6个、红球4个,现无放回分两次从纸箱中取球,第一次先从箱中随机取出1球,第二次再从箱中随机取出2球,分别用1A ,2A 表示事件“第一次取出白球,”“第一次取出红球”;分别用B ,C 表示事件“第二次取出的都为红球”,“第二次取出两球为一个红球一个白球”.则下列结论正确的是()A.()11=6P B A B.()21=2P C A C.()13P B =D.()115P A C =12.某制造企业一种原材料的年需求量为16000千克(该原材料的需求是均匀的,且不存在季节性因素),每千克该原材料标准价为200元.该原材料的供应商规定:每批购买量不足1000千克的,按照标准价格计算;每批购买量1000千克及以上,2000千克以下的,价格优惠5%;每批购买量2000千克及以上的,价格优惠10%.已知该企业每次订货成本为600元,每千克该原材料年平均库存成本为采购单价的15%.该企业资金充足,该原材料不允许缺货,则下列结论正确的是()(采购总成本=采购价格成本Ap +订货成本AB Q +库存成本2CQ ,A 为原料年需求量,B 为平均每次订货成本,C 为单位原料年库存成本,Q 为订货批量即每批购买量,p 为采购单价)A.该原材料最低采购单价为180元/千克 B.该原材料最佳订货批量为800千克C.该原材料最佳订货批量为2000千克D.该企业采购总成本最低为2911800元三、填空题:本题共4小题,每小题5分,共20分.13.设向量a 的模为2,向量,22b ⎛⎫=- ⎪ ⎪⎝⎭,且2a b -= ,则a 与b的夹角等于______.14.已知函数()()0bf x ax ab x=+≠,使()f x 在(0)+∞,上为增函数的a 与b 组成的有序实数对为(),a b ,则(),a b 可以是______.(写出一对符合题意的即可)15.已知两个平行平面间的距离为2,这两个平面截球O 所得两个截面圆的半径分别为1O 的表面积等于______.16.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭,若π,06⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心,()f x 在区间5π7π,1818⎛⎫⎪⎝⎭上有最大值点无最小值点,且5π7π1818f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,记满足条件的ω的取值集合为M ,则=M ______.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c,sin b C =,1cos c B =.(1)求B ;(2)若b =,求ABC 的面积.18.某市从2017年到2021年新能源汽车保有量y (单位:千辆)与年份的散点图如下:记年份代码为()1,2,3,4,5x x =,2t x =,对数据处理后得:y521ii x=∑521ii t=∑51iii x y=∑51iii t y=∑35559797153115(1)根据散点图判断,模型①y a bx =+与模型②2y c dx =+哪一个更适宜作为y 关于x 的回归模型?(给出结论即可,不必说明理由)(2)根据(1)的判断结果,建立y 关于x 的回归方程,并预测2022年该市新能源汽车保有量(计算结果都精确到1).参考公式:回归方程 y abx =+ 中斜率和截距的最小二乘估计公式分别为:()()()1122211n niii i i i nniii i x x y y x y nx ybx x xnx====---==--∑∑∑∑ , ay bx =- .19.设数列{}n a 的前n 项和为n S ,且22n n S a =-,数列{}n b 满足111b a =,且131n n n b b b +=+.(1)证明:数列{}n a 是等比数列,数列1n b ⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a ,{}n b 的通项公式;(2)设数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T .20.如图,在四面体ABCD 中,ABD △是边长为2的等边三角形,=AB AC ,BC CD ⊥.(1)证明:平面ABD ⊥平面BCD ;(2)若二面角A BC D --的余弦值为55,求四面体ABCD 的体积.21.已知抛物线()2:20E x py p =>的焦点为F ,斜率为()0k k ≠的直线l 与E 相切于点A .(1)当=2k ,=5AF 时,求E 的方程;(2)若直线l '与l 平行,l '与E 交于B ,C 两点,且2BAC π∠=,设点F 到l '的距离为1d ,到l 的距离为2d ,试问:12d d 是否为定值?若是,求出定值;若不是,说明理由.22.已知函数()()32,,,R,0f x ax bx cx d a b c d a =+++∈≠是奇函数,曲线()=y f x 在点()()2,2f 处的切线方程为93160x y +-=.(1)求()f x 的零点;(2)若()f x 在区间()2,10m m-内有最大值,求m 的取值范围.数学(二)试卷注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】A【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】D二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得5分,部分选对得2分,有选错的得0分【9题答案】【答案】BC【10题答案】【答案】ABD 【11题答案】【答案】AB 【12题答案】【答案】ACD三、填空题:本题共4小题,每小题5分,共20分.【13题答案】【答案】23π##120 【14题答案】【答案】()1,1-(答案不唯一)【15题答案】【答案】13π【16题答案】【答案】{}1,7,13四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.【17题答案】【答案】(1)60B =︒(2)2【18题答案】【答案】(1)模型②2y c dx =+更适宜作为y 关于x 的回归方程(2) 223y x =+,预计2022年该市新能源汽车保有量约为110千辆【19题答案】【答案】(1)证明见解析,2nn a =,131n b n =-(2)()18342n n T n +=+-⋅【20题答案】【答案】(1)证明见解析(2)12【21题答案】【答案】(1)24x y=(2)12d d 是定值,定值为3【22题答案】【答案】(1)()f x 的零点有3个,分别是0(2)[)2,1-第9页/共9页。
湖南2025届高三月考试卷(二)数学(答案在最后)命题人、审题人:高三数学备课组时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数11i z =+的虚部是()A.1 B.12 C.12- D.1-【答案】C【解析】【分析】先化简给定复数,再利用虚部的定义求解即可.【详解】因为()()11i 1i 1i 1i 1i 1i 222z --====-++-,所以其虚部为12-,故C 正确.故选:C.2.已知a 是单位向量,向量b 满足3a b -= ,则b 的最大值为()A.2B.4C.3D.1【答案】B【解析】【分析】设,OA a OB b == ,由3a b -= ,可得点B 在以A 为圆心,3为半径的圆上,利用向量的模的几何意义,可得 b 的最大值.【详解】设,OA a OB b == ,因为3a b -= ,即3OA OB BA -== ,即3AB = ,所以点B 在以A 为圆心,3为半径的圆上,又a 是单位向量,则1OA = ,故OB 最大值为134OA AB +=+= ,即 b 的最大值为4.故选:B.3.已知角θ的终边在直线2y x =上,则cos sin cos θθθ+的值为()A.23- B.13- C.23 D.13【答案】D【解析】【分析】由角θ的终边,得tan 2θ=,由同角三角函数的关系得cos 1sin cos 1tan θθθθ=++,代入求值即可.【详解】因为角θ的终边在直线2y x =上,所以tan 2θ=.所以cos 111sin cos 1tan 123θθθθ===+++.故选:D.4.已知函数()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩对任意的12,x x ∈R ,且12x x ≠,总满足以下不等关系:()()12120f x f x x x ->-,则实数a 的取值范围为()A.34a ≤ B.34a ≥ C.1a ≤ D.1a ≥【答案】D【解析】【分析】由条件判定函数的单调性,再利用指数函数、二次函数的性质计算即可.【详解】()()()12120f x f x f x x x ->⇒- 在上单调递增,又()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩,当0x <时,()e 33xf x a =+-单调递增,当0x ≥时,()f x 单调递增,只需1330a a +-≤+,解得1a ≥.故选:D.5.如图,圆柱的母线长为4,,AB CD 分别为该圆柱的上底面和下底面直径,且AB CD ⊥,三棱锥A BCD -的体积为83,则圆柱的表面积为()A.10πB.9π2C.4πD.8π【答案】A【解析】【分析】取AB 的中点O ,由13A BCD OCD V S AB -=⋅△,可求解底面半径,即可求解.【详解】设底面圆半径为r ,由AB CD ⊥,易得BC AC BD AD ===,取AB 的中点O ,连接,OC OD ,则,AB OC AB OD ⊥⊥,又OC OD O,OC,OD =⊂ 平面OCD ,所以AB ⊥平面OCD ,所以,11182423323A BCD OCD V S AB r r -=⋅=⨯⨯⨯⨯= ,解得=1,所以圆柱表面积为22π42π10πr r +⨯=.故选:A.6.已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于,A B 两点,则23AF BF +的最小值为()A.52+ B.5 C.10 D.11【答案】B【解析】【分析】(方法一)首先求出抛物线C 的方程为24y x =,设直线l 的方程为:1x ty =+,与抛物线C 的方程联立,利用根与系数的关系求出21x x 的值,再根据抛物线的定义知11AF x =+,21BF x =+,从而求出23AF BF +的最小值即可.(方法二)首先求出111AF BF+=,再利用基本不等式即可求解即可.【详解】(方法一)因为抛物线C 的焦点到准线的距离为2,故2p =,所以抛物线C 的方程为24y x =,焦点坐标为1,0,设直线l 的方程为:()()11221,,,,x ty A x y B x y =+,不妨设120y y >>,联立方程241y x x ty ⎧=⎨=+⎩,整理得2440y ty --=,则12124,4y y t y y +==-,故221212144y y x x =⋅=,又B =1+2=1+1,2212p BF x x =+=+,则()()12122321312352525AF BF x x x x +=+++=++≥=,当且仅当12,23x x ==时等号成立,故23AF BF +的最小值为5.故选:B.(方法二)由方法一可得121x x =,则11AF BF +211111x x =+++121212211x x x x x x ++==+++,因此23AF BF +()1123AF BF AF BF ⎛⎫=++ ⎪ ⎪⎝⎭235AF BF BF AF =++55≥+=+,当且仅当661,123AF BF =+=+时等号成立,故23AF BF +的最小值为5.故选:B.7.设函数()()cos f x x ϕ=+,其中π2ϕ<.若R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()y f x =的图象与直线114y x =-的交点个数为()A.1B.2C.3D.4【答案】C【解析】【分析】利用给定条件求出()πcos 4f x x ⎛⎫=- ⎪⎝⎭,再作出图像求解交点个数即可.【详解】对R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以π4x =是=的一条对称轴,所以()ππZ 4k k ϕ+=∈,又π2ϕ<,所以π4ϕ=-.所以()πcos 4f x x ⎛⎫=- ⎪⎝⎭,在平面直角坐标系中画出()πcos 4f x x ⎛⎫=-⎪⎝⎭与114y x=-的图象,当3π4=-x 时,3π14f ⎛⎫-=- ⎪⎝⎭,11113π3π4164y --=⨯(-=-<-,当5π4x =时,5π14f ⎛⎫=- ⎪⎝⎭,5π5π14111461y =⨯-=->-,当9π4x =时,9π14f ⎛⎫= ⎪⎝⎭,11119π9π4416y =⨯-=-<,当17π4x =时,17π14f ⎛⎫= ⎪⎝⎭,111117π17π4416y =⨯-=->所以如图所示,可知=的图象与直线114y x =-的交点个数为3,故C 正确.故选:C.8.已知定义域为R 的函数()(),f x g x 满足:()()()()()()00,g f x g y f y g x f x y ≠-⋅=-,且()()()()()g x g y f x f y g x y -=-,则下列说法正确的是()A.()01f =B.()f x 是偶函数C.若()()1112f g +=,则()()2024202420242f g -=-D.若()()111g f -=,则()()202420242f g +=【答案】C【解析】【分析】对A ,利用赋值法令0,0x y ==即可求解;对B ,根据题中条件求出()f y x -,再利用偶函数定义即可求解;对C ,先根据题意求出()()001f g -=-,再找出()()11f x g x ---与()()f x g x ⎡⎤-⎣⎦的关系,根据等比数列的定义即可求解;对D ,找出()()11f x g x -+-与()()f x g x ⎡⎤+⎣⎦的关系,再根据常数列的定义即可求解.【详解】对A ,()()()()()f x g y f y g x f x y -⋅=- ,令0,0x y ==,即()()()()()00000f g f g f -⋅=,解得()00f =,故A 错;对B ,根据()()()()()f x g y f y g x f x y -=-,得()()()()()f y g x f x g y f y x -=-,即()()f y x f x y -=--,故()f x 为奇函数,故B 错;对C ,()()()()()g x g y f x f y g x y -=- 令0x y ==,即()()()()()00000g g f f g -=,()00f = ,()()200g g ∴=,又()00g ≠,()01g ∴=,()()001f g ∴-=-,由题知:()()f x yg x y ---()()()()()()()()f x g y f y g x g x g y f x f y ⎡⎤=-⋅--⎣⎦()()()()f y g y f x g x ⎡⎤⎡⎤=+-⎣⎦⎣⎦,令1y =,即()()()()()()1111f x g x f g f x g x ⎡⎤⎡⎤---=+-⎣⎦⎣⎦,()()1112f g += ,()()()()1112f xg x f x g x ⎡⎤∴---=-⎣⎦,即()(){}f xg x -是以()()001f g -=-为首项2为公比的等比数列;故()()()2024202420242024122f g -=-⨯=-,故C 正确;对D ,由题意知:()()f x yg x y -+-()()()()()()()()f xg y f y g x g x g y f x f y =-⋅+-()()()()g y f y f x g x ⎡⎤⎡⎤=-+⎣⎦⎣⎦,令1y =,得()()()()()()1111f x g x g f f x g x ⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦,又()()111g f -=,即()()()()11f x g x f x g x -+-=+,即数列()(){}f xg x +为常数列,由上知()()001f g +=,故()()202420241f g +=,故D 错.故选:C.【点睛】关键点点睛:本题的关键是对抽象函数进行赋值,难点是C ,D 选项通过赋值再结合数列的性质进行求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中正确的是()A.一个样本的方差()()()22221220133320s x x x ⎡⎤=-+-++-⎣⎦L ,则这组样本数据的总和等于60B.若样本数据1210,,,x x x 的标准差为8,则数据1221,21,x x -- ,1021x -的标准差为16C.数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D.若一个样本容量为8的样本的平均数为5,方差为2,现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小【答案】ABD【解析】【分析】对于A ,由题意可得样本容量为20,平均数是3,从而可得样本数据的总和,即可判断;对于B ,根据标准差为8,可得方差为64,从而可得新数据的方差及标准差,即可判断;对于C ,根据百分位数的定义,求出第70百分位数,即可判断;对于D ,由题意可求得新数据的平均数及方差,即可判断.【详解】解:对于A ,因为样本的方差()()()222212201333,20s x x x ⎡⎤=-+-++-⎣⎦ 所以这个样本有20个数据,平均数是3,这组样本数据的总和为32060,⨯=A 正确;对于B ,已知样本数据1210,,,x x x 的标准差为8s =,则264s =,数据121021,21,,21x x x --- 的方差为2222264s =⨯2816=⨯=,故B 正确;对于C ,数据13,27,24,12,14,30,15,17,19,23共10个数,从小到大排列为12,13,14,15,17,19,23,24,27,30,由于100.77⨯=,故选择第7和第8个数的平均数作为第70百分位数,即232423.52+=,所以第70百分位数是23.5,故C 错误;对于D ,某8个数的平均数为5,方差为2,现又加入一个新数据5,设此时这9个数的平均数为x ,方差为2S ,则2285582(55)165,2999x S ⨯+⨯+-====<,故D 正确.故选:ABD.10.已知函数()32f x ax bx =-+,则()A.()f x 的值域为RB.()f x 图象的对称中心为()0,2C.当30b a ->时,()f x 在区间()1,1-内单调递减D.当0ab >时,()f x 有两个极值点【答案】BD【解析】【分析】利用一次函数、三次函数的性质结合分类讨论思想可判定A ,利用函数的奇偶性判定B ,利用导数研究函数的单调性结合特殊值法排除C ,利用极值点的定义可判定D.【详解】对于A :当,a b 至少一个不为0,则()f x 为三次或者一次函数,值域均为;当,a b 均为0时,值域为{}2,错误;对于B :函数()()32g x f x ax bx =-=-满足()()3g x ax bx g x -=-+=-,可知()g x 为奇函数,其图象关于()0,0中心对称,所以()f x 的图象为()g x 的图象向上移动两个单位后得到的,即关于0,2中心对称,正确;对于C :()23f x ax b '=-,当30b a ->时,取1,1a b =-=-,当33,33x ⎛⎫∈- ⎪ ⎪⎝⎭时,()()2310,f x x f x =-+>'在区间33,33⎛⎫- ⎪ ⎪⎝⎭上单调递增,错误;对于D :()23f x ax b '=-,当0ab >时,()230f x ax b '=-=有两个不相等的实数根,所以函数()f x 有两个极值点,正确.