数轴上地动点问的题目专的题目
- 格式:doc
- 大小:32.52 KB
- 文档页数:8
运动时间问题(1)求的值;a b ,点表示的数(1)请你在数轴上表示出A,B,C三点的位置;(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│参考答案:1.A【分析】根据数轴,按题目叙述的移动方法即可得到点前五次移动后在数轴上表示的数;根据移动的规律即可得移动第158次后到达的点在数轴上表示的数.【详解】解:设向右为正,向左为负,则表示的数为+1,表示的数为+3表示的数为0表示的数为-4表示的数为+1……由以上规律可得,每移动四次相当于向左移动4个单位长度.所以当移动156次时,156=39×4相当于向左移动了39次四个单位长度.此时表示的数为.则第157次向右移动157个单位长度,;第158次还是向右,移动了158个单位长度,所以.故在数轴上表示的数为159.故选A .【点睛】本题考查了数轴上点的运动规律,正确理解题意,找出点在数轴上的运动次数与对应点所表示的数的规律是解题的关键.2.①②④【分析】“前进3步后退2步”这5秒组成一个循环结构,先根据题意列出几组数据,从数据找寻规律:第一个循环节结束的数即x 5=1,第二个循环节结束的数即x 10=2,第三个循环节结束的数即x 15=3,…,第m 个循环节结束的数就是第5m 个数,即x 5m =m .然后再根据“前进3步后退2步”的运动规律来求取对应的数值.【详解】根据题意可知:x 1=1,x 2=2,x 3=3,x 4=2,x 5=1,x 6=2,x 7=3,x 8=4,x 9=3,x 10=2,x 11=3,x 12=4,x 13=5,x 14=4,x 15=3,1P 2P 3P 4P 5P ()39-4156⨯=-1571P =1581+158=159P =158P②如图2所示,当N在A点左侧,M在A点右侧时,③(2)817 =1+(2)=33 CA--17。
初一数学-数轴上的动点问题压轴题-专题训练七年级数学上册 数轴上的动点问题 专题训练1.在数轴上依次有A,B,C 三点,其中点A,C 表示的数分别为-2,5,且BC=6AB .(1)在数轴上表示出A,B,C 三点;(2)若甲、乙、丙三个动点分别从A 、B 、C 三点同时出发,沿数轴负方向运动,它们的速度分别是2,21,41(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度?(3)在数轴上是否存在点P ,使P 到A 、B 、C 的距离和等于10?若存在,求点P 对应的数;若不存在,请说明理由.2.已知多项式x 3-3xy 2-4的常数项是a ,次数是b(1) 直接写出a ,b ,并将这两个数在数轴上所对应的点A 、B 表示出来(2) 数轴上A 、B 之间的距离记作|AB |,定义:|AB |=|a -b |,设点P 在数轴上对应的数为x ,当|PA |+|PB|=13时,直接写出x 的值_____________(3) 若点A 、点B 同时沿数轴向正方向运动,点A 的速度是点B 的2倍,且3秒后,23AO =OB ,求点B 的速度5510643210-1-2-3-43.(本题12分)已知A、B两个动点同时在数轴上匀速运动,且保持运动的方向不变.若A、B两点的起始位置分别用有理数a、b表示,c是最大的负整数,且|a-19c2|+|b-8c3|=0(1) 求a、b、c的值m表示,求m的值(4)A、B两点能否相距18个单位长度?如果能,求出此时运动了多少秒及此时A、B两点表示的有理数;如果不能,请说明理由c>0,且|c|>|b|>|c|,数轴上a、b、c对应的点4.(本题7分)已知ab<0,a是A、B、C(1) 若|a|=-a时,请在数轴上标出A、B、C的大致位置(2) 在(1)的条件下,化简:|a-b|-|b+c|+|c+a|5.如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,C 是AB 的中点,且a 、b 满足|a +3|+(b +3a )2=0(1) 求点C 表示的数(2) 点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动,若AP +BQ =2PQ ,求时间t(3) 若点P 从A 向右运动,点M 为AP 中点,在P 点到达点B 之前:① PCPBPA 的值不变;②2BM -BP 的值不变,其中只有一个正确,请你找出正确的结论并求出其值6.数轴上点A 对应的数是﹣1,B 点对应的数是1,一只小虫甲从点B 出发沿着数轴的正方向以每秒4个单位的速度爬行至C 点,再以同样速度立即返回到A 点,共用了4秒钟.(1)求点C 对应的数;(2)若小虫甲返回到A 点后再作如下运动:第1次向右爬行3个单位,第2次向左爬行5个单位, 第3次向右爬行7个单位,第4次向左爬行9个单位,……依次规律爬下去,求它第10次爬行后停在点所对应的数.(3)①若小虫甲返回到A 后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从点B 出发沿着数轴的负方向以每秒6个单位的速度爬行,则运动t 秒后,甲、乙两只小虫的距离为: .(用含t 的式子表示)②若小虫甲返回到A 后继续沿着数轴的负方向以每秒4个单位的速度爬行,同时另两只小虫乙、丙分别从点B 和点C 出发背向而行,乙的速度是每秒2个单位,丙的速度是每秒1个单位。