故选:BD.11.我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列命题中正确的是()A.函数()sin 1f x x =+是圆22:(1)1O x y +-=的一个太极函数B.对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数C.对于圆22:1O x y +=的所有非常数函数的太极函数中,均为中心对称图形D.若函数()()3f x kx kx k =-∈R 是圆22:1O x y +=的太极函数,则()2,2k ∈-【答案】AD【解析】【分析】根据题意,对于A ,D 利用新定义逐个判断函数是否满足新定义即可,对于B ,C 举反例说明.【详解】对于A ,圆22:(1)1O x y +-=,圆心为0,1,()sin 1f x x =+的图象也过0,1,且0,1是其对称中心,所以()sin 1f x x =+的图象能将圆一分为二,所以A 正确;对于B,C ,根据题意圆22:1O x y +=,如图()331,332313,03231332331,332x x x f x x x x ⎧--<-⎪⎪+-≤≤=⎨⎪+<≤⎪->⎩,与圆交于点()1,0-,1,0,且在x 轴上方三角形面积与x 轴下方个三角形面积之和相等,()f x 为圆O 的太极函数,且()f x 是偶函数,所以B ,C 错误;对于D ,因为()()()()()33()f x k x k x kx kx f x k -=---=--=-∈R ,所以()f x 为奇函数,由()30f x kx kx =-=,得0x =或1x =±,所以()f x 的图象与圆22:1O x y +=的交点为()()1,0,1,0-,且过圆心()0,0,由3221y kx kx x y ⎧=-⎨+=⎩,得()2624222110k x k x k x -++-=,令2t x =,则()232222110k t k t kt -++-=,即()()222110t k t k t --+=,得1t =或22210k t k t -+=,当1t =时,1x =±,当22210k t k t -+=时,若0k =,则方程无解,合题意;若0k ≠,则()4222Δ44k k k k=-=-,若Δ0<,即204k <<时,方程无解,合题意;所以()2,2k ∈-时,两曲线共有两个交点,函数能将圆一分为二,如图,若Δ0=,即2k =±时,函数与圆有4个交点,将圆分成四部分,若Δ0>,即24k >时,函数与圆有6个交点,且均不能把圆一分为二,如图,所以()2,2k ∈-,所以D 正确.故选:AD.【点睛】关键点点睛:本题解题的关键是理解新定义,即如果一个函数过圆心,并且函数图象关于圆心中心对称,且函数将圆分成2部分,不能超过2部分必然合题.如果函数不是中心对称图形,则考虑与圆有2个交点,交点连起来过圆心,再考虑如何让面积相等.三、填空题:本题共3小题,每小题5分,共15分.12.曲线2ln y x x =-在点()1,2处的切线与抛物线22y ax ax =-+相切,则a =__________.【答案】1【解析】【分析】求出曲线2ln y x x =-在点()1,2处的切线方程,由该切线与抛物线22y ax ax =-+相切,联立消元,得到一元二次方程,其Δ0=,即可求得a .【详解】由2ln y x x =-,则12y x'=-,则11x y ='=,曲线2ln y x x =-在点()1,2处的切线方程为21y x -=-,即1y x =+,当0a ≠时,则212y x y ax ax =+⎧⎨=-+⎩,得()2110ax a x -++=,由2Δ(1)40a a =+-=,得1a =.故答案为:1.13.已知椭圆G22+22=1>>0的左、右焦点分别为12,F F ,若P 为椭圆C 上一点,11212,PF F F PF F ⊥ 的内切圆的半径为3c,则椭圆C 的离心率为______.【答案】23【解析】【分析】由内切圆半径的计算公式,利用等面积法表示焦点三角形12PF F 的面积,得到,a c 方程,即可得到离心率e 的方程,计算得到结果.【详解】由题意,可知1PF 为椭圆通径的一半,故21b PF a =,12PF F 的面积为21122b cc PF a⋅⋅=,又由于12PF F 的内切圆的半径为3c,则12PF F 的面积也可表示为()12223c a c +⋅,所以()111222223c c PF a c ⋅⋅=+⋅,即()212223b c ca c a =+⋅,整理得:22230a ac c --=,两边同除以2a ,得2320e e +-=,所以23e =或1-,又椭圆的离心率()0,1e ∈,所以椭圆C 的离心率为23.故答案为:23.14.设函数()()44xf x ax x x =+>-,若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则()f x b >恒成立的概率为__________.【答案】58##0.625【解析】【分析】根据题意,利用基本不等式,求得2min ()1)f x =+,转化为21)b +>恒成立,结合a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,得到基本事件总数有24个,再利用列举法,求得()f x b >成立的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】因为0,4a x >>,可得40x ->,则()()441441444x f x ax ax a x a x x x =+=++=-+++---2411)a ≥++=,当且仅当4x =时,等号成立,故2min ()1)f x =+,由不等式()f x b >恒成立转化为21)b >恒成立,因为a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则构成(),a b 的所有基本事件总数有24个,又由()221)1)912,16==+,()221)1319,201)25+=+=,设事件A =“不等式()f x b >恒成立”,则事件A 包含事件:()()1,4,1,8,()()()2,4,2,8,2,12,()()()()3,4,3,8,3,12,3,16,()()()()()()4,4,4,8,4,12,4,16,4,20,4,25共15个,因此不等式()f x b >恒成立的概率为155248=.故答案为:58.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC 的面积为334,且2AD DC = ,求BD 的最小值.【答案】(1)π3B =(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由.112333BD BC CA BA BC =+=+,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V 的面积为33π,43B =,所以133sin 24ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当6,2a c ==时取等号,所以BD .16.已知双曲线E 的焦点在x 轴上,离心率为233,点(在双曲线E 上,点12,F F 分别为双曲线的左、右焦点.(1)求E 的方程;(2)过2F 作两条相互垂直的直线1l 和2l ,与双曲线的右支分别交于A ,C 两点和,B D 两点,求四边形ABCD 面积的最小值.【答案】(1)2213x y -=(2)6【解析】【分析】(1)由222c a b =+和3e =,及点(在双曲线E 上,求出22,a b ,即可求出E 的方程;(2)设直线()()121:2,:2l y k x l y x k =-=--,其中0k ≠,根据题中条件确定2133k <<,再将1l 的方程与2213x y -=联立,利用根与系数的关系,用k 表示AC ,BD 的长,再利用12ABCDS AC BD =,即可求出四边形ABCD 面积的最小值.【小问1详解】因为222c a b =+,又由题意得22243c e a ==,则有223a b =,又点(在双曲线E 上,故229213-=b b,解得221,3b a ==,故E 的方程为2213xy -=.【小问2详解】根据题意,直线12,l l 的斜率都存在且不为0,设直线()()121:2,:2l y k x l y x k=-=--,其中0k ≠,因为12,l l 均与E 的右支有两个交点,所以313,33k k >->,所以2133k <<,将1l 的方程与2213x y -=联立,可得()222213121230k x k x k -+--=.设()()1122,,,A x y C x y ,则2212122212123,1313k k x x x x k k---+==--,所以()222121212114AC k x k x x x x =+-=++-)22222222222311212323114113133113k k k kkk k k k k +⎛⎫---+=+-⨯+ ⎪----⎝⎭,同理)22313k BD k +=-,所以))()()()2222222223131111622313313ABCD kkk S AC BD k kkk+++==⋅⋅=⋅----.令21t k =+,所以241,,43k t t ⎛⎫=-∈⎪⎝⎭,则2222166661616316161131612ABCDt S t t t t t =⋅=⋅=≥-+-⎛⎫-+---+ ⎪⎝⎭,当112t =,即1k =±时,等号成立.故四边形ABCD 面积的最小值为6.17.如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B -==,2,P 为棱11A B 上的动点.(1)求证:1AA ⊥平面11BCC B ;(2)是否存在点P ,使得平面APC 与平面111A B C 的夹角的余弦值为53333?若存在,求出点P ;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,点P 为11A B 中点【解析】【分析】(1)延长三条侧棱交于一点O ,由勾股定理证明OA OB ⊥,OA OC ⊥,根据线面垂直的判定定理得证;(2)建立空间直角坐标系,求出平面111A B C 和平面APC 的法向量,利用向量夹角公式求解.【小问1详解】延长三条侧棱交于一点O ,如图所示,由于11124,2AB A B BB ===22OB OA ==所以22216OA OB AB +==,所以OA OB ⊥,同理OA OC ⊥.又OB OC O = ,,OB OC ⊂平面OBC ,所以OA ⊥平面OBC ,即1AA ⊥平面11BCC B .【小问2详解】由(1)知,,OA OB OA OC OB OC ⊥⊥⊥,如图建立空间直角坐标系,则(()0,0,,0,A C,()()111,,0,A B C ,所以((1110,0,,0,,AA AC A B ==-=,()110,B C =.设)111,0,A P A B λλ===,则1AP AA =+)[]1,0,,0,1A P λ=∈,设平面111A B C 和平面APC 的法向量分别为(),,,m x y z n ==(),,r s t ,所以)01000r t λ⎧=+=⎪⎨+==⎪⎪⎩⎩,取()()1,1,1,1,,m n λλλ==+,则cos ,33m n m n m n ⋅===.整理得212870λλ+-=,即()()21670λλ-+=,所以12λ=或76λ=-(舍),故存在点P (点P 为11A B 中点时),满足题意.18.若无穷正项数列{}n a 同时满足下列两个性质:①存在0M >,使得*,n a M n <∈N ;②{}n a 为单调数列,则称数列{}n a 具有性质P .(1)若121,3nn n a n b ⎛⎫=-= ⎪⎝⎭,(i )判断数列{}{},n n a b 是否具有性质P ,并说明理由;(ii )记1122n n n S a b a b a b =+++ ,判断数列{}n S 是否具有性质P ,并说明理由;(2)已知离散型随机变量X 服从二项分布()1,,02B n p p <<,记X 为奇数的概率为n c .证明:数列{}n c 具有性质P .【答案】(1)(i )数列{}n a 不具有性质P ,数列{}n b 具有性质P ,理由见解析;(ii )数列{}n S 具有性质P ,理由见解析(2)证明见解析【解析】【分析】(1)判断数列是否满足条件①②,可得(i )的结果;利用错位相减法求数列{}n n a b 的前n 项和,再判断是否满足条件①②.(2)先求数列{}n c 的通项公式,再判断是否满足条件①②.【小问1详解】(i )因为21n a n =-单调递增,但无上限,即不存在M ,使得n a M <恒成立,所以数列不具有性质P .因为113nn b ⎛⎫=< ⎪⎝⎭,又数列为单调递减数列,所以数列具有性质P .(ii )数列{}n S 具有性质P .2112113333n n n S -=⋅+⋅++ ,23111121133333n n n S +-=⋅+⋅++ ,两式作差得23121111211222333333n n n n S +-=⋅+⋅+⋅++⋅- ,即1121121212223313333313n n n n n n S ++⎛⎫- ⎪-+⎝⎭=-+-=--,所以111,3n n n S +=-<∴数列{}n S 满足条件①.(){}11210,,3nn n n n n a b n S S S +⎛⎫=->∴<∴ ⎪⎝⎭为单调递增数列,满足条件②.综上,数列{}n S 具有性质P .【小问2详解】因为*0,1,,,X n n =∈N ,若X 为奇数的概率为,n c X 为偶数的概率为n d ,()1[1]nn n c d p p +==-+001112220C (1)C (1)C (1)C (1)n n n n nn n n n p p p p p p p p --=-+-+-++- ①()001112220[1]C ()(1)C ()(1)C ()(1)C ()(1)n n n n n n n n n n p p p p p p p p p p ----=--+--+--++-- ②,2n c -=①②,即1(12)2nn p c --=.所以当102p <<时,0121p <-<,故n c 随着n 的增大而增大,且12n c <.故数列{}n c 具有性质P .19.已知函数()24e 2x f x x x-=-,()2233g x x ax a a =-+--(a ∈R 且2a <).(1)令()()()(),x f x g x h x ϕ=-是()x ϕ的导函数,判断()h x 的单调性;(2)若()()f x g x ≥对任意的()1,x ∈+∞恒成立,求a 的取值范围.【答案】(1)ℎ在(),0∞-和0,+∞上单调递增;(2)(],1-∞.【解析】【分析】(1)需要二次求导,利用导函数的符号分析函数的单调性.(2)法一先利用()()22f g ≥这一特殊情况,探索a 的取值范围,再证明对()1,x ∈+∞时,()()f x g x ≥恒成立;法二利用导数工具求出函数()x ϕ的最小值()0x ϕ,同法一求证(]0,1a ∈时()00x ϕ≥,接着求证()1,2a ∈时()20ϕ<不符合题意即可得解.【小问1详解】()()()2224e 233x x f x g x x x ax a a xϕ-=-=-+-++,定义域为{}0xx ≠∣,所以()()()224e 1223x x h x x x a xϕ--==-+-',所以()()2234e 2220x x x h x x --+=+>'.所以()h x 在(),0-∞和()0,∞+上单调递增.【小问2详解】法一:由题知()()22f g ≥即()()()2232120a a a a ϕ=-+=--≥,即1a ≤或2a ≥,所以1a ≤.下证当1a ≤时,()()f x g x ≥对任意的()1,x ∈+∞恒成立.令()()24e x F x f x x x x -=+=-,则()()()()()222234e 224e 11,0x x x x x F x t x t x x x---+-'=-==>',所以()()224e 11x x F x x --=-'在()1,+∞单调递增,又()20F '=,所以当()1,2x ∈时,()()0,F x F x '<单调递减,当()2,x ∈+∞时,()()0,F F x x '>递单调增,所以()()20F x F ≥=,故()f x x ≥-,要证()()f x g x ≥,只需证()x g x -≥,即证()223130x a x a a -+++≥,令()()22313G x x a x a a =-+++,则()()()222Δ(31)43561151a a a a a a a =+-+=-+=--,若115a ≤≤,则0∆≤,所以()()223130G x x a x a a =-+++≥.若15a <,则对称轴31425a x +=<,所以()G x 在()1,+∞递增,故()()210G x G a >=≥,综上所述,a 的取值范围为(],1-∞.法二:由题知2224e 233x x x ax a a x--≥-+--对任意的()1,x ∈+∞恒成立,即()2224e 2330x x x x ax a a xϕ-=-+-++≥对任意的()1,x ∈+∞恒成立.由(1)知()()224e 1223x x x x a x ϕ--=-+-'在()1,+∞递增,又()13a ϕ'=-.①若0a ≤,则()()()10,x x ϕϕϕ'>≥'在()1,+∞递增,所以()()24110e x a ϕϕ>=-+>,符合;②若0a >,则()130a ϕ=-<',又()112224e 14e (1)(1)(1)a a a a a a a a a ϕ--⎡⎤+=-=-+⎣⎦++',令()124e(1)a m a a -=-+,则()()()14e 21a m a a h a -=-+=',则()14e 2a h a -'=-为单调递增函数,令()0h a '=得1ln2a =-,当()0,1ln2a ∈-时()()0,h a m a ''<单调递减,当()1ln2,a ∞∈-+时()()0,h a m a ''>单调递增,又()()10,00m m ='<',所以当()0,1a ∈时,()()0,m a m a '<单调递减,当()1,a ∈+∞时,()()0,m a m a '>单调递增,所以()()10m a m ≥=,则()12214e (1)0(1)a a a a a ϕ-⎡⎤+'=-+≥⎣⎦+,所以(]01,1x a ∃∈+,使得()00x ϕ'=,即()0200204e 12230x x x a x ---+-=,且当()01,x x ∈时,()()0,x x ϕϕ'<单调递减,当()0,x x ∈+∞时,()()0,x x ϕϕ'>单调递增,所以()()0222min 000004e 233x x x x x ax a a x ϕϕ-==-+-++.若(]0,1a ∈,同法一可证()0222000004e 2330x x x x ax a a x ϕ-=-+-++≥,符合题意.若()1,2a ∈,因为()()()2232120a a a a ϕ=-+=--<,所以不符合题意.综上所述,a 的取值范围为(],1-∞.【点睛】方法点睛:导数问题经常会遇到恒成立的问题.常见的解决思路有:(1)根据参变分离,转化为不含参数的函数最值问题.(2)若()0f x >恒成立,就可以讨论参数不同取值下的函数的单调性和极值与最值,最终转化为()min 0f x >;若()0f x <⇔()max 0f x <.(3)若()()f x g x ≥恒成立,可转化为()()min max f x g x ≥(需在同一处取得最值).。