初一年级数学数轴上的动点问题专题辅导卷1.已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒.⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回.问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.2.如图,已知A、B分别为数轴上两点,A点对应的数为—20,B点对应的数为100.⑴求AB中点M对应的数;⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数.3.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x.⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值.若不存在,请说明理由?⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?4、如图,有一数轴原点为O,点A所对应的数是-1 12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数.5、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.6、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?6、数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?7、数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D 点所表示的数8、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒.⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回.问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.9、已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x.⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值.若不存在,请说明理由?⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?10、如图1,已知数轴上有三点A、B、C,AB= 12AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为-800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D 运动到点A的过程中, 32QC-AM的值是否发生变化?若不变,求其值;若不变,请说明理由.11、思考下列问题并在横线上填上答案.思考下列问题并在横线上填上答案.(1)数轴上表示-3的点与表示4的点相距________个单位.(2)数轴上表示2的点先向右移动2个单位,再向左移动5个单位,最后到达的点表示的数是______.(3)数轴上若点A表示的数是2,点B与点A的距离为3,则点B表示的数是_____.(4)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是______,最小距离是_________.(5)数轴上点A表示8,点B表示-8,点C在点A与点B之间,A点以每秒0.5个单位的速度向左运动,点B 以每秒1.5个单位的速度向右运动,点C以每秒3个单位的速度先向右运动碰到点A后立即返回向左运动,碰到点B后又立即返回向右运动,碰到点A后又立即返回向左运动…,三个点同时开始运动,经过_________ 秒三个点聚于一点,这一点表示的数是________,点C在整个运动过程中,移动了_______个单位.12、已知数轴上两点A、B对应的数分别为-1、3,数轴上一动点P对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A,点B的距离相等.13、如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求 OB-AP/EF的值.14、甲、乙物体分别从相距70米的两处同时相向运动.甲第1分钟走2米,以后每分钟比前1分钟多走1米,乙每分钟走5米.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1米,乙继续每分钟走5米,那么开始运动几分钟后第二相遇?15、如图,线段AB=20cm.(1)点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以3厘米/秒运动,几秒钟后,P、Q两点相遇?如图,已知数轴上A、B两点所表示的数分别为-2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N为PB的中点,当点P在射线BA 上运动时;MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.16、已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=________ AB.(3)在(2)的条件下,N是直线AB上一点,且AN-BN=MN,求 MNAB的值.17、如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ-BQ=PQ,求 PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有 CD=12AB,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM-PN的值不变;② MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.18、如图,已知数轴上A、B两点所表示的数分别为-2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合),M为PA的中点,N为PB的中点,当点P在射线BA上运动时,线段MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.(3)若有理数a、b、c在数轴上的位置如图所示:且d=|a+b|-|-2-b|-|a-2c|-5,试求7(d+2c)2+2(d+2c)-5(d+2c)2-3(d+2c)的值.19、已知数轴上A、B两点对应数分别为—2,4,P为数轴上一动点,对应数为x.⑴若P为线段AB的三等分点,求P点对应的数.(答案:0或2)⑵数轴上是否存在P点,使P点到A、B距离和为10?若存在,求出x的值;若不存在,请说明理由.(答案:—4或6)⑶若点A、点B和P点(P点在原点)同时向左运动.它们的速度分别为1、2、1个单位长度/分钟,则第几分钟时P为AB的中点?(答案:2)。
一元一次方程应用专题十大题型(包括数轴上动点问题)一元一次方程应用题十大类型一:配套问题配套问题1. 某车间有52名工人生产甲、乙两种零件,每人每小时平均能生产15个甲种零件或18个乙种零件,1个甲种零件配4个乙种零件,则分配多少名工人生产甲种零件,多少名工人生产乙种零件,恰好使每小时生产的甲、乙两种零件零件配套?2. 加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人生产大小齿轮,才能每天加工的大小齿轮刚好配套?二.利润问题1.某商场购进一批服装,每件服装的进价为200元,由于换季,商城决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的标价是多少?2.某商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则该商场总的盈亏情况()A.亏损20元B.盈利30元C. 亏损50元D.不赢不亏三. 比赛积分问题1.小明参加竞赛活动,试卷由50道选择题组成,评分标准规定:选对一题得3分,不选得0分,选错一题倒扣1分.已知小明有5题没选,得103分,则他选错了_______道题.趣味应用题 '五羊杯'竞赛题2. 50名学生中,会讲英语的有36人,会讲日语的有20人,即不会讲英语也不会讲日语的有8人,即会讲英语又会讲日语的有_______人.四工程问题1. 一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲乙合作,需要几小时完成?2. 某工厂原计划用26小时生产一批零件,后因每小时多生产5个,用24小时不但完成了任务,而且还比原计划多生产了60个,问原计划生产多少个零件.五.行程问题1. 相遇问题例:A,B两地相距450km,甲乙两车分别从A,B两地同时出发,相向而行.已知甲车得速度为120km/h,乙车得速度为80km/h,经过t h两车相距50km,则t的值是____________.2.追及问题例:甲、乙两人练习跑步,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m.设 x s 后甲追上乙,则可列方程_________.3.小李骑自行车从甲地到乙地,出发40分钟后,小王骑自行车从甲地出发,两人同时到达乙地,已知小李骑自行车的速度是15千米/时,小王骑电动车的速度时小李骑自行车的速度的3倍.求甲乙两地的距离.4.小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8点同时出发,到上午10点两人相距36千米,到中午12时,两人又相距36千米,求A,B两地间的路程.5.甲乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依次顺时针方向环形,乙点依次逆时针环形,若乙的速度是甲的速度的4倍,则他们第2000次相遇在边()。
专题06 用方程解决数轴上的动点问题1. 已知数轴上点A与点B之间的距离为12个单位长度,点A在原点的左侧,到原点的距离为24个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A点出发,以每秒2个单位长度的速度向点C移动,设移动时间为t秒.(1)点A表示的数为,点B表示的数为,点C表示的数为.(2)用含t的代数式分别表示点P到点A和点C的距离:PA=,PC=.(3)当点P运动到B点时,点Q从A点出发,以每秒4个单位长度的速度向C点运动,点Q到达C点后,立即以同样的速度返回点A,在点Q开始运动后,当P,Q两点之间的距离为2个单位长度时,求此时点P表示的数.【答案】(1):﹣24,﹣12,12.(2):2t,36﹣2t.(3)﹣2,2,,.【解析】解:(1)如图,点A表示的数为﹣24,点B表示的数为﹣12,点C表示的数为12.故答案是:﹣24,﹣12,12.(2)由题意知,PA=2t,PC=36﹣2t.故答案是:2t,36﹣2t.(3)设P、Q两点之间的距离为2时,点Q的运动时间为m秒,此时点P表示的数是﹣12+2m.①当m≤9时,m秒时点Q表示的数是﹣24+4m,则PQ=|﹣24+4m﹣(﹣12+2m)|=2,解得m=5或7,此时点P表示的数是﹣2或2;②当m>9时,m秒后点Q表示的数是12﹣4(m﹣9),则PQ=|12﹣4(m﹣9)﹣(﹣12+2m)|=2,解得或,此时点P表示的数是或.综上,当P、Q两点之间的距离为2时,此时点P表示的数可以是﹣2,2,,.2.如图,数轴上A、B两点对应的有理数分别为8和12,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动.