山东省临沂市沂水二中北校区2021届高三上学期10月月考数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(5分)已知集合A={x|1<x<3},B={x|1<log2x<2},则A∩B等于()A.{x|0<x<3} B.{x|2<x<3} C.{x|1<x<3} D.{x|1<x<4}2.(5分)设x∈R ,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B.C.2D.103.(5分)在△ABC中,设命题p :==,命题q:△ABC是等边三角形,那么命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)设,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.b>a>c D.b>c>a5.(5分)已知函数f(x)=ax﹣x3在区间[1,+∞)上单调递减,则a的最大值是()A.0B.1C.2D.36.(5分)已知f(x)是定义在R上的奇函数,且x≥0时f(x)的图象如图所示,则f(﹣2)=()A.﹣3 B.﹣2 C.﹣1 D.27.(5分)函数y=sin(x ﹣)的一条对称轴可以是直线()A.x =B.x =πC.x=﹣πD.x=8.(5分)在△ABC中,角A、B、C所对应的边分别为a、b、c,已知bcosC+ccosB=2b ,则=()A.2B.C.D.19.(5分)函数y=2x﹣x2的图象大致是()A.B.C.D .10.(5分)若函数y=f(x)(x∈R)满足f(x﹣2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣x2,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为()A.13 B.8C.9D.10二、填空题(本大题共5小题,每小题5分,共25分).11.(5分)在数列{a n}中,a1=15,3a n+1=3a n﹣2(n∈N+),则该数列中相邻两项的乘积是负数的为.12.(5分)向量=(1,sinθ),=(1,cosθ),若•=,则sin2θ=.13.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.14.(5分)设f1(x)=cosx,定义f n+1(x)为f n(x)的导数,即f n+1(x)=f′n(x)n∈N*,若△ABC的内角A满足f1(A)+f2(A)+…+f2021(A)=,则sin2A的值是.15.(5分)给出下列命题:①函数y=cos(2x ﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为(写出全部正确命题的序号).三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤).16.(12分)已知集合A={x|2x<8},B={x|x2﹣2x﹣8<0},C={x|a<x<a+1}.(Ⅰ)求集合A∩B;(Ⅱ)若C⊆B,求实数a的取值范围.17.(12分)设命题p:函数y=kx+1在R上是增函数,命题q:曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,假如p∧q是假命题,p∨q是真命题,求k的取值范围.18.(12分)在平面直角坐标系中,角α,β的始边为x轴的非负半轴,点P(1,2cos2θ)在角α的终边上,点Q(sin2θ,﹣1)在角β的终边上,且.(1)求cos2θ;(2)求P,Q的坐标并求sin(α+β)的值.19.(12分)在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.(Ⅰ)若,求tanC的大小;(Ⅱ)若a=2,△ABC 的面积,且b>c,求b,c.20.(13分)定义在实数集上的函数f(x)=x2+x,g(x)=x3﹣2x+m.(1)求函数f(x)的图象在x=1处的切线方程;(2)若f(x)≥g(x)对任意的x∈[﹣4,4]恒成立,求实数m的取值范围.21.(14分)已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)图象上的任意两点,且角φ的终边经过点,若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.山东省临沂市沂水二中北校区2021届高三上学期10月月考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(5分)已知集合A={x|1<x<3},B={x|1<log2x<2},则A∩B等于()A.{x|0<x<3} B.{x|2<x<3} C.{x|1<x<3} D.{x|1<x<4}考点:交集及其运算.专题:计算题.分析:直接求出集合B,然后求出A∩B即可.解答:解:由于集合A={x|1<x<3},B={x|1<log2x<2}={x|2<x<4},所以A∩B={x|2<x<3}.故选B.点评:本题考查对数函数的基本性质,集合的基本运算,考查计算力量.2.(5分)设x∈R ,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B.C.2D.10考点:平面对量数量积的坐标表示、模、夹角.专题:计算题.分析:通过向量的垂直,求出向量,推出,然后求出模.解答:解:由于x∈R ,向量=(x,1),=(1,﹣2),且⊥,所以x﹣2=0,所以=(2,1),所以=(3,﹣1),所以|+|=,故选B.点评:本题考查向量的基本运算,模的求法,考查计算力量.3.(5分)在△ABC中,设命题p :==,命题q:△ABC是等边三角形,那么命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:简易规律.分析:依据正弦定理,利用充分条件和必要条件的定义进行推断即可得到结论.解答:解:由正弦定理可知,若===t,则,即a=tc,b=ta,c=bt,即abc=t3abc,即t=1,则a=b=c,即△ABC是等边三角形,若△ABC是等边三角形,则A=B=C=,则===1成立,即命题p是命题q的充要条件,故选:C点评:本题主要考查充分条件和必要条件的推断,利用正弦定理是解决本题的关键.4.(5分)设,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.b>a>c D.b>c>a考点:对数值大小的比较;不等式比较大小.分析:依据指数函数和对数函数的单调性推断出abc的范围即可得到答案.解答:解:∵a=20.1>20=10=ln1<b=ln<lne=1c=<log31=0∴a>b>c故选A.点评:本题主要考查指数函数和对数函数的单调性,即当底数大于1时单调递增,当底数大于0小于1时单调递减.5.(5分)已知函数f(x)=ax﹣x3在区间[1,+∞)上单调递减,则a的最大值是()A.0B.1C.2D.3考点:利用导数争辩函数的单调性.专题:计算题.分析:依据f(x)在区间[1,+∞)上单调递减,可得f'(x)≥0在区间[1,+∞)上恒成立,建立等量关系,求出参数a最大值即可.解答:解:∵f(x)=ax﹣x3∴f′(x)=a﹣3x2∵函数f(x)=ax﹣x3在区间[1,+∞)上单调递减,∴f′(x)=a﹣3x2≤0在区间[1,+∞)上恒成立,∴a≤3x2在区间[1,+∞)上恒成立,∴a≤3.故选D.点评:本小题主要考查运用导数争辩函数的单调性及恒成立等基础学问,考查综合分析和解决问题的力量.6.(5分)已知f(x)是定义在R上的奇函数,且x≥0时f(x)的图象如图所示,则f(﹣2)=()A.﹣3 B.﹣2 C.﹣1 D.2考点:函数奇偶性的性质.专题:函数的性质及应用.分析:依据函数奇偶性的性质结合函数图象即可得到结论.解答:解:∵函数f(x)是定义在R上的奇函数,∴f(﹣2)=﹣f(2)=﹣2,故选:B点评:本题主要考查函数值的计算,依据函数的奇偶性以及函数图象进行转化时解决本题的关键.7.(5分)函数y=sin(x ﹣)的一条对称轴可以是直线()A.x =B.x =πC.x=﹣πD.x=考点:正弦函数的对称性.专题:三角函数的图像与性质.分析:利用正弦函数的对称性可求得其对称轴方程为:x=kπ+(k∈Z),从而可得答案.解答:解:由x ﹣=kπ+(k∈Z)得:x=kπ+(k∈Z),∴函数y=sin(x ﹣)的对称轴方程为:x=kπ+(k∈Z),当k=1时,x=π,∴方程为x=π的直线是函数y=sin(x ﹣)的一条对称轴,故选:B.点评:本题考查正弦函数的对称性,求得其对称轴方程为:x=kπ+(k∈Z)是关键,属于中档题.8.(5分)在△ABC中,角A、B、C所对应的边分别为a、b、c,已知bcosC+ccosB=2b ,则=()A.2B.C.D.1考点:正弦定理.专题:解三角形.分析:利用正弦定理把已知等式中的边转化成角的正弦,进而利用两角和公式对等号左边进行化简求得sinA和sinB的关系,进而利用正弦定理求得a和b的关系.解答:解:∵bcosC+ccosB=2b,∴sinBcosC+cosBsinC=sin(B+C)=sinA=2sinB,∴=2,由正弦定理知=,∴==2,故选:A.点评:本题主要考查了正弦定理的应用,三角函数恒等变换的应用.考查了同学分析和运算力量.9.(5分)函数y=2x﹣x2的图象大致是()A.B.C.D .考点:函数的图象.专题:函数的性质及应用.分析:分别画出y=2x,y=x2的图象,由图象可以函数与x轴有三个交点,且当x<﹣1时,y<0,故排解BCD,问题得以解决.解答:解:y=2x﹣x2,令y=0,则2x﹣x2=0,分别画出y=2x,y=x2的图象,如图所示,由图象可知,有3个交点,∴函数y=2x﹣x2的图象与x轴有3个交点,故排解BC,当x<﹣1时,y<0,故排解D故选:A.点评:本题主要考查了图象的识别和画法,关键是把握指数函数和幂函数的图象,属于基础题.10.(5分)若函数y=f(x)(x∈R)满足f(x﹣2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣x2,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为()A.13 B.8C.9D.10考点:函数的零点;函数的周期性.专题:函数的性质及应用.分析:由f(x+2)=f(x),知函数y=f(x)(x∈R)是周期为2的函数,进而依据f(x)=1﹣x2与函数g(x)=的图象得到交点为9个.解答:解:由于f(x﹣2)=f(x),所以函数y=f(x)(x∈R)是周期为2函数.由于x∈[﹣1,1]时,f(x)=1﹣x2,所以作出它的图象,利用函数y=f(x)(x∈R)是周期为2函数,可作出y=f(x)在区间[﹣5,6]上的图象,如图所示:故函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为9,故选C.点评:本题的考点是函数零点与方程根的关系,主要考查函数零点的定义,关键是正确作出函数图象,留意把握周期函数的一些常见结论:若f(x+a)=f(x),则周期为a;若f(x+a)=﹣f(x),则周期为2a;若f(x+a)=,则周期为2a,属于基础题.二、填空题(本大题共5小题,每小题5分,共25分).11.(5分)在数列{a n}中,a1=15,3a n+1=3a n﹣2(n∈N+),则该数列中相邻两项的乘积是负数的为a23•a24.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:把等式3a n+1=3a n﹣2变形后得到a n+1﹣a n等于常数,即此数列为首项为15,公差为﹣的等差数列,写出等差数列的通项公式,令通项公式小于0列出关于n的不等式,求出不等式的解集中的最小正整数解,即可得到从这项开头,数列的各项为负,这些之前各项为正,得到该数列中相邻的两项乘积是负数的项.解答:解:由3a n+1=3a n﹣2,得到公差d=a n+1﹣a n=﹣,又a1=15,则数列{a n}是以15为首项,﹣为公差的等差数列,所以a n=15﹣(n﹣1)=﹣n+,令a n=﹣n+<0,解得n >,即数列{a n}从24项开头变为负数,所以该数列中相邻的两项乘积是负数的项是a23a24.故答案为:a23•a24点评:此题考查同学机敏运用等差数列的通项公式化简求值,把握确定一个数列为等差数列的方法,是一道综合题.12.(5分)向量=(1,sinθ),=(1,cosθ),若•=,则sin2θ=.考点:平面对量的综合题.专题:计算题.分析:由==可求解答:解:∵==∴sin2θ=故答案为:点评:本题主要考查了向量的数量积的坐标表示,三角函数的二倍角公式的应用,属于基础试题13.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).考点:二次函数的性质.专题:函数的性质及应用.分析:由条件利用二次函数的性质可得,由此求得m的范围.解答:解:∵二次函数f (x)=x2+mx ﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.14.(5分)设f1(x)=cosx,定义f n+1(x)为f n(x)的导数,即f n+1(x)=f′n(x)n∈N*,若△ABC的内角A满足f1(A)+f2(A)+…+f2021(A)=,则sin2A的值是.考点:导数的运算.专题:导数的综合应用.分析:由已知分别求出f2(x),f3(x),f4(x),f5(x),可得从第五项开头,f n(x)的解析式重复消灭,每4次一循环,结合f1(A)+f2(A)+…+f2021(A)=求出cosA,进一步得到sinA,则答案可求.解答:解:∵f1(x)=cosx,∴f2(x)=f1′(x)=﹣sinx,f3(x)=f2′(x)=﹣cosx,f4(x)=f3′(x)=sinx,f5(x)=f4′(x)=cosx,…从第五项开头,f n(x)的解析式重复消灭,每4次一循环.∴f1(x)+f2(x)+f3(x)+f4(x)=0.∴f2021(x)=f4×503+1(x)=f1(x)=cosx.∵f1(A)+f2(A)+…+f2021(A)=.∴cosA=.∵A为三角形的内角,∴sinA=.∴sin2A=2sinAcosA=.故答案为:.点评:本题考查了导数及其运算,关键是找到函数解析式规律性,是中档题.15.(5分)给出下列命题:①函数y=cos (2x﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为①②(写出全部正确命题的序号).考点:命题的真假推断与应用.专题:计算题;简易规律.分析:①由x=时,y=﹣1,可得结论;②利用函数图象,求解;③依据图象的平移规律可得结论;④依据sinx+cosx=sin(x+)≤<,可以推断.解答:解:①函数y=cos(2x ﹣),x=时,y=﹣1,所以函数y=cos(2x ﹣)图象的一条对称轴是x=,正确;②在同一坐标系中,画出函数y=sinx和y=lgx的图象,所以结合图象易知这两个函数的图象有3交点,正确;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin[2(x ﹣)+],即y=sin(2x ﹣)的图象,故不正确;④sinx+cosx=sin(x+)≤<,故不存在实数x,使得等式sinx+cosx=成立;故答案为:①②.点评:本题利用三角函数图象与性质,考查命题的真假推断与应用,考查同学分析解决问题的力量,属于中档题.三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤).16.(12分)已知集合A={x|2x<8},B={x|x2﹣2x﹣8<0},C={x|a<x<a+1}.(Ⅰ)求集合A∩B;(Ⅱ)若C⊆B,求实数a的取值范围.考点:集合的包含关系推断及应用.专题:集合.分析:(I)解指数不等式求出A,解二次不等式求出B,进而可得集合A∩B;(Ⅱ)若C⊆B ,则,解不等式组可得实数a的取值范围.解答:解:(Ⅰ)由2x<8,得2x<23,x<3.(3分)解不等式x2﹣2x﹣8<0,得(x﹣4)(x+2)<0,所以﹣2<x<4.(6分)所以A={x|x<3},B={x|﹣2<x<4},所以A∩B={x|﹣2<x<3}.(9分)(Ⅱ)由于C⊆B,所以(11分)解得﹣2≤a≤3.所以,实数a的取值范围是[﹣2,3].(13分)点评:本题考查的学问点是集合的包含关系推断及应用,集合的交集运算,解不等式,难度不大,属于基础题.17.(12分)设命题p:函数y=kx+1在R上是增函数,命题q:曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,假如p∧q是假命题,p∨q是真命题,求k的取值范围.考点:复合命题的真假.专题:简易规律.分析:易得p:k>0,q :或,由p∧q是假命题,p∨q是真命题,可得p,q一真一假,分别可得k的不等式组,解之可得.解答:解:∵函数y=kx+1在R上是增函数,∴k>0,又∵曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,∴△=(2k﹣3)2﹣4>0,解得或,∵p∧q是假命题,p∨q是真命题,∴命题p,q一真一假,①若p真q 假,则,∴;②若p假q 真,则,解得k≤0,综上可得k的取值范围为:(﹣∞,0]∪[,]点评:本题考查复合命题的真假,涉及不等式组的解法和分类争辩的思想,属基础题.18.(12分)在平面直角坐标系中,角α,β的始边为x轴的非负半轴,点P(1,2cos2θ)在角α的终边上,点Q(sin2θ,﹣1)在角β的终边上,且.(1)求cos2θ;(2)求P,Q的坐标并求sin(α+β)的值.考点:两角和与差的正弦函数;平面对量数量积的运算;同角三角函数间的基本关系;二倍角的余弦.专题:计算题.分析:(1)利用向量数量积运算得出sin2θ﹣2cos2θ=﹣1,再利用二倍角余弦公式求出cos2θ.(2)由(1)可以求出P,Q的坐标,再利用任意角三角函数的定义求出α,β的正、余弦值.代入两角和的正弦公式计算.解答:解(1)=(1,2cos2θ),=(sin2θ,﹣1),∵,∴sin2θ﹣2cos2θ=﹣1,∴,∴.(2)由(1)得:,∴,∴∴,,由任意角三角函数的定义,,同样地求出,,∴点评:本题考查向量的数量积运算、任意角三角函数的定义、利用三角函数公式进行恒等变形以及求解运算力量.19.(12分)在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.(Ⅰ)若,求tanC的大小;(Ⅱ)若a=2,△ABC 的面积,且b>c,求b,c.考点:余弦定理的应用.专题:综合题;解三角形.分析:(Ⅰ)由3(b2+c2)=3a2+2bc,利用余弦定理,可得cosA ,依据,即可求tanC的大小;(Ⅱ)利用面积及余弦定理,可得b、c的两个方程,即可求得结论.解答:解:(Ⅰ)∵3(b2+c2)=3a2+2bc,∴=∴cosA=,∴sinA=∵,∴∴∴∴tanC=;(Ⅱ)∵ABC 的面积,∴,∴bc=①∵a=2,∴由余弦定理可得4=b2+c2﹣2bc ×∴b2+c2=5②∵b>c,∴联立①②可得b=,c=.点评:本题考查余弦定理,考查三角形面积的计算,考查同学的计算力量,属于中档题.20.(13分)定义在实数集上的函数f(x)=x2+x,g(x)=x3﹣2x+m.(1)求函数f(x)的图象在x=1处的切线方程;(2)若f(x)≥g(x)对任意的x∈[﹣4,4]恒成立,求实数m的取值范围.考点:利用导数求闭区间上函数的最值;利用导数争辩函数的单调性;利用导数争辩曲线上某点切线方程.专题:导数的综合应用.分析:(1)求切线方程,就是求k=f′(1),f(1),然后利用点斜式求直线方程,问题得以解决;(2)令h(x)=g(x)﹣f(x),要使f(x)≥g(x)恒成立,即h(x)max≤0,转化为求最值问题.解答:解:(1)∵f(x)=x2+x∴f′(x)=2x+1,f(1)=2,∴f′(1)=3,∴所求切线方程为y﹣2=3(x﹣1),即3x﹣y﹣1=0;(2)令h(x)=g(x)﹣f(x)=x3﹣2x+m﹣x2﹣x=x3﹣3x+m﹣x2∴h′(x)=x2﹣2x﹣3,当﹣4<x<﹣1时,h′(x)>0,当﹣1<x<3时,h′(x)<0,当3<x<4时,h′(x)>0,要使f(x)≥g(x)恒成立,即h(x)max≤0,由上知h(x)的最大值在x=﹣1或x=4取得,而h(﹣1)=,h(4)=m ﹣,∵m+,∴,即m.点评:导数再函数应用中,求切线方程就是求某点处的导数,再求参数的取值范围中,转化为求函数的最大值或最小值问题.21.(14分)已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)图象上的任意两点,且角φ的终边经过点,若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.考点:三角函数的最值.专题:三角函数的图像与性质.分析:(1)利用三角函数的定义求出φ的值,由|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为,可得函数的周期,从而可求ω,进而可求函数f(x)的解析式;(2)利用正弦函数的单调增区间,可求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x )恒成立,等价于,由此可求实数m的取值范围.解答:解:(1)角φ的终边经过点,∴,…(2分)∵,∴.…(3分)由|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为,得,即,∴ω=3…..(5分)∴…(6分)(2)由,可得,…(8分)∴函数f(x )的单调递增区间为k∈z…(9分)(3 )当时,,…(11分)于是,2+f(x)>0,∴mf(x)+2m≥f(x )等价于…(12分)由,得的最大值为…(13分)∴实数m 的取值范围是.…(14分)点评:本题考查函数解析式的确定,考查三角函数的性质,考查分别参数法的运用,考查同学分析解决问题的力量,属于中档题.。