设运动时间为t秒.(1)当0<t<4时,用含t的式子表示BP和AQ;(2)当t=2时,求PQ的值;(3)当PQ=AB时,求t的值.【答案】(1)BP=4﹣t,AQ=8﹣2t.(2)6 (3)10或6.【解析】解:(1)∵当0<t<4时,P点对应的有理数为8+t<12,Q点对应的有理数为2t<8,∴BP=12﹣(8+t)=4﹣t,AQ=8﹣2t.(2)当t=2时,P点对应的有理数为8+2=10,Q点对应的有理数为2×2=4,所以PQ=10﹣4=6;(3)∵t秒时,P点对应的有理数为8+t,Q点对应的有理数为2t,∴PQ=|2t﹣(8+t)|=|t﹣8|,∵PQ=AB,∴|t﹣8|=×(12﹣8),解得t=10或6.故t的值是10或6.3.阅读理解:如图①,若线段AB在数轴上,A、B两点表示的数分别为a和b(b>a),则线段AB的长(点A到点B的距离)可表示为AB=b﹣a.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm到达P点,再向右移动7cm到达Q点,用1个单位长度表示1cm.(1)请你在图②的数轴上表示出P,Q两点的位置;(2)若将图②中的点P向左移动xcm,点Q向右移动3xcm,则移动后点P、点Q表示的数分别为多少?并求此时线段PQ的长.(用含x的代数式表示);(3)若P、Q两点分别从第(1)问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t(秒),当t为多少时PQ=2cm?【答案】(1)见解析.(2)移动后点P、点Q表示的数分别为:(﹣2﹣x)和:(5+3x);(3)当t为5或9时PQ=2cm.【解析】解:(1)P,Q两点的位置如图所示:(2)由题意得,点P所表示的数为:﹣2﹣x;点Q所表示的数为:5+3xPQ=5+3x﹣(﹣2﹣x)=7+4x;∴移动后点P、点Q表示的数分别为:(﹣2﹣x)和:(5+3x);(3)由题意得运动时间为t(秒)后点P和点Q表示的数分别为:﹣2+2t和5+t,则由PQ=2cm得:|5+t﹣(﹣2+2t)|=2∴|7﹣t|=2∴7﹣t=2或7﹣t=﹣2∴t=5或t=9.∴当t为5或9时PQ=2cm.4.已知,数轴上点A、C对应的数分别为a、c,且满足|a+7|+(c﹣1)2020=0,点B对应点的数为﹣3.(1)a=,c=;(2)若动点P、Q分别从A、B同时出发向右运动,点P的速度为3个单位长度/秒;点Q的速度为1个单位长度/秒,求经过多长时间P、Q两点的距离为;(3)在(2)的条件下,若点Q运动到点C立刻原速返回,到达点B后停止运动,点P运动至点C处又以原速返回,到达点A后又折返向C运动,当点Q停止运动点P随之停止运动.求在整个运动过程中,两点P,Q同时到达的点在数轴上表示的数.【答案】(1)﹣7,1.(2)经过秒或秒P,Q两点的距离为.(3)﹣1,0,﹣2.【解析】解:(1)由非负数的性质可得:a+7=0;c﹣1=0,∴a=﹣7,c=1,故答案为:﹣7,1.(2)设经过t秒两点的距离为由题意得:,解得或,答:经过秒或秒P,Q两点的距离为.(3)点P未运动到点C时,设经过x秒P,Q相遇,由题意得:3x=x+4,∴x=2,表示的数为:﹣7+3×2=﹣1,点P运动到点C返回时,设经过y秒P,Q相遇,由题意得:3y+y+4=2[1﹣(﹣7)],∴y=3,表示的数是:﹣3+3=0,当点P返回到点A时,用时秒,此时点Q所在位置表示的数是,设再经过z秒相遇,由题意得:,∴,∵+=<4+4,∴此时点P、Q均未停止运动,故z=还是符合题意.此时表示的数是:,答:在整个运动过程中,两点P,Q同时到达的点在数轴上表示的数分别是﹣1,0,﹣2.5.【背景知识】数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b:线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣10,8,点P,Q分别从A,B同时出发,点P以每秒5个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒(t>0).【综合运用】(1)A、B两点的距离为,线段AB的中点C所表示的数;(2)点P所在的位置的点表示的数为,点Q所在位置的点表示的数为(用含t的代数式表示);(3)P、Q两点经过多少秒会相遇?【答案】(1)18,﹣1;.(2)﹣10+5t,8﹣3t..(3).【解析】解:(1)A、B两点的距离为8﹣(﹣10)=18,线段AB的中点C所表示的数[8+(﹣10)]÷2=﹣1;(2)点P所在的位置的点表示的数为﹣10+5t,点Q所在位置的点表示的数为8﹣3t(用含t的代数式表示);(3)依题意有5t+3t=18,解得t=.故P、Q两点经过秒会相遇.故答案为:18,﹣1;﹣10+5t,8﹣3t.6.在数轴上点A表示数a,点B表示数b,点C表示数c;a是最大的负整数,a、b、c满足|a+b|+(c﹣5)2=0.(1)填空:a=,b=,c=;(2)P为数轴上一动点,其对应的数是x,当P在线段AC上,且PA+PB+PC=7时,求x的值.(3)若点P,Q分别从A,C同时出发,匀速相向运动,点P的速度为3个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回A;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q的相遇点在数轴上对应的数.【答案】(1)﹣1,1,5;.(2)0或2.(3)3.5或2.【解析】解:(1)∵a是最大的负整数,∴a=﹣1;∵|a+b|+(c﹣5)2=0,|a+b|≥0,(c﹣5)2≥0,∴a+b=0,c﹣5=0,∴b=﹣a