数 学(理科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x 2-2x -3<0},集合B ={x |2x +1>1},则∁B A =(A)A .[3,+∞)B .(3,+∞)C .(-∞,-1]∪[3,+∞)D .(-∞,-1)∪(3,+∞)【解析】A ={x |x 2-2x -3<0}={x |-1<x <3},B ={x |2x +1>1}={x |x >-1},∁B A =[3,+∞),故选A.2.已知函数f (x )=x 2+bx +c ,则“c <0”是“∃x 0∈R ,使f (x 0)<0”的(A) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【解析】已知函数f (x )=x 2+bx +c ,则“c <0”时,函数与x 轴有两个交点,所以“∃x 0∈R ,使f (x 0)<0”成立.而“∃x 0∈R ,使f (x 0)<0”,即x 2+bx +c <0,Δ=b 2-4c >0,即b 2>4c ,c 不一定有c <0.综上,函数f (x )=x 2+bx +c ,则“c <0”是“∃x 0∈R ,使f (x 0)<0”的充分不必要条件;故选A.3.设a =log 48,b =log 0.48,c =20.4,则(A) A .b <c <a B .c <b <a C .c <a <b D .b <a <c【解析】∵b 的底数大于0小于1而真数大于1,∴b <0,∵a =log 48=32,c =20.4<20.5=2<32,∴a >c >b .故选A.4.若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值为(B)A.355B. 2C.352 D. 5【解析】作出平面区域如图所示.∴当直线y =x +b 分别经过A ,B 时,平行线间的距离最小,联立方程组⎩⎪⎨⎪⎧x +y -3=0,2x -y -3=0,解得A (2,1),联立方程组⎩⎪⎨⎪⎧x +y -3=0,x -2y +3=0,解得B (1,2), 两条平行线分别为y =x -1,y =x +1,即x -y -1=0,x -y +1=0. ∴平行线间的距离为d =|-1-1|2=2,故选B.5.函数y =e |x |4x 的图象可能是(C)【解析】令y =f (x )=e |x |4x ,则f (-x )=e |-x |4(-x )=-e |x |4x =-f (x ),则函数y =f (x )=e |x |4x 为奇函数,故函数图象关于原点对称,排除B ;当x =1时,y =e 4,排除A ;当x →+∞时,e |x |4x →+∞,排除D.故选C.6.如果执行如图所示的程序框图,则输出的数S 不可能是(A)A .0.7B .0.75C .0.8D .0.9【解析】此程序框图执行的是输入一个正整数n ,求11×2+12×3+…+1n ×(n +1)的值S ,并输出S .S =11×2+12×3+…+1n ×(n +1)=1-12+12-13+…+1n -1n +1=nn +1.令S 等于0.7,解得n =73不是正整数,而n 分别输入3,4,9时,可分别输出0.75,0.8,0.9.故选A.7.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…这样的数成为正方形数.下列数中既是三角形数又是正方形数的是(C)A .289B .1024C .1225D .1378【解析】由图形可得三角形数构成的数列通项a n =n2(n +1),同理可得正方形数构成的数列通项b n =n2,则由b n =n 2(n ∈N +)可排除D ,将A 、B 、C 选项代入a n =n2(n +1)验证知只有1225符合,故选C.8.已知A 、B 是圆O :x 2+y 2=16上的两个动点,|AB →|=4,OC →=53OA →-23OB →.若M 是线段AB 的中点,则OC →·OM →的值为(C)A .8+4 3B .8-4 3C .12D .4【解析】因为M 是线段AB 的中点,所以OM →=12OA →+12OB →,从而OC →·OM →=⎝⎛⎭⎫53OA→-23OB →·(12OA →+12OB →)=56OA →2-13OB →2+12OA →·OB →,由圆的方程可知圆O 的半径为4,即|OA →|=|OB →|=4,又因为|AB →|=4,所以〈OA →,OB →〉=60°,故OA →·OB →=8,所以OC →·OM →=12. 9.点A 、B 为椭圆E :x 2a 2+y 2b 2=1(a >b >0)长轴的端点,C 、D 为椭圆E 短轴的端点,动点M 满足|MA ||MB |=2,若△MAB 面积的最大值为8,△MCD 面积的最小值为1,则椭圆的离心率为(D)A.23B.33C.22D.32【解析】设A (-a ,0),B (a ,0),M (x ,y ).∵动点M 满足|MA ||MB |=2,则(x +a )2+y 2=2(x -a )2+y 2,化简得⎝⎛⎭⎫x -5a 32+y 2=16a 29. ∵△MAB 面积的最大值为8,△MCD 面积的最小值为1, ∴12×2a ×43a =8,12×2b ×13a =1,解得a =6,b =62, ∴椭圆的离心率为1-b 2a 2=32.故选D.10.如图所示,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 是A 1B 上一动点,则AP +D 1P 的最小值为(D)A .2B.6+22 C .2+ 2 D.2+ 2【解析】把对角面A 1C 绕A 1B 旋转,使其与△AA 1B 在同一平面上,连接AD 1,则在△AA 1D 中,AD 1=1+1-2×1×1×cos 135°=2+2为所求的最小值.故选D.11.已知函数f (x )=x 2-2ln |x |与g (x )=sin(ωx +φ)(ω>0)有两个公共点,则在下列函数中满足条件的周期最大的g (x )=(C)A .sin ⎝⎛⎭⎫2πx -π2B .sin ⎝⎛⎭⎫π2x -π2C .sin ⎝⎛⎭⎫πx -π2D .sin ⎝⎛⎭⎫πx +π2【解析】因为f (x )=x 2-2ln |x |为偶函数,所以当x >0时,f (x )=x 2-2ln x ,则f ′(x )=2x -2x =2(x +1)(x -1)x ,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以当x =1时,f (x )min =f (1)=1,所以当x <0时,f (x )min =f (-1)=1,所以g (x )的最大周期是2.所以T =2πω=2,ω=π,又g (x )恰好在x =1和x =-1处取得最大值1,故φ=-π2,故选C.12.设D 是含数1的有限实数集,f (x )是定义在D 上的函数.若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是(B)A. 3B.32C.33 D .0【解析】记点(1,f (1))为点A 1,若f (x )逆时针旋转π6后与原图象重合,则A 1绕原点逆时针旋转π6后的对应点A 2在f (x )图象上,同时有A 2绕原点逆时针旋转π6后的对应点A 3也在f (x )图象上,以此类推,则f (x )的图象上至少有以原点为圆心的一个圆周上的12等分的12个点.当f (x )取值为3时,因为OA 1与x 轴正半轴夹角为π3,其逆时针旋转π6时形成的12个散点中,由圆的对称性知,点A 1和A 9的横坐标相同,即在同一个x 处同时存在2个f (x )值,不符合函数定义,故A 项错误.同理,当f (x )=33和0时亦不符合函数定义,故C ,D 项错误. 故f (x )的可能取值只能是32.故正确答案为B.二、填空题,本大题共4小题,每小题5分,共20分. 13.定积分⎠⎛011-(x -1)2d x =__π4__.【解析】⎠⎛011-(x -1)2d x 表示半径为1的四分之一圆的面积.14.在公差大于0的等差数列{a n }中,2a 7-a 13=1,且a 1,a 3-1,a 6+5成等比数列,则数列{(-1)n -1a n }的前21项和为__21__.【解析】公差d 大于0的等差数列{a n }中,2a 7-a 13=1,可得2a 1+12d -(a 1+12d)=1,即a 1=1,由a 1,a 3-1,a 6+5成等比数列,可得(a 3-1)2=a 1(a 6+5),即为(1+2d -1)2=1+5d +5,解得d =2(负值舍去),则a n =1+2(n -1)=2n -1,n ∈N *,所以数列{(-1)n -1a n }的前21项和为a 1-a 2+a 3-a 4+…+a 19-a 20+a 21=1-3+5-7+…+37-39+41=-2×10+41=21.15.若函数y =f (x )的图象上存在两个点A ,B 关于原点对称,则称点对[A ,B ]为y =f (x )的“友情点对”,点对[A ,B ]与[B ,A ]可看作同一个“友情点对”,若函数f (x )=⎩⎪⎨⎪⎧2,x <0,-x 3+6x 2-9x +a ,x ≥0恰好有两个“友情点对”,则实数a 的值为__2__. 【解析】由题意可知-x 3+6x 2-9x +a =-2在(0,+∞)上有两解,即a =x 3-6x 2+9x -2在(0,+∞)上有两解,设g (x )=x 3-6x 2+9x -2,则g ′(x )=3x 2-12x +9,令g ′(x )=0得x =1或x =3.∴当0<x <1时,g ′(x )>0,当1<x <3时,g ′(x )<0,当x >3时,g ′(x )>0, ∴g (x )在(0,1)上单调递增,在[1,3)上单调递减,在[3,+∞)上单调递增, ∴当x =1时,g (x )取得极大值g (1)=2,当x =3时,g (x )取得极小值g (3)=-2. 作出g (x )的函数图象如图所示:∵a =x 3-6x 2+9x -2在(0,+∞)上有两解,∴a =2.16.点M 为棱长是22的正方体ABCD -A 1B 1C 1D 1的内切球O 球面上的动点,点N 为B 1C 1的中点,若满足DM ⊥BN ,则动点M 的轨迹的长度为__410π5__.【解析】如图,正方体ABCD -A 1B 1C 1D 1的内切球O 的半径R =2, 由题意,取BB 1的中点H ,连接CH , 则CH ⊥NB ,DC ⊥NB ,∴NB ⊥平面DCH , ∴动点M 的轨迹就是平面DCH 与内切球O 的交线, ∵正方体ABCD -A 1B 1C 1D 1的棱长是22,∴O 到平面DCH 的距离为d =25,截面圆的半径r =R 2-d 2=225, 所以动点M 的轨迹的长度为截面圆的周长2πr =410π5.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(本小题满分12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab . (1)求sin Csin A 的值;(2)若cos B =14,b =2,求△ABC 的面积S .【解析】(1)由正弦定理,得2c -a b =2sin C -sin Asin B,2分 所以cos A -2cos C cos B =2sin C -sin Asin B .即(cos A -2cos C )sin B =(2sin C -sin A )cos B , 化简可得sin(A +B )=2sin(B +C ).4分 又A +B +C =π,所以sin C =2sin A , 因此sin Csin A =2.6分(2)由sin C sin A =2得c =2a .由余弦定理b 2=a 2+c 2-2ac cos B 及cos B =14, b =2, 得4=a 2+4a 2-4a 2×14,解得a =1,从而c =2.9分又因为cos B =14,且0<B <π,所以sin B =154.10分 因此S =12ac sin B =12×1×2×154=154.12分 18.(本小题满分12分)某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:质量指标值mm < 185 185≤m < 205 m ≥205 等级三等品二等品一等品(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品92%”的规定?(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X 近似满足X ~N (218,140),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?【解析】(1)根据抽样调查数据,一、二等品所占比例的估计值为0.200+0.300+0.260+0.090+0.025=0.875,由于该估计值小于0.92,故不能认为该企业生产的这种产品符合“一、二等品至少要占全部产品92%”的规定.3分(2)由频率分布直方图知,一、二、三等品的频率分别为0.375、0.5、0.125,故在样本中用分层抽样方法抽取的8件产品中,一等品3件,二等品4件,三等品1件.再从这8件产品中随机抽取4件,一、二、三等品都有的情形有2种:①一等品2件,二等品1件,三等品1件;②一等品1件,二等品2件,三等品1件.故所求的概率P =C 32C 41C 11+C 31C 42C 11C 84=37.9分 (3)“质量提升月”活动前,该企业这种产品的质量指标值的均值约为170×0.025+180×0.1+190×0.2+200×0.3+210×0.26+220×0.09+230×0.025=200.4,“质量提升月”活动后,产品质量指标值X 近似满足X ~N (218,140),则E (X )=218. 所以,“质量提升月”活动后的质量指标值的均值比活动前大约提升了17.6.12分19.(本小题满分12分)如图,ABCD 是边长为2的正方形,平面EAD ⊥平面ABCD ,且EA =ED ,O 是线段AD 的中点,过E 作直线l ∥AB, F 是直线l 上一动点.(1)求证:OF ⊥BC ;(2)若直线l 上存在唯一一点F 使得直线OF 与平面BCF 垂直,求此时二面角B —OF —C 的余弦值.【解析】(1) 因为EA =ED ,O 是AD 中点,故EO ⊥DA ,1分 又因为平面EAD ⊥平面ABCD ,平面EAD ∩平面ABCD =AD ,故EO ⊥平面ABCD ,所以EO ⊥BC ;2分 因为EF ∥AB ,BC ⊥AB ,所以EF ⊥BC , 故BC ⊥平面EOF ,3分 所以BC ⊥OF .4分(2) 设BC 的中点为M ,则有OM ⊥DA ,由(1),EO ⊥平面ABCD , 所以OE 、OA 、OM 两两垂直.可如图建立空间直角坐标系O -xyz .依题意设点E 的坐标为(0,0,s ),点F 的坐标为(0,t ,s )(s >0,t ∈R ),又B (1,2,0),C (-1,2,0),所以OF →=(0,t ,s ),BF →=(-1,t -2,s ),6分由(1)知OF ⊥BC ,故OF 与平面BCF 垂直,等价于OF ⊥BF , 故OF →·BF →=0,从而t (t -2)+s 2=0,即t 2-2t +s 2=0, 直线l 上存在唯一一点F 使得直线OF 与平面BCF 垂直,即关于t 的方程有唯一实数解, 所以Δ=4-4s 2=0,解得s =1,此时t =1.8分 故点E 的坐标为(0,0,1),点F 的坐标为(0,1,1).因为OF ⊥平面FBC ,所以OF ⊥BF 且OF ⊥CF ,所以∠BFC 即二面角B —OF —C 的平面角.10分因为FB →=(1,1,-1),FC →=(-1,1,-1), 所以cos ∠BFC =FB →·FC →||FB →·||FC→=13,即若直线l 上存在唯一一点F 使得直线OF 与平面BCF 垂直时, 二面角B —OF —C 的余弦值为13.12分20.(本小题满分12分)已知抛物线C 的顶点为O (0,0),焦点F 为(0,1). (1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A ,B 两点,若直线AO 、BO 分别交直线l :y =x -2于M ,N 两点,求|MN |的最小值.【解析】(1)由已知可设抛物线的方程为:x 2=2py (p >0),则p2=1⇒p =2,所以抛物线C 的方程是x 2=4y .2分(2)设A ⎝⎛⎭⎫x 1,x 124,B ⎝⎛⎭⎫x 2,x 224,所以k AO =x 14,k BO =x 24,所以直线AO 的方程是:y =x 14x , 由⎩⎪⎨⎪⎧y =x 14x ,y =x -2,∴x M =84-x 1,同理由⎩⎪⎨⎪⎧y =x 24x ,y =x -2,∴x N =84-x 2. 所以|MN |=1+12|x M -x N |=2⎪⎪⎪⎪84-x 1-84-x 2=82⎪⎪⎪⎪⎪⎪x 1-x 216-4(x 1+x 2)+x 1x 2,①5分设AB :y =kx +1,由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,∴x 2-4kx -4=0,∴⎩⎪⎨⎪⎧x 1+x 2=4k ,x 1x 2=-4, 且|x 1-x 2|=(x 1+x 2)2-4x 1x 2=4k 2+1,代入①得到: |MN |=82·⎪⎪⎪⎪⎪⎪4k 2+116-16k -4=82·k 2+1|4k -3|,7分 设4k -3=t ,t ≠0,则k =3+t4, ①当t >0时,|MN |=8225+t 2+6t4t =221+25t 2+6t >22;9分②当t <0时,|MN |=8225+t 2+6t 4t=221+25t 2+6t =22⎝⎛⎭⎫5t +352+1625≥22×45=825,当t =-253时,|MN |取得最小值825,此时,k =-43;11分综上所述:|MN |的最小值是825.12分 21.(本小题满分12分) 已知函数f (x )=x 2ln x . (1)求函数f (x )的单调区间;(2)证明: 对任意的t >0, 存在唯一的s, 使t =f (s ).(3)设(2)中所确定的s 关于t 的函数为s =g (t ), 证明: 当t >e 2时,有25<ln g (t )ln t <12.【解析】(1)函数f (x )的定义域为(0,+∞).f ′(x )=2x ln x +x =x (2ln x +1),令f ′(x )=0,得x =1e . 当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝⎛⎭⎫0,1e 1e ⎝⎛⎭⎫1e ,+∞f ′(x ) - 0 +f (x )极小值所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1e ,单调递增区间是⎝⎛⎭⎫1e ,+∞.2分 (2)证明:当0<x ≤1时,f (x )≤0,设t >0,令h (x )=f (x )-t ,x ∈[1,+∞),由(1)知,h (x )在区间(1,+∞)内单调递增,h (1)=-t <0,h (e t )=e 2t ln e t -t =t (e 2t -1)>0.故存在唯一的s ∈(1,+∞),使得t =f (s )成立.6分 (3)证明:因为s =g (t ),由(2)知,t =f (s ),且s >1,从而ln g (t )ln t =ln s ln f (s )=ln s ln (s 2ln s )=ln s 2ln s +ln ln s =u2u +ln u ,其中u =ln s .7分 要使25<ln g (t )ln t <12成立,只需0<ln u <u2,当t >e 2时,若s =g (t )≤e ,则由f (s )的单调性,有t =f (s )≤f (e)=e 2,矛盾. 所以s >e ,即u >1,从而ln u >0成立.9分另一方面,令F (u )=ln u -u 2,u >1.F ′(u )=1u -12,令F ′(u )=0,得u =2. 当1<u <2时,F ′(u )>0;当u >2时,F ′(u )<0. 故对u >1,F (u )≤F (2)<0,因此ln u <u2成立.11分 综上,当t >e 2时,有25<ln g (t )ln t <12.12分(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =sin α(α为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρsin ⎝⎛⎭⎫θ-π4= 2.(1)求C 的普通方程和l 的倾斜角;(2)设点P (0,2),l 和C 交于A ,B 两点,求|P A |+|PB |.【解析】由⎩⎪⎨⎪⎧x =3cos α,y =sin α消去参数α,得x 29+y 2=1, 即C 的普通方程为x 29+y 2=1.2分由ρsin ⎝⎛⎭⎫θ-π4=2,得ρsin θ-ρcos θ=2, ①将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入①得y =x +2.4分 所以直线l 的斜率角为π4.5分(2)由(1)知,点P (0,2)在直线l 上,可设直线l 的参数方程为⎩⎨⎧x =t cos π4,y =2+t sin π4(t 为参数),即⎩⎨⎧x =22t ,y =2+22t(t 为参数), 代入x 29+y 2=1并化简得5t 2+182+27=0,7分Δ=(182)2-4×5×27=108>08分设A ,B 两点对应的参数分别为t 1,t 2.则t 1+t 2=-1825<0,t 1t 2=275>0,所以t 1<0,t 2<0. 所以|P A |+|PB |=|t 1|+|t 2|=1825.10分23.(本小题满分10分)选修4—5:不等式选讲 已知函数f (x )=|x -1|+|x -3|. (1)解不等式f (x )≤x +1;(2)设函数f(x)的最小值为c,实数a,b满足a>0,b>0,a+b=c,求证:a2a+1+b2b+1≥1.【解析】(1)f(x)≤x+1,即|x-1|+|x-3|≤x+1.①当x<1时,不等式可化为4-2x≤x+1,解得x≥1,又∵x<1,∴x∈∅;②当1≤x≤3时,不等式可化为2≤x+1,解得x≥1,又∵1≤x≤3,∴1≤x≤3.③当x>3时,不等式可化为2x-4≤x+1,解得x≤5,又∵x>3,∴3<x≤5.3分综上所得,1≤x≤3,或3<x≤5,即1≤x≤5,∴原不等式的解集为[1,5].5分(2)证明:由绝对值不等式性质得,|x-1|+|x-3|≥|(1-x)+(x-3)|=2,7分∴c=2,即a+b=2.令a+1=m,b+1=n,则m>1,n>1,a=m-1,b=n-1,m+n=4,a2a+1+b2b+1=(m-1)2m+(n-1)2n=m+n+1m+1n-4=4mn≥4⎝⎛⎭⎫m+n22=1,原不等式得证.10分。
浙江省2021届理科数学复习试题选编32:抛物线〔学生版〕一、选择题1 .〔浙江省永康市2021年高考适应性考试数学理试题 〕抛物线1C :y x 22=的焦点为F ,以F 为圆心的圆2C 交1C 于,A B ,交1C 的准线于,C D ,假设四边形ABCD 是矩形,那么圆2C 的方程为 〔 〕 A .221()32x y +-= B . 221()42x y +-= C .22(1)12x y +-=D .22(1)16x y +-=2 .〔浙江省五校联盟2021届高三下学期第一次联考数学〔理〕试题〕P 为抛物线x y 42=上一个动点,Q 为圆1)4(22=-+y x 上一个动点,那么点P 到点Q 的距离与点P 到y 轴距离之和最小值是 〔 〕 A .171+ B .172- C .25+ D .171-3 .〔浙江省宁波市金兰合作组织2021届高三上学期期中联考数学〔理〕试题〕过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,假设3AF =,那么AOB ∆的面积为〔 〕A .22B .2C .322D .224 .〔浙江省诸暨中学2021届高三上学期期中考试数学〔理〕试题〕抛物线24y x =的焦点为F ,准线l 与x轴相交于点E ,过F 且倾斜角等于60°的直线与抛物线在x 轴上方的局部相交于点A ,AB l ⊥,垂足为B ,那么四边形ABEF 的面积等于 〔 〕 A .33B .43C .63D .835 .〔浙江省湖州市2021年高三第二次教学质量检测数学(理)试题(word 版) 〕直线3440x y -+=与抛物线24x y =和圆()2211x y +-=从左到右的交点依次为A B C D ,,,,那么ABCD的值为 〔 〕A .16 B .116C .4D .14 6 .〔浙江省杭州四中2021届高三第九次教学质检数学〔理〕试题〕抛物线y 2=2px(p>0)的焦点F 恰好是双曲线12222=-b y a x 的右焦点,且两条曲线的交点的连线过F,那么该双曲线的离心率为〔 〕A .2B .2C .12+ D .12-7 .〔浙江省温州市2021届高三第二次模拟考试数学〔理〕试题〕抛物线y 2=2px(p>0)的准线交x 轴了点C,焦点为F. 〔 〕 A .B是抛物线的两点.己知〔 〕 A .B,C三点共线,且|AF|,|BF|成等差数列,直线AB的斜率为k,那么有 〔 〕A .412=k B .432=k C .212=k D .232=k 非选择题局部(共100分)8 .〔浙江省温州八校2021届高三9月期初联考数学〔理〕试题〕设动圆M 与y 轴相切且与圆C :0222=-+x y x 相外切, 那么动圆圆心M 的轨迹方程为〔 〕 A .24y x = B .24y x =-C .24y x =或0(0)y x =<D .24y x=或0y =9 .〔浙江省温岭中学2021届高三冲刺模拟考试数学〔理〕试题〕如图,点P 是双曲线C :)0,0(12222>>=-b a b y a x 左支上一点,F 1,F 2是双曲线的左、右两个焦点,且PF 1⊥PF 2,PF 2与两条渐近线相交于M ,N两点,点N 恰好平分线段PF 2,那么双曲线的离心率是 〔 〕A .5B .2C .3D .2二、填空题10.〔浙江省嘉兴市第一中学2021届高三一模数学〔理〕试题〕己知抛物线y 2=4x 的焦点为F,假设点A, B 是该抛物线上的点,2π=∠AFB ,线段AB 的中点M 在抛物线的准线上的射影为N,那么||||AB MN 的最大值为____. 11.〔浙江省温岭中学2021届高三高考提优冲刺考试〔三〕数学〔理〕试题 〕F 为抛物线)0(2>=a ay x 的焦点,O 为坐标原点.点M 为抛物线上的任一点,过点M 作抛物线的切线交x 轴于点N ,设21,k k 分别为直线MO 与直线NF 的斜率,那么=21k k ________.12.〔浙江省2021年高考模拟冲刺〔提优〕测试一数学〔理〕试题〕抛物线C :)0(22>=p px y 的焦点为F ,准线与x 轴交于M 点,过M 点斜率为k 的直线l 与抛物线C 交于A 、B 两点,假设||45||AF AM =,那么k 的值_______.13.〔浙江省一级重点中学〔六校〕2021届高三第一次联考数学〔理〕试题〕直线()y k x m =-与抛物线22(0)y px p =>交于B A ,两点,且OA OB ⊥,又OD AB ⊥于D , 假设动点D 的坐标满足方程2240x y x +-=,那么m =_______.14.〔浙江省宁波市2021届高三第二次模拟考试数学〔理〕试题〕曲线12221,22:4:l x y C x y C 直线和-=+=与C 1、C 2分别相切于A 、B,直线2l ,(不同于1l )与C 1、C 2分别相切于点C 、D,那么AB 与CD 交点的横坐标是__________.15.〔浙江省黄岩中学2021年高三5月适应性考试数学(理)试卷 〕抛物线)0(2:2>=p px y M焦点为F ,直线2pmy x +=与抛物线M 交于B A ,两点,与y 轴交于点C ,且||||BF BC =,O 为坐标原点,那么BOC ∆与AOC ∆面积的比值为________.16.〔浙江省温州市2021届高三第三次适应性测试数学(理)试题〔word 版〕 〕点),(a a A ,)1,1(++a a B ,动点P 到点)0,1(M 的距离比到2-=x 的距离小1的轨迹为曲线C ,且线段AB 与曲线C 有且仅有一个焦点,那么a 的取值范围是______.17.〔浙江省温州十校联合体2021届高三期中考试数学〔理〕试题〕在平面直角坐标系xOy 中,焦点为F 的抛物线y 2=2x 上的点P 到坐标原点O 的距离为15,那么线段PF 的长为_____.18.〔浙江省温岭中学2021届高三冲刺模拟考试数学〔理〕试题〕P 为抛物线C :x y 42=上一点,假设P 点到抛物线C 准线的距离与到顶点距离相等,那么P 点到x 轴的距离为_____________.19.〔2021年普通高等学校招生统一考试浙江数学〔理〕试题〔纯WORD 版〕〕设F 为抛物线x y C 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q 为线段AB 的中点,假设2||=FQ ,那么直线的斜率等于________.20.〔浙江省六校联盟2021届高三回头联考理科数学试题〕过抛物线24y x =的焦点作一条倾斜角为a,长度不超过8的弦,弦所在的直线与圆2234x y +=有公共点,那么a 的取值范围是_______________ 21.〔浙江省海宁市2021届高三2月期初测试数学〔理〕试题〕抛物线26y x =,准线l 与x 轴交于点M ,过M作直线交抛物线于,A B 两点(A 在,M B 之间),点A 到l 的距离为2,那么||||AB MA =____. 三、解答题22.〔浙江省杭州二中2021届高三6月适应性考试数学〔理〕试题〕抛物线2:4C y x =,直线:l y x b =-+与抛物线交于,A B 两点.(Ⅰ)假设以AB 为直径的圆与x 轴相切,求该圆的方程; (Ⅱ)假设直线l 与y 轴负半轴相交,求AOB ∆面积的最大值.23.〔浙江省嘉兴市2021届高三第二次模拟考试理科数学试卷〕如图,抛物线py x C 2:21=的焦点在抛物线121:22+=x y C 上,点P 是抛物线1C 上的动点. (Ⅰ)求抛物线1C 的方程及其准线方程;(Ⅱ)过点P 作抛物线2C 的两条切线,M 、N 分别为两个切点,设点P 到直线MN 的距离为d ,求d 的最小值.24.〔温州市2021年高三第一次适应性测试理科数学试题〕点11(,)A x y ,22(,)B x y 是抛物线24y x =上相异两点,且满足122x x +=.(Ⅰ)假设AB 的中垂线经过点(0,2)P ,求直线AB 的方程;(Ⅱ)假设AB 的中垂线交x 轴于点M ,求AMB ∆的面积的最大值及此时直线AB 的方程.25.〔浙江省宁波市2021届高三第一学期期末考试理科数学试卷〕如图,设点2213(,):(1)4P m n C x y ++=是圆上的动点,过点P 作抛物线22:(0)C x ty t =>的两条切线,切点分别是A 、B.圆C 1的圆心M 在抛物线C 2的准线上. (I)求t 的值;(Ⅱ)求PA PB ⋅的最小值,以及取得最小值时点P 的坐标.OxyPMN 1C 2C 〔第21题〕26.〔浙江省建人高复2021届高三第五次月考数学〔理〕试题〕抛物线22212:,: 1.4y C y x C x =+=椭圆 (1)设12,l l 是C 1的任意两条互相垂直的切线,并设12l l M =,证明:点M 的纵坐标为定值;(2)在C 1上是否存在点P ,使得C 1在点P 处切线与C 2相交于两点A 、B ,且AB 的中垂线恰为C 1的切线?假设存在,求出点P 的坐标;假设不存在,说明理由.27.〔浙江省温州中学2021届高三第三次模拟考试数学〔理〕试题〕如图,抛物线C :2ax y =)0(>a 与射线1l :12-=x y )0(≥x 、2l :)0(12≤--=x x y 均只有一个公共点,过定点)1,0(-M 和)41,0(N 的动圆分别与1l 、2l 交于点A 、B ,直线AB 与x 轴交于点P . (Ⅰ)求实数a 及NP AB ⋅的值;(Ⅱ)试判断:||||MB MA +是否为定值?假设是,求出该定值;假设不是,说明理由.28.〔浙江省2021年高考模拟冲刺〔提优〕测试二数学〔理〕试题〕圆C 的圆心在y 轴上,且与两直线l 1:0105=+-+y x ;l 2:0105=--+y x 均相切. (I)求圆C 的方程;(II)过抛物线2ax y =上一点M ,作圆C 的一条切线ME,切点为E,且MC ME ⋅的最小值为4,求此抛物线准线的方程.29.〔浙江省乐清市普通高中2021届高三上学期期末教学质量检测数学〔理〕试题〕点F 是抛物线yx C 4:21=与椭圆)0(1:22222>>=+b a b x a y C 的公共焦点,且椭圆的离心率为21. (1)求椭圆C 的方程;(2)设P 是在x 轴上方的椭圆上任意一点,F 是上焦点,过P 的直线PQ 与圆222b y x =+相切于Q 点,问:||||PQ PF +是否为定值,假设是,求出该定值;假设不是,请说明理由.30.〔浙江省温岭中学2021届高三冲刺模拟考试数学〔理〕试题〕以抛物线my x 22=(0>m )的顶点O 为圆心的圆,截该抛物线的准线所得的弦长为m 3 (Ⅰ)求圆C 的方程;(Ⅱ)过圆C 上任一点M 作该圆的切线l ,它与椭圆1222=+y a x (R a ∈,且2>a )相交于A 、B 两点,当OB OA ⊥时,求m 的可能取值范围.31.〔浙江省绍兴一中2021届高三下学期回头考理科数学试卷〕抛物线)0(2:2>=p py xC 的焦点为F ,抛物线上一点A 的横坐标为1x )0(1>x ,过点A 作抛物线C 的切线1l 交x 轴于点D ,交y 轴于点Q ,交直线:2pl y =于点M ,当2||=FD 时, 60=∠AFD . (1)求证:AFQ ∆为等腰三角形,并求抛物线C 的方程;(2)假设B 位于y 轴左侧的抛物线C 上,过点B 作抛物线C 的切线2l 交直线1l 于点P ,交直线于点N ,求PMN ∆面积的最小值,并求取到最小值时的1x 值.32.〔浙江省温州十校联合体2021届高三期中考试数学〔理〕试题〕假设椭圆2212:1(02)4x y C b b +=<<的离心率等于32,抛物线22:2(0)C x py p =>的焦点在椭圆的顶点上. (1)求抛物线2C 的方程;(2)过(1,0)M -的直线l 与抛物线2C 交P , Q 两点,又过P , Q 作抛物线2C 的切线12,l l ,当12l l ⊥时,求直线l 的方程.33.〔浙江省嘉兴市2021届高三上学期根底测试数学〔理〕试题〕如图,11(,)A x y ,22(,)B x y 是抛物线2:2C x py =(p 为正常数,p>0)上的两个动点,直线AB 与x 轴交于点P,与y 轴交于点Q,且2124p y y = (Ⅰ)求证:直线AB 过抛物线C 的焦点; (Ⅱ)是否存在直线AB,使得113?PA PB PQ+=假设存在,求出直线AB 的方程;假设不存在,请说明理由.34.〔浙江省杭州市2021届高三第二次教学质检检测数学〔理〕试题〕直线y=2x-2与抛物线x 2=2py(p>0)交于M 1,M 2两点,直线y=2p与y 轴交于点F.且直线y =2p恰好平分∠M 1FM 2. (I)求P 的值; (Ⅱ)设A 是直线y=2p 上一点,直线AM 2交抛物线于另点M 3,直线M 1M 3交直线y=2p于点B,求OA ·OB 的值.35.〔浙江省宁波市金兰合作组织2021届高三上学期期中联考数学〔理〕试题〕在平面直角坐标系xOy 中,F是抛物线2:2(0)C x py p =>的焦点,M 是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34. (Ⅰ)求抛物线C 的方程;(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?假设存在,求出点M 的坐标;假设不存在,说明理由;(Ⅲ)假设点M 的横坐标为2,直线1:4l y kx =+与抛物线C 有两个不同的交点,A B ,l 与圆Q 有两个不同的交点,D E ,求当122k ≤≤时,22AB DE +的最小值. 36.〔浙江省金华十校2021届高三4月模拟考试数学〔理〕试题〕抛物线2:2(0),C y px p M =>点的坐标为(12,8),N 点在抛物线C 上,且满足3,4ON OM =O 为坐标原点.(II)以点M 为起点的任意两条射线12,l l 关于直线l :y=x —4,并且1l 与抛物线C 交于A 、B 两点,2l 与抛物线C 交于D 、E 两点,线段AB 、DE 的中点分别为G 、H 两点.求证:直线GH 过定点,并求出定点坐标.浙江省2021届理科数学复习试题选编32:抛物线〔学生版〕参考答案一、选择题 1. B 2. B 3. C 4. C 5. B 6. C 7. D 8. C9. A.⎪⎩⎪⎨⎧=+=-22222221c y x by a x 得,c b y P 2=,∴c b y N 22=,得c ab x N 2=,从而c c ab x P 2-=. ∵P 是双曲线上,∴1)(2242222=--c b b c a c ab ,化简得,b a =2,得5=e .二、填空题10.211. 21-解析:设),(200a x x M ,那么过点M 的抛物线的切线方程为:ax x x a x y 2000)(2+-=,令0=y 得:021x x N =,故)0,2(0x N ,)4,0(aF ,即:022x a k k NF -==,又axx a x k k MO 0021===,故2121-=k k12. 34±13. 414.12 15. 4116. [1,0][3,4]-⋃ 17.7218. 2;得P 点到焦点距离与到顶点距离相等,∴214==p x P ,得2||=P y . 19. 1±20.21. 2 三、解答题22.解:(Ⅰ)联立24y x b y x=-+⎧⎨=⎩,消x 并化简整理得2440y y b +-=. 依题意应有16160b ∆=+>,解得1b >-.设1122(,),(,)A x y B x y ,那么12124,4y y y y b +=-=-,设圆心00(,)Q x y ,那么应有121200,222x x y y x y ++===-. 因为以AB 为直径的圆与x 轴相切,得到圆半径为0||2r y ==, 又222121212||()()(11)()2(1616)AB x x y y y y b =-+-=+-=+ .所以||22(1616)4AB r b ==+=,解得12b =-. 所以121203222x x y b y b x +-+-+===,所以圆心为3(,2)2-.故所求圆的方程为223()(2)42x y -++=.(Ⅱ)因为直线l 与y 轴负半轴相交,所以0b <,又直线l 与抛物线交于两点,由(Ⅰ)知1b >-,所以10b -<<,点O 到直线l 的距离||2b d =, 所以211||||2(1616)2(1)222AOB b S AB d b b b ∆==+=+. 令223()(1)g b b b b b =+=+,10b -<<22'()323()3g b b b b b =+=+,()g b ∴在2(1,)3--增函数,在2(,0)3-是减函数()g b ∴的最大值为24()327g -=. 所以当23b =-时,AOB ∆的面积取得最大值43923.解:(Ⅰ)1C 的焦点为)2,0(pF , 所以102+=p,2=p 故1C 的方程为y x 42=,其准线方程为1-=y(Ⅱ)设),2(2t t P ,)121,(211+x x M ,)121,(222+x x N ,那么PM 的方程:)()121(1121x x x x y -=+-,所以12122112+-=x tx t ,即02242121=-+-t tx x . 同理,PN :121222+-=x x x y ,02242222=-+-t tx x MN 的方程:)()121(121)121(121222121x x x x x x x y --+-+=+-, 即))((21)121(12121x x x x x y -+=+-. 由⎪⎩⎪⎨⎧=-+-=-+-0224022422222121t tx x t tx x ,得t x x 421=+,21211221t tx x -=- 所以直线MN 的方程为222t tx y -+=于是222222241)1(241|24|t t t t t t d ++=+-+-=. 令)1(412≥+=s t s ,那么366216921=+≥++=s s d (当3=s 时取等号). 所以,d 的最小值为324.方法一:解:(I)当AB 垂直于x 轴时,显然不符合题意,所以可设直线AB 的方程为y kx b =+,代入方程24y x =得: ∴122422kbx x k-+== 得:2b k k=- ∴直线AB 的方程为2(1)y k x k=-+∵AB 中点的横坐标为1,∴AB 中点的坐标为2(1,)k∴AB 的中垂线方程为1213(1)y x x k k k k=--+=-+∵AB 的中垂线经过点(0,2)P ,故32k =,得32k =∴直线AB 的方程为3126y x =-(Ⅱ)由(I)可知AB 的中垂线方程为13y x k k=-+,∴M 点的坐标为(3,0)因为直线AB 的方程为2220k x ky k -+-=∴M 到直线AB的距离d ==由222204k x ky k y x⎧-+-=⎨=⎩得222204k y ky k -+-=,∴214(1AMB S k ∆=+,t =,那么01t <<, 234(2)48S t t t t =-=-+,2'128S t =-+,由'0S =,得t =即k =时max S =此时直线AB的方程为30x -= (此题假设运用根本不等式解决,也同样给分) 法二:(1)根据题意设AB 的中点为(1,)Q t ,那么2121222121244AB y y y y k y y x x t--===--由P 、Q 两点得AB 中垂线的斜率为2k t =-,由2(2)1t t -⋅=-,得43t = ∴直线AB 的方程为3126y x =-(2)由(1)知直线AB 的方程为2(1)y t x t-=- AB 中垂线方程为(1)2ty t x -=--,中垂线交x 轴于点(3,0)M点M 到直线AB的距离为d ==由22(1)4y t x ty x⎧-=-⎪⎨⎪=⎩得:22248(2)0x x t -+-= 当243t =时,S,此时直线AB方程为310x ±-=25. 26.即27.解:(I)联立221y ax y x ⎧=⎨=-⎩得:2210ax x -+=设动圆()222235:88Q x t y t ⎛⎫⎛⎫-++=+ ⎪ ⎪⎝⎭⎝⎭(5544t -<<,圆与1l ,2l 相切时取到等号)联立()2222135:88:21Q x t y t l y x ⎧⎛⎫⎛⎫-++=+⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎪=-⎩得:214,525t t A ⎛⎫+ ⎪⎝⎭ 同理得:214,525t t B ⎛⎫--⎪⎝⎭4821:5552AB t t t l y x ⎛⎫⎛⎫∴-=-+ ⎪ ⎪⎝⎭⎝⎭,令0y =得2,05t P ⎛⎫ ⎪⎝⎭(Ⅱ)||||MB MA +=5544t t ⎫++-=⎪⎭是定值. (动圆()222235:88Q x t y t ⎛⎫⎛⎫-++=+ ⎪ ⎪⎝⎭⎝⎭,5544t -<<,圆与1l ,2l 相切时取到等号)(或由A B y y =,及几何法得||||MB MA+=28.29. 解:(1)∵1=c ,21=a c ∴2=a ,即椭圆方程为13422=+x y(2)设),(y x P ,那么∴2||||=+PQ PF =定值30.解(Ⅰ):抛物线的准线方程是2my -=(0>m ),由于圆C 截抛物线的准线所得的弦长为m 3,所以圆C 的半径m m m r =⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=22232,故所求圆的方程是222m y x =+ 31.解:(1)设⎪⎪⎭⎫ ⎝⎛p x x A 2,211,那么A 处的切线方程为p x x p x y l 2:2111-=,所以⎪⎭⎫ ⎝⎛0,21x D ,⎪⎪⎭⎫ ⎝⎛-p x Q 2,021 所以AF px p FQ =+=2221;即AFQ ∆为等腰三角形又D 为线段AQ 的中点,所以4=AF ,得:⎪⎩⎪⎨⎧=+=+1642222121p x p x p 所以2=p ,.4:2y x C =(2)设)0(),(222<x y x B ,那么B 处的切线方程为42222xx x y -=由)4,2(42422121222211x x x x P x x x y xx x y +⇒⎪⎪⎩⎪⎪⎨⎧-=-=,由)1,22(14211211x x M y x x x y +⇒⎪⎩⎪⎨⎧=-=,同理)1,22(22x x N +, 所以面积212211221221116)4)(()41)(2222(21x x x x x x x x x x x x S --=---+=① 设AB 的方程为b kx y +=,那么0>b 由044422=--⇒⎩⎨⎧=+=b kx x yx b kx y ,得⎩⎨⎧-==+b x x kx x 442121代入①得:bbk b b b b k S ++=++=2222)1(64)44(1616,要使面积最小,那么应0=k ,得到bbb S 2)1(+=② 令t b =,得t t t t t t S 12)1()(322++=+=,222)1)(13()(tt t t S +-=', 所以当)33,0(∈t 时)(t S 单调递减;当),33(+∞∈t )(t S 单调递增, 所以当33=t 时,S 取到最小值为9316,此时312==t b ,0=k , 所以311=y ,即3321=x32.解:(1)由椭圆方程得2a =,c e a ==所以c =1b == 由题意得:抛物线的焦点应为椭圆的上顶点,即(0,1) 所以2p = 抛物线方程为24x y =(2) 可判断直线l 的斜率存在,设直线l 的方程为(1)y k x =+ 设P Q 、坐标为1122(,),(,)x y x y 联立2(1)4y k x x y=+⎧⎨=⎩ 整理得 2440x kx k --=33. (Ⅰ)由题意知,直线AB 的斜率存在,且不为零.设直线AB 的方程为:b kx y += (0≠k ,0>b )由⎩⎨⎧=+=pyx b kx y 22,得0222=--pb pkx x . ∴⎪⎩⎪⎨⎧-==+>+=∆pb x x pk x x pb k p 22084212122, ∴2222121214)2(22b ppb p x p x y y =-=⋅=. ∵4221p y y =,∴422p b =,∵0>b ,∴2p b =.∴直线AB 的方程为:2pkx y +=.抛物线C 的焦点坐标为)2,0(p,∴直线AB 过抛物线C 的焦点 (Ⅱ)假设存在直线AB ,使得||3||1||1PQ PB PA =+, 即3||||||||=+PB PQ PA PQ . 作x AA ⊥/轴,x BB ⊥/轴,垂足为/A 、/B ,∴212121//222||||||||||||||||y y y y p y py p BB OQ AA OQ PB PQ PA PQ +⋅=+=+=+ ∵p pk p x x k y y +=++=+221212)(,4221p y y =∴||||||||PB PQ PA PQ +=42222pp pk p +⋅=242+k 由3242=+k ,得21±=k . 故存在直线AB ,使得||3||1||1PQ PB PA =+.直线AB 方程为221p x y +±= 34.(第21题)(Ⅰ) 由⎩⎨⎧=-=pyx x y 2222 ,整理得0442=+-p px x ,设MR 1R(11,y x ),MR 2R(22,y x ),那么⎪⎩⎪⎨⎧=⋅=+>-=∆p x x p x x p p 440161621212 ,∵ 直线2py =平分21FM M ∠,∴ 021=+F M F M k k ,∴ 0)22(42121=⋅+⋅+-x x x x p ,∴ 4=p ,满足0>∆,∴4=p (Ⅱ) 由(1)知抛物线方程为y x 82=,且⎩⎨⎧==+16162121x x x x ,)8,(2111x x M ,)8,(2222x x M ,设)8,(2333xx M ,A )2,(t ,)2,(a B ,由A 、MR 2R 、MR 3R 三点共线得232AM M M k k =,∴ t x x x x --=+22232288,即:16)(22323222-=+-+x x x t x x x , 整理得:16)(3232-=+-x x t x x , ①由B 、MR 3R 、MR 1R 三点共线,同理可得 16)(3131-=+-x x a x x , ② ②式两边同乘2x 得:2322132116)(x x x x x a x x x -=+-, 即:232316)16(16x x x a x -=+-, ③由①得:16)(3232-+=x x t x x ,代入③得:23231616)(1616x a x x ta a x -=++--, 即:)()(163232x x at x x +=+,∴ 16=at . ∴ 204=+=⋅at OB OA35.225'()828f t t t =--,当554t ≤≤时,5'()'()64f t f ≥=,()f t 在5,54⎡⎤⎢⎥⎣⎦递增,故当54t =,即12k =时,有最小值13236.。
银川一中2021届高三年级第二次月考数 学 试 卷(文)【试卷综评】突出考查数学骨干知识 ,偏重于中学数学学科的基础知识和大体技术的考查;偏重于知识交汇点的考查。
全面考查了考试说明中要求的内容,明确了中学数学的教学方向和考生的学习方向,适度综合考查,提高试题的区分度.通过考查知识的交汇点,对考生的数学能力提出了较高的要求. 第Ⅰ卷一、选择题:本大题共12小题,每题5分,总分值60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.【题文】1.设集合212{|10},{|log }A x xB x y x =-<==,那么A∩B 等于( )A .{|1}x x >B .{|01}x x <<C . {|1}x x <D .{|01}x x <≤ 【知识点】交集及其运算.A1【答案解析】B 解析:由A 中不等式变形得:(x+1)(x ﹣1)<0,解得:﹣1<x <1,即A={x|﹣1<x <1},由B 中y=,取得0<x≤1,即B={x|0<x≤1},那么A∩B={x|0<x <1}.应选:B .【思路点拨】求出A 中不等式的解集确信出A ,求出B 中x 的范围确信出B ,求出A 与B 的交集即可. 【题文】2.已知复数 z 知足(13)1i z i +=+,那么||z =( )A .22B .21C .2D . 2【知识点】复数求模.L4 【答案解析】A 解析:∵,∴=,因此|z|=应选A .【思路点拨】第一依照所给的等式表示出z ,是一个复数除法的形式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母同时进行乘法运算,取得最简形式.【题文】3.在△ABC 中,“3sin 2A >”是“3πA >”的( )A .充分没必要要条件B .必要不充分条件C .充要条件D .既不充分也没必要要条件 【知识点】必要条件、充分条件与充要条件的判定;正弦函数的单调性.A2 C3【答案解析】A 解析:在△ABC 中,∴0<A <π,∵sinA >,∴<A <,∴sinA >”⇒“∠A >”,反之那么不能,∴,“sinA>”是“∠A >”的充分没必要要条件,故A 正确.【思路点拨】在△ABC 中,0<A <π,利用三角函数的单调性来进行判定,然后再由然后依照必要条件、充分条件和充要条件的概念进行判定求解.【题文】4.O 是ABC ∆所在平面内的一点,且知足()(2)0OB OC OB OC OA -⋅+-=,那么ABC ∆的形状必然为( )A .正三角形B .直角三角形C .等腰三角形D .斜三角形【知识点】三角形的形状判定.C8 【答案解析】C 解析:∵= = ==0,∴,∴△ABC 为等腰三角形.应选C【思路点拨】利用向量的运算法那么将等式中的向量 用三角形的各边对应的向量表示,取得边的关系,得出三角形的形状.【题文】5.设向量b a ,b a +=10b a -=6,那么=⋅b a ( )A .5B .3C .2D .1【知识点】平面向量数量积的运算.F3 【答案解析】D 解析:∵|+|=,|﹣|=,∴|+|2=10,|﹣|2=6,展开得2+2+2•=10, 2+2﹣2•=6,两式相减得4•=4,∴•=1;应选D .【思路点拨】利用向量的平方等于向量的模的平方,将已知的两个等式平方相减,解得数量积.【题文】6.函数2sin 2xy x =-的图象大致是( )【知识点】函数的图象.B8【答案解析】C 解析:当x=0时,y=0﹣2sin0=0故函数图象过原点, 可排除A 又∵y'=,故函数的单调区间呈周期性转变分析四个答案,只有C 知足要求,应选C 【思路点拨】依照函数的解析式,咱们依照概念在R 上的奇函数图象必要原点能够排除A ,再求出其导函数,依照函数的单调区间呈周期性转变,分析四个答案,即可找到知足条件的结论.【题文】7.假设角α的终边在直线y =2x 上,那么ααααcos 2sin cos sin 2+-的值为( )A .0 B. 34 C .1 D. 54【知识点】同角三角函数大体关系的运用;三角函数线.C1 C2 【答案解析】B 解析:∵角α的终边在直线y=2x 上,∴tanα=2,∴==,应选:B .【思路点拨】依题意,tanα=2,将所求的关系式中的“弦”化“切”即可求得答案.【题文】8.ABC ∆的内角A B C 、、的对边别离是a b c 、、,假设2B A =,1a =,3b =,那么c = ( ) A .23 B .2C .2D .1【知识点】正弦定理;二倍角的正弦.C6 C8 【答案解析】B 解析:∵B=2A ,a=1,b=,∴由正弦定理=得:===,∴cosA=,由余弦定理得:a2=b2+c2﹣2bccosA ,即1=3+c2﹣3c ,解得:c=2或c=1(经查验不合题意,舍去),那么c=2.应选B【思路点拨】利用正弦定理列出关系式,将B=2A ,a ,b 的值代入,利用二倍角的正弦函数公式化简,整理求出cosA 的值,再由a ,b 及cosA 的值,利用余弦定理即可求出c 的值.【题文】9.假设f(x)=21ln(2)2x b x -++∞在(-1,+)上是减函数,那么b 的取值范围是( )A.[-1,+∞)B.(-1,+∞)C.(-∞,-1]D.(-∞,-1) 【知识点】利用导数研究函数的单调性.B12 【答案解析】C 解析:由题意可知,在x ∈(﹣1,+∞)上恒成立,即b <x (x+2)在x ∈(﹣1,+∞)上恒成立,由于y=x (x+2)在(﹣1,+∞)上是增函数且y (﹣1)=﹣1,因此b≤﹣1,应选C 【思路点拨】先对函数进行求导,依照导函数小于0时原函数单调递减即可取得答案.【题文】10.函数()()x x x f 21ln -+=的零点所在的大致区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【知识点】函数的零点与方程根的关系.B9【答案解析】B 解析:∵f (1)=ln (1+1)﹣2=ln2﹣2<0, 而f (2)=ln3﹣1>lne ﹣1=0,∴函数f (x )=ln (x+1)﹣的零点所在区间是 (1,2),应选B .【思路点拨】函数f (x )=ln (x+1)﹣的零点所在区间需知足的条件是函数在区间端点的函数值符号相反. 【题文】11.)0)(sin(3)(>+=ωϕωx x f 部份图象如图, 若2||AB BC AB =⋅,ω等于( )A .12πB .4πC .3πD .6π【知识点】由y=Asin (ωx+φ)的部份图象确信其解析式;平面向量数量积的运算.C4 F3 【答案解析】D 解析:由,得||•||•cos(π﹣∠ABC)=,即||•(﹣cos∠ABC)=, 由图知||=2||,因此cos∠ABC=﹣,即得∠ABC=120°,过B 作BD⊥x 轴于点D ,那么BD=,在△ABD 中∠ABD=60°,BD=,易求得AD=3,因此周期T=3×4=12,因此ω==.应选D . 【思路点拨】由,可求得∠ABC=120°,再由函数最大值为,通过解三角形可求得周期,由此即可求得ω值.【题文】12.函数()x f 是R 上的偶函数,在区间[)+∞,0上是增函数.令⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=75tan,75cos,72sinπππf c f b f a ,那么( )A .c b a <<B .a b c <<C .a c b <<D .c a b << 【知识点】偶函数;不等式比较大小.B4 E1 【答案解析】D 解析:,因为,又由函数在区间[0,+∞)上是增函数,因此,因此b <a <c ,应选A【思路点拨】通过奇偶性将自变量调整到同一单调区间内,依照单调性比较a 、b 、c 的大小. 第Ⅱ卷本卷包括必考题和选考题两部份.第13题~第21题为必考题,每一个试题考生都必需做答.第22题~第24题为选考题,考生依照要求做答.二、填空题:本大题共4小题,每题5分,共20分.【题文】13.设1232,2()log (1),2x e x f x x x -⎧<⎪=⎨-≥⎪⎩,那么((2))f f 的值为 .【知识点】分段函数的解析式求法及其图象的作法;函数的值.B1 B10【答案解析】2 解析:由题意,自变量为2,故内层函数f (2)=log3(22﹣1)=1<2, 故有f (1)=2×e1﹣1=2,即f (f (2))=f (1)=2×e1﹣1=2,故答案为 2【思路点拨】此题是一个分段函数,且是一个复合函数求值型的,故求解此题应先求内层的f (2),再以之作为外层的函数值求复合函数的函数值,求解进程中应注意自变量的范围选择相应的解析式求值.【题文】14.若sin cos 2θθ+=,那么tan 3πθ⎛⎫+ ⎪⎝⎭的值是 ___________. 【知识点】两角和与差的正切函数;同角三角函数间的大体关系.C5 C2【答案解析】-2-3 解析:∵,平方可得sin2θ=1,=1,∴=1,tanθ=1.∴===,故答案为.【思路点拨】把条件平方可得sin2θ=1,变形为 =1,解出tanθ代入=可求出结果.【题文】15.设奇函数()x f 的概念域为R ,且周期为5,假设()1f <—1,(),log 42a f =那么实数a 的取值范围是 .【知识点】函数奇偶性的性质;函数的周期性;对数的运算性质.B4 B7【答案解析】-2-3 解析:依照题意,由f (x )为奇函数,可得f (1)=﹣f (﹣1), 又由f (1)<﹣1,那么﹣f (﹣1)<﹣1,那么f (﹣1)>1,又由f (x )周期为5,那么f (﹣1)=f (4)=log2a ,那么有log2a >1,解可得a >2;故答案为a >2.【思路点拨】关键函数是奇函数,结合f (1)<﹣1,分析可得f (﹣1)>1,又由f (x )周期为5,那么f (﹣1)=f (4)=log2a ,联立可得log2a >1,解可得答案. 【题文】16.以下命题:①若||||||a b a b ⋅=⋅,那么a ∥b ;②a =(-1,1)在b =(3,4)方向上的投影为15;③若△ABC 中,a=5,b =8,c =7,那么BC ·CA =20;④假设非零向量a 、b 知足||||a b b +=,那么|2||2|b a b >+. 所有真命题的标号是______________.【知识点】向量的投影;向量的共线定理;平面向量数量积的性质及其运算律;平面向量数量积的运算.F2 F3 【答案解析】①② 解析:关于选项A ,依照,那么cosθ=±1,θ=0°或180°,那么∥,故正确;关于选项B ,依照投影的概念可得,在 方向上的投影为||cos <,>==,故正确;关于选项C ,由余弦定理可知cosC=,=5×8×cos(π﹣C )=﹣20,故不正确;关于选项D ,|+|=,不正确; 故答案为:①② 【思路点拨】选项A 依照,那么cosθ=±1,θ=0°或180°,那么∥可得结论;选项B 依照投影的概念,应用公式 在 方向上的投影为||cos <,>=求解;选项C 由余弦定理可知cosC=,=5×8×cos(π﹣C )=﹣20,可知真假;关于选项D ,显然不正确.三、解答题: 解许诺写出文字说明,证明进程或演算步骤. 【题文】17、(本小题12分)已知向量⎪⎭⎫ ⎝⎛=23,sin x m ,()02cos 3,cos 3>⎪⎭⎫⎝⎛=A x A x A n ,函数()f x m n =⋅的最大值为6. (1)求A ;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原先的12倍,纵坐标不变,取得函数()y g x =的图象.求()g x 在⎥⎦⎤⎢⎣⎡40π,上的值域. 【知识点】函数y=Asin (ωx+φ)的图象变换;平面向量数量积的运算;三角函数中的恒等变换应用.菁优网版权所有C4 C7 F3【答案解析】(1)A =6(2)[]633-,解析:(1)()x f =n m ⋅=3x x cos Asin +A2cos2x...... 2分=A ⎪⎪⎭⎫ ⎝⎛+x x 2cos 212sin 23=Asin ⎪⎭⎫ ⎝⎛+62πx ........4分,因为A>0,由题意知,A =6...........6分由(1)()x f =6sin ⎪⎭⎫ ⎝⎛+62πx .将函数()x f y =的图象向左平移π12个单位后取得y =6sin⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+6122ππx =6sin ⎪⎭⎫ ⎝⎛+32πx 的图象;再将取得图象上各点横坐标缩短为原先的12倍,纵坐标不变,取得y =6sin ⎪⎭⎫ ⎝⎛+34πx 的图象。
天津市南开高校附属中学2021届高三上学期其次次月考数学试卷(理科)一、选择题(每题5分,共40分)1.(3分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i2.(3分)“a3>b3”是“log3a>log3b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(3分)设变量x,y 满足约束条件,则目标函数z=x+2y的最小值为()A.2B.3C.4D.54.(3分)若﹣9、a、﹣l成等差数列,﹣9、m、b、n、﹣1成等比数列,则ab=()A.15 B.﹣l5 C.±l5 D.105.(3分)已知函数y=2sinx的定义域为[a,b],值域为[﹣2,1],则b﹣a的值不行能是()A.B.πC.2πD .6.(3分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m⊥α,n⊥m则n∥αB.若α⊥β,β⊥γ则α∥βC.若m⊥β,n⊥β则m∥n D.若m∥α,m∥β,则α∥β7.(3分)已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=,设a n=g(n)﹣g(n﹣1)(n∈N*),则数列{a n}是()A.等差数列B.等比数列C.递增数列D.递减数列8.(3分)在平面四边形ABCD中,AB=3,BC=4,∠ABC=90°,△ACD 是正三角形,则•的值为()A.﹣2 B.2C.D .二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)为了解某校高中同学的近视眼发病率,在该校同学中进行分层抽样调查,已知该校2022-2021学年高一、2022-2021学年高二、2021届高三分别有同学800名、600名、500名.若2021届高三同学共抽取25名,则2022-2021学年高一同学共抽取名.10.(5分)如图是一个空间几何体的三视图,则该几何体的体积大小为.11.(5分)已知=(3,﹣2).=(1,0),向量λ与﹣2垂直,则实数λ的值为.12.(5分)对于任意x∈R,满足(a﹣2)x2+2(a﹣2)x﹣4<0恒成立的全部实数a构成集合A,使不等式|x ﹣4|+|x﹣3|<a的解集为空集的全部实数a构成集合B,则A∩∁R B=.13.(5分)如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为.14.(5分)若a是1+2b与1﹣2b 的等比中项,则的最大值为.三、解答题:本大题共6小题,共80分,解题应写出文字说明、证明过程或演算步骤.15.(16分)已知函数.(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;(Ⅱ)求函数f(x )在区间上的值域.16.(16分)在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c ,已知•=2,cosB=,b=3,求:(Ⅰ)a和c的值;(Ⅱ)cos(B﹣C)的值.17.(16分)如图所示,四棱锥P﹣ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=,E为PD 上一点,PE=2ED.(Ⅰ)求证:PA⊥平面ABCD;(Ⅱ)求二面角D﹣AC﹣E的余弦值;(Ⅲ)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.18.(16分)已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设的前n项和S n.19.(16分)已知数列{a n},a1=1,前n项和S n满足nS n+1﹣(n+3)S n=0,(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=4()2,求数列{(﹣1)n b n}的前n项和T n;(Ⅲ)设C n=2n (﹣λ),若数列{C n}是单调递减数列,求实数λ的取值范围.20.(16分)已知函数f(x)=(x2﹣3x+3)•e x定义域为[﹣2,t](t>﹣2),设f(﹣2)=m,f(t)=n.(Ⅰ)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(Ⅱ)求证:n>m;(Ⅲ)求证:对于任意的t>﹣2,总存x0∈(﹣2,t),满足,并确定这样的x0的个数.天津市南开高校附属中学2021届高三上学期其次次月考数学试卷(理科)参考答案与试题解析一、选择题(每题5分,共40分)1.(3分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i考点:复数相等的充要条件.专题:数系的扩充和复数.分析:依据题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得z的值.解答:解:∵复数z满足(3+4i)z=25,则z====3﹣4i,故选:A.点评:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(3分)“a3>b3”是“log3a>log3b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:函数的性质及应用;简易规律.分析:依据指数函数和对数函数的图象和性质,求出两个命题的等价命题,进而依据充要条件的定义可得答案.解答:解:“a3>b3”⇔“a>b”,“log3a>log3b”⇔“a>b>0”,故“a3>b3”是“log3a>log3b”的必要不充分条件,故选:B点评:推断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤推断命题p与命题q所表示的范围,再依据“谁大谁必要,谁小谁充分”的原则,推断命题p与命题q的关系.3.(3分)设变量x,y 满足约束条件,则目标函数z=x+2y的最小值为()A.2B.3C.4D.5考点:简洁线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的学问,通过平移即可求z的最大值.解答:解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B(1,1)时,直线y=﹣的截距最小,此时z最小.此时z的最小值为z=1+2×1=3,故选:B.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.4.(3分)若﹣9、a、﹣l成等差数列,﹣9、m、b、n、﹣1成等比数列,则ab=()A.15 B.﹣l5 C.±l5 D.10考点:等比数列的性质;等差数列的性质.专题:等差数列与等比数列.分析:利用等差数列与等比数列的性质可求得a=﹣5,b=﹣3,从而可得答案.解答:解:∵﹣9、a、﹣l成等差数列,﹣9、m、b、n、﹣1成等比数列,∴2a=﹣1﹣9=﹣10,b2=9,∴a=﹣5,b=﹣3(b为第三项,b<0),∴ab=15.故选:A.点评:本题考查等差数列与等比数列的性质,b=﹣3的确定是易错点,属于中档题.5.(3分)已知函数y=2sinx的定义域为[a,b],值域为[﹣2,1],则b﹣a的值不行能是()A.B.πC.2πD .考点:三角函数的最值.专题:计算题.分析:结合三角函数R上的值域[﹣2,2],当定义域为[a,b],值域为[﹣2,1],可知[a,b]小于一个周期,从而可得.解答:解:函数y=2sinx在R上有﹣2≤y≤2函数的周期T=2π值域[﹣2,1]含最小值不含最大值,故定义域[a,b]小于一个周期b﹣a<2π故选C点评:本题考查了正弦函数的图象及利用图象求函数的值域,解题的关键是生疏三角函数y=2sinx的值域[﹣2,2],而在区间[a,b]上的值域[﹣2,1],可得函数的定义域与周期的关系,从而可求结果.6.(3分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m⊥α,n⊥m则n∥αB.若α⊥β,β⊥γ则α∥βC.若m⊥β,n⊥β则m∥n D.若m∥α,m∥β,则α∥β考点:空间中直线与平面之间的位置关系;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:对选项逐一分析,依据空间线面关系,找出正确选项.解答:解:对于A,直线n有可能在平面α内;故A 错误;对于B,α,γ还有可能相交,故B 错误;对于C,依据线面垂直的性质以及线线平行的判定,可得直线m,n平行;对于D,α,β有可能相交.故选C.点评:本题主要考查了平面与平面之间的位置关系,考查空间想象力量、运算力量和推理论证力量,属于基础题.7.(3分)已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=,设a n=g(n)﹣g(n﹣1)(n∈N*),则数列{a n}是()A.等差数列B.等比数列C.递增数列D.递减数列考点:等比关系的确定.专题:计算题.分析:依据g(n)的通项公式可求得g(1),g(2),g(3)直至g(n),进而可求a1,a2,a3,┉,a n进而发觉数列{a n}是等比数列解答:解:已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=,则g(1)=b+1,g(2)=b2+b+1,g(3)=b3+b2+b+1,┉,g(n)=b n+┉+b2+b+1.a1=b,a2=b2,a3=b3,┉,a n=b n故数列{a n}是等比数列点评:本题主要考查等比关系的确定.属基础题.8.(3分)在平面四边形ABCD中,AB=3,BC=4,∠ABC=90°,△ACD 是正三角形,则•的值为()A.﹣2 B.2C.D .考点:平面对量数量积的运算.专题:平面对量及应用.分析:如图所示,建立直角坐标系.取AC的中点E,连接DE,BE.由A(0,3),C(4,0),可得.由于,可得=0.利用•==即可得出.解答:解:如图所示,建立直角坐标系.取AC的中点E,连接DE,BE.∵A(0,3),C(4,0),∴.∵,∴=0.∴•====8﹣=.故选:C.点评:本题考查了向量垂直与数量积的关系、数量积运算性质、向量的三角形法则,考查了推理力量与计算力量,属于中档题.二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)为了解某校高中同学的近视眼发病率,在该校同学中进行分层抽样调查,已知该校2022-2021学年高一、2022-2021学年高二、2021届高三分别有同学800名、600名、500名.若2021届高三同学共抽取25名,则2022-2021学年高一同学共抽取40名.考点:分层抽样方法.专题:概率与统计.分析:依据分层抽样在各部分抽取的比例相等求解.解答:解:依据分层抽样在各部分抽取的比例相等,分层抽样抽取的比例为=,∴2022-2021学年高一应抽取的同学数为800×=40.故答案为:40.点评:本题考查了分层抽样的定义,娴熟把握分层抽样的特征是关键.10.(5分)如图是一个空间几何体的三视图,则该几何体的体积大小为.考点:由三视图求面积、体积.专题:计算题.分析:由三视图可知,该几何体时一个边长为2,2,1的长方体挖去一个半径为1的半球.代入长方体的体积公式和球的体积公式,即可得到答案.解答:由三视图可知,该几何体时一个边长为2,2,1的长方体挖去一个半径为1的半球.所以长方体的体积为2×2×1=4,半球的体积为,所以该几何体的体积为.故答案为:.点评:本题考查的学问点是由三视图求体积,其中依据已知中的三视图推断出几何体的外形是解题的关键.11.(5分)已知=(3,﹣2).=(1,0),向量λ与﹣2垂直,则实数λ的值为.考点:数量积推断两个平面对量的垂直关系.专题:计算题.分析:由题意得(λ)•(﹣2)=λ+(1﹣2λ)﹣2=13λ+3(1﹣2λ)﹣2=0,解得λ值,即为所求.解答:解:由题意得(λ)•(﹣2)=λ+(1﹣2λ)﹣2=13λ+3(1﹣2λ)﹣2=0,解得λ=﹣,故答案为﹣.点评:本题考查两个向量的数量积公式的应用,两个向量垂直的性质,求得13λ+3(1﹣2λ)﹣2=0,是解题的关键.12.(5分)对于任意x∈R,满足(a﹣2)x2+2(a﹣2)x﹣4<0恒成立的全部实数a构成集合A,使不等式|x ﹣4|+|x﹣3|<a的解集为空集的全部实数a构成集合B,则A∩∁R B=(1,2].考点:交、并、补集的混合运算.专题:集合.分析:分a﹣2为0与不为0两种状况求出(a﹣2)x2+2(a﹣2)x﹣4<0恒成立a的范围,确定出A ,求出访不等式|x﹣4|+|x﹣3|<a的解集为空集的全部实数a的集合确定出B,求出B补集与A的交集即可.解答:解:(a﹣2)x2+2(a﹣2)x﹣4<0,当a﹣2=0,即a=2时,﹣4<0,满足题意;当a﹣2≠0,即a≠2时,依据题意得到二次函数开口向下,且与x轴没有交点,即a﹣2<0,△=4(a﹣2)2+16(a﹣2)<0,解得:a<2,﹣2<a<2,综上,a的范围为﹣2<a≤2,即A=(﹣2,2],使不等式|x﹣4|+|x﹣3|<a的解集为空集的全部实数a构成的B=(﹣∞,1),∴∁R B=[1,+∞),则A∩∁R B=(1,2].故答案为:(1,2]点评:此题考查了交、并、补集的混合运算,娴熟把握各自的定义是解本题的关键.13.(5分)如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为4.考点:与圆有关的比例线段.专题:计算题.分析:连接OC,BE,由圆角定定理,我们可得BE⊥AE,直线l是过C的切线,故OC⊥直线l,△OBC 为等边三角形,结合等边三角形的性质及30°所对的直角边等于斜边的一半,我们易求出线段AE的长.解答:解:连接OC,BE,如下图所示:则∵圆O的直径AB=8,BC=4,∴△OBC为等边三角形,∠COB=60°又∵直线l是过C的切线,故OC⊥直线l又∵AD⊥直线l∴AD∥OC故在Rt△ABE中∠A=∠COB=60°∴AE=AB=4故答案为:4点评:本题考查的学问点是切线的性质,圆周角定理,其中依据切线的性质,圆周角定理,推断出△ABE 是一个∠B=30°的直角三角形是解答本题的关键.14.(5分)若a是1+2b与1﹣2b的等比中项,则的最大值为.考点:等比数列的性质.专题:综合题;等差数列与等比数列.分析:由a是1+2b与1﹣2b的等比中项得到4|ab|≤1,再由基本不等式法求得的最大值.解答:解:a是1+2b与1﹣2b的等比中项,则a2=1﹣4b2⇒a2+4b2=1≥4|ab|.∴.∵a2+4b2=(|a|+2|b|)2﹣4|ab|=1.∴≤=∵∴≥4,∴的最大值为=.故答案为:.点评:本题考查等比中项以及不等式法求最值问题,考查同学分析解决问题的力量,属于中档题.三、解答题:本大题共6小题,共80分,解题应写出文字说明、证明过程或演算步骤.15.(16分)已知函数.(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;(Ⅱ)求函数f(x )在区间上的值域.考点:三角函数的周期性及其求法;正弦函数的定义域和值域;正弦函数的对称性.专题:三角函数的图像与性质.分析:(1)先依据两角和与差的正弦和余弦公式将函数f(x)开放再整理,可将函数化简为y=Asin(wx+ρ)的形式,依据T=可求出最小正周期,令,求出x的值即可得到对称轴方程.(2)先依据x的范围求出2x ﹣的范围,再由正弦函数的单调性可求出最小值和最大值,进而得到函数f(x)在区间上的值域.解答:解:(1)∵=sin2x+(sinx﹣cosx)(sinx+cosx)===∴周期T=由∴函数图象的对称轴方程为(2)∵,∴,由于在区间上单调递增,在区间上单调递减,所以当时,f(x)取最大值1,又∵,当时,f(x )取最小值,所以函数f(x )在区间上的值域为.点评:本题主要考查两角和与差的正弦公式和余弦公式,以及正弦函数的基本性质﹣﹣最小正周期、对称性、和单调性.考查对基础学问的把握状况.16.(16分)在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c ,已知•=2,cosB=,b=3,求:(Ⅰ)a和c的值;(Ⅱ)cos(B﹣C)的值.考点:余弦定理;平面对量数量积的运算;两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)利用平面对量的数量积运算法则化简•=2,将cosB的值代入求出ac=6,再利用余弦定理列出关系式,将b,cosB以及ac的值代入得到a2+c2=13,联马上可求出ac的值;(Ⅱ)由cosB的值,利用同角三角函数间基本关系求出sinB的值,由c,b,sinB,利用正弦定理求出sinC的值,进而求出cosC的值,原式利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值.解答:解:(Ⅰ)∵•=2,cosB=,∴c•acosB=2,即ac=6①,∵b=3,∴由余弦定理得:b2=a2+c2﹣2accosB,即9=a2+c2﹣4,∴a2+c2=13②,联立①②得:a=3,c=2;(Ⅱ)在△ABC中,sinB===,由正弦定理=得:sinC=sinB=×=,∵a=b>c,∴C为锐角,∴cosC===,则cos(B﹣C)=cosBcosC+sinBsinC=×+×=.点评:此题考查了正弦、余弦定理,平面对量的数量积运算,以及同角三角函数间的基本关系,娴熟把握定理是解本题的关键.17.(16分)如图所示,四棱锥P﹣ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=,E为PD 上一点,PE=2ED.(Ⅰ)求证:PA⊥平面ABCD;(Ⅱ)求二面角D﹣AC﹣E的余弦值;(Ⅲ)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.考点:用空间向量求平面间的夹角;直线与平面平行的判定;直线与平面垂直的判定.专题:计算题;证明题;综合题.分析:(I)依据勾股定理的逆定理,得到△PAD是以PD为斜边的直角三角形,从而有PA⊥AD,再结合PA⊥CD,AD、CD 相交于点D,可得PA⊥平面ABCD;(II)过E作EG∥PA 交AD于G,连接BD交AC于O,过G作GH∥OD,交AC于H,连接EH.利用三垂线定理结合正方形ABCD的对角线相互垂直,可证出∠EHG为二面角D﹣AC﹣E的平面角.分别在△PAB中和△AOD中,求出EH=,GH=,在Rt△EHG中利用三角函数的定义,得到tan∠EHG==.最终由同角三角函数的关系,计算得cos∠EHG=.(III)以AB,AD,PA为x轴、y轴、z轴建立空间直角坐标系.分别给出点A、B、C、P、E的坐标,从而得出=(1,1,0),=(0,,),利用向量数量积为零的方法,列方程组可算出平面AEC的一个法向量为=(﹣1,1,﹣2 ).假设侧棱PC上存在一点F,使得BF∥平面AEC ,则=+=(﹣λ,1﹣λ,λ),且有⋅=0.所以⋅=λ+1﹣λ﹣2λ=0,解之得λ=,所以存在PC的中点F,使得BF∥平面AEC.解答:解:(Ⅰ)∵PA=AD=1,PD=,∴PA2+AD2=PD2,可得△PAD是以PD为斜边的直角三角形∴PA⊥AD﹣﹣﹣(2分)又∵PA⊥CD,AD、CD 相交于点D,∴PA⊥平面ABCD﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)过E作EG∥PA 交AD于G,∵EG∥PA,PA⊥平面ABCD,∴EG⊥平面ABCD,∵△PAB中,PE=2ED∴AG=2GD,EG=PA=,﹣﹣﹣﹣﹣﹣(5分)连接BD交AC于O,过G作GH∥OD,交AC于H,连接EH.∵OD⊥AC,GH∥OD∴GH⊥AC∵EG⊥平面ABCD,HG是斜线EH在平面ABCD内的射影,∴EH⊥AC,可得∠EHG为二面角D﹣AC﹣E的平面角.﹣﹣﹣﹣﹣(6分)∴Rt△EGH中,HG=OD=BD=,可得tan∠EHG==.由同角三角函数的关系,得cos∠EHG==.∴二面角D﹣AC﹣E 的平面角的余弦值为﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ)以AB,AD,PA为x轴、y轴、z轴建立空间直角坐标系.则A(0,0,0),B(1,0,0),C(1,1,0),P(0,0,1),E(0,,),=(1,1,0),=(0,,)﹣﹣﹣(9分)设平面AEC 的法向量=(x,y,z),依据数量积为零,可得,即:,令y=1,得=(﹣1,1,﹣2 )﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)假设侧棱PC上存在一点F ,且=λ,(0≤λ≤1),使得:BF∥平面AEC ,则⋅=0.又∵=+=(0,1,0)+(﹣λ,﹣λ,λ)=(﹣λ,1﹣λ,λ),∴⋅=λ+1﹣λ﹣2λ=0,∴λ=,所以存在PC的中点F,使得BF∥平面AEC.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)点评:本题给出一个特殊的棱锥,通过证明线面垂直和求二面角的大小,着重考查了用空间向量求平面间的夹角、直线与平面平行的判定与性质和直线与平面垂直的判定与性质等学问点,属于中档题.18.(16分)已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设的前n项和S n.考点:等差数列与等比数列的综合;数列的求和.专题:计算题.分析:(I)依据a3+2是a2,a4的等差中项和a2+a3+a4=28,求出a3、a2+a4的值,进而得出首项和a1,即可求得通项公式;(II)先求出数列{b n}的通项公式,然后求出﹣S n﹣(﹣2S n),即可求得的前n项和S n.解答:解:(I)设等比数列{a n}的首项为a1,公比为q∵a3+2是a2,a4的等差中项∴2(a3+2)=a2+a4代入a2+a3+a4=28,得a3=8∴a2+a4=20∴∴或∵数列{a n}单调递增∴a n=2n(II)∵a n=2n∴b n ==﹣n•2n∴﹣s n=1×2+2×22+…+n×2n①∴﹣2s n=1×22+2×23+…+(n﹣1)×2n+n2n+1②∴①﹣②得,s n=2+22+23+…+2n﹣n•2n+1=2n+1﹣n•2n+1﹣2点评:本题考查了等比数列的通项公式以及数列的前n项和,对于等差数列与等比数列乘积形式的数列,求前n项和一般实行错位相减的方法.19.(16分)已知数列{a n},a1=1,前n项和S n满足nS n+1﹣(n+3)S n=0,(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=4()2,求数列{(﹣1)n b n}的前n项和T n;(Ⅲ)设C n=2n (﹣λ),若数列{C n}是单调递减数列,求实数λ的取值范围.考点:数列的求和;数列的函数特性;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)对已知等式整理成数列递推式,然后用叠乘法,求得S n,最终利用a n=S n﹣S n﹣1求得答案.(Ⅱ)依据(Ⅰ)中a n,求得b n,设出C n,分n为偶数和奇数时的T n.(Ⅲ)依据数列为递减数列,只需满足C n+1﹣C n<0,求得﹣的最大值,即可求得λ的范围.解答:解:(Ⅰ)由已知=,且S1=a1=1,当n≥2时,S n=S1••…•=1•••…•=,S1也适合,当n≥2时,a n=S n﹣S n﹣1=,且a1也适合,∴a n =.(Ⅱ)b n=4()2=(n+1)2,设C n=(﹣1)n(n+1)2,当n为偶数时,∵C n﹣1+C n=(﹣1)n﹣1•n2+(﹣1)n•(n+1)2=2n+1,T n=(C1+C2)+(C3+C4)+…(C n﹣1+C n)=5+9+…+(2n﹣1)==,当n为奇数时,T n=T n﹣1+C n =﹣(n+1)2=﹣,且T1=C1=﹣4也适合.综上得T n =(Ⅲ)∵C n=2n (﹣λ),使数列{C n}是单调递减数列,则C n+1﹣C n=2n (﹣﹣λ)<0,对n∈N*都成立,则(﹣)max<λ,∵﹣==,当n=1或2时,(﹣)max =,∴λ>.点评:本题主要考查了数列的求和问题,求数列通项公式问题.对于利用a n=S n﹣S n﹣1肯定要a1对进行验证.20.(16分)已知函数f(x)=(x2﹣3x+3)•e x定义域为[﹣2,t](t>﹣2),设f(﹣2)=m,f(t)=n.(Ⅰ)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(Ⅱ)求证:n>m;(Ⅲ)求证:对于任意的t>﹣2,总存x0∈(﹣2,t),满足,并确定这样的x0的个数.考点:利用导数争辩函数的单调性;利用导数求闭区间上函数的最值.专题:压轴题.分析:(Ⅰ)首先求出函数的导数,然后依据导数与函数单调区间的关系确定t的取值范围,(Ⅱ)运用函数的微小值进行证明,(Ⅲ)首先对关系式进行化简,然后利用根与系数的关系进行判定.解答:(Ⅰ)解:由于f′(x)=(2x﹣3)e x+(x2﹣3x+3)e x,由f′(x)>0⇒x>1或x<0,由f′(x)<0⇒0<x<1,∴函数f(x)在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,∵函数f(x)在[﹣2,t]上为单调函数,∴﹣2<t≤0,(Ⅱ)证:由于函数f(x)在(﹣∞,0)∪(1,+∞)上单调递增,在(0,1)上单调递减,所以f(x)在x=1处取得微小值e,又f(﹣2)=13e﹣2<e,所以f(x)在[﹣2,+∞)上的最小值为f(﹣2),从而当t>﹣2时,f(﹣2)<f(t),即m<n,(Ⅲ)证:由于,∴,即为x02﹣x0=,令g(x)=x2﹣x ﹣,从而问题转化为证明方程g(x)==0在(﹣2,t)上有解并争辩解的个数,由于g(﹣2)=6﹣(t﹣1)2=﹣,g(t)=t(t﹣1)﹣=,所以当t>4或﹣2<t<1时,g(﹣2)•g(t)<0,所以g(x)=0在(﹣2,t)上有解,且只有一解,当1<t<4时,g(﹣2)>0且g(t)>0,但由于g(0)=﹣<0,所以g(x)=0在(﹣2,t)上有解,且有两解,当t=1时,g(x)=x2﹣x=0,解得x=0或1,所以g(x)=0在(﹣2,t)上有且只有一解,当t=4时,g(x)=x2﹣x﹣6=0,所以g(x)=0在(﹣2,t)上也有且只有一解,综上所述,对于任意的t>﹣2,总存在x0∈(﹣2,t),满足,且当t≥4或﹣2<t≤1时,有唯一的x0适合题意,当1<t<4时,有两个x0适合题意.点评:本小题主要考查导数的概念和计算,应用导数争辩函数单调性的方法及推理和运算力量.。
数学试卷(理数)
一、选择题(本大题共12小题,每小题5分)
1.若集合2
{|0},{|(0,1)},
x
M x x x N y y a a a R
=-<==>≠表示实数集,则下列选项错误的是( )
A.M N M
=
I B.M N R
=
U D.
R
C M N R
=
U
2.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()
A.9盏 B.5盏 C.3盏 D.1盏
3.函数“是偶函数”的否定是( )
A. B.
C. D.
A. 16
B. 4
C. 1
D.
5.直三棱柱
111
ABC A B C
-中,所有棱长都相等,M是
11
A C的中点,N是
1
BB的中点,则AM与NC1所成角的余弦值为()
A.
5
3
B.
3
2
C.
3
5
D.
5
4
6.2,23,
ABC AB AC BC
∆===
在中,若,
D E分别是,
AC AB的中点,则CE BD
u u u r u u u r
g的值为()
.A
13
2
.B2.C
13
2
-.D2-
A.()()
33
f x f x
ππ
-=+B.||
MNπ
=
C.
7
()2
3
f
π
=D.()()1
3
f x f x
π
+--=
8.一锥体的三视图如图所示,则该棱锥的最长棱的棱长为( ) A.33 B.17 C.41 D.42 9.三棱锥PABC 中,PA ⊥平面ABC 且PA =2,△ABC 是边 长为3的等边三角形,则该三棱锥外接球的表面积为( ) A.4π
3
B .4π
C .8π
D .20π
11.已知函数的定义在R 上的奇函数,当时,满足,
则在区间
内( )
A. 没有零点
B. 恰有一个零点
C. 至少一个零点
D. 至多一个零点
12. 在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r
=λ
AB u u u r +μAD u u u r
,则λ+μ的最大值为( )
A .3
B .22
C .5
D .2
二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上) 13. 已知向量b a ,满足,1,2==b a 且),2()3(b a b a -⊥+则a 与b 的夹角为_________. 14.定积分
1
2
1[1cos(2)]2x x dx π
--+-⎰的值为 ; 15.定义:,已知数列满足:,若对
任意正整数,都有成立,则的值为_________.
16. 定义在R 上的函数)(x f y =为减函数,且函数)1(-=x f y 的图象关于点(1,0)对称,若,0)2()2(2
2
≤-+-b b f s s f 且20≤≤s ,则b s -的取值范围是_________。
三.解答题:解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分 10 分)已知函数f (x )=2|x +1|+|x -2|. (1)求f(x)的最小值m ;
(2)若a ,b ,c 均为正实数,且满足a +b +c =m ,求证:b 2a +c 2b +a 2
c
≥3.
18.(本小题满分12分)已知f (x )=sin(π+ωx )·sin
-cos 2ωx (ω>0)的最小正周期为T=π.
(1)求f
的值;
(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(2a-c )cos B=b cos C ,求角B 的大小以及f (A )
的取值范围.
19. (本小题满分12分)已知等差数列的前n 项和为S n ,公差d≠0,
且,
成等比数列.
(1)求数列
的通项公式;
(2)设是首项为1,公比为3的等比数列,求数列的前n 项和T n .
20.(本小题满分
12分)如图1,平面五边形ABCDE 中,AB ∥CD ,90BAD ∠=︒=2AB ,=1CD ,△ADE 是边长为2的正三角形. 现将△ADE 沿AD 折起,得到四棱E ABCD -(如
图2),且DE AB ⊥.
(1)求证:平面ADE ⊥平面ABCD ;
(2)在棱AE 上是否存在点F ,使得DF ∥平面BCE ?若存在,求EF
EA
的值;若不存在,请说明理由.
21. (本小题满分12分)已知数列{}n a ,满足11a =,1323
n n n a a a +=
+,*
n N ∈.
(Ⅰ)求证:数列1n a ⎧⎫
⎨
⎬⎩⎭
为等差数列; (Ⅱ)设212233445212221
111111n n n n n T a a a a a a a a a a a a -+=
-+-++-L ,求2n T .
22. (本小题满分12分)已知函数211
()ln()22
f x ax x ax =++- (a 为常数,0a >)· (Ⅰ)若1
2
x =
是函数()f x 的一个极值点,求a 的值;(Ⅱ)求证:当02a <≤时,()f x 在1[,)2+∞上是增函数;(Ⅲ)若对任意的(1,2)a ∈,总存在01
[,1]2x ∈,使不等式20()(1)f x m a >-成立,求实数m 的取值范围.
数学试卷(理数)答案
一.
1 2 3 4 5 6 7 8 9 10 11 12
B C A D A C D C B D B A 二.填空题
三.解答题
17.(1)当,;
当,;
当,。
综上,的最小值。
......5分
(2),,均为正实数,且满足。
又因为。
(当且仅当时,取“”)
所以,即。
......10分
18.解 (1)f(x)=sin(π+ωx)·sin-cos2ωx=sin ωx·cos ωx-cos2ωx
=sin 2ωx-cos 2ωx-=sin.
∵最小正周期为T=π,∴=π,ω=1.
∴f(x)=sin .
∴f =sin .
(2)∵(2a-c )cos B=b cos C ,
∴(2sin A-sin C )cos B=sin B cos C ,
2sin A cos B=sin B cos C+cos B sin C=sin(B+C )=sin A.
∵sin A>0,∴cos B=,∵B ∈(0,π),∴B=.
∴A ∈,2A-,
∴sin .即f (A )的取值范围为.
19.解 (1)依题意得解得
所以a n =a 1+(n-1)d=3+2(n-1)=2n+1,即a n =2n+1. (2)=3n-1
,b n =a n ·3n-1
=(2n+1)·3n-1
,
T n =3+5×3+7×32+…+(2n+1)·3n-1,①
3T n =3×3+5×32+7×33+…+(2n-1)·3n-1+(2n+1)·3n
,② ①-②得-2T n =3+2×3+2×32+…+2·3n-1-(2n+1)3n =3+2·-(2n+1)3n =-2n ·3n ,所以
T n =n ·3n .
20.(Ⅰ)证明:由已知得AB AD ⊥,AB DE ⊥.
因为AD DE D =I ,所以AB ⊥平面ADE .
又AB ⊂平面ABCD ,所以平面ADE ⊥平面ABCD . (2)在棱AE 上存在点F ,使得DF ∥平面BCE ,此时
1
2
EF EA =. 理由如下:
设BE 的中点为G ,连接CG ,FG , 则 FG ∥AB ,1
2
FG AB =
. 因为AB ∥CD ,且1
2
CD AB =
,
所以FG∥CD,且FG CD
=,
所以四边形CDFG是平行四边形,
所以DF∥CG.
因为CG⊂平面BCE,且DF⊄平面BCE,
所以DF∥平面BCE.
21.证明(Ⅰ)由,得,
,
数列是首项为1,公差为的等差数列,
(Ⅱ)解:设, 由(Ⅰ)得,数列是首项为1,公差为的等差数列,
,
即,
,
且
是首项,公差为的等差数列,
22.试题解析:
(Ⅰ)由已知,得且,
(Ⅱ)当时,
当时,又
故在上是增函数
(Ⅲ)时,由(Ⅱ)知,在上的最大值为
于是问题等价于:对任意的,不等式恒成立。
记
则
当时,在区间上递减,此时
由于,时不可能使恒成立,故必有
若,可知在区间上递减,在此区间上,有
,与恒成立相矛盾,故,这时,在上递增,恒有,满足题设要求,
即所以实数的取值范围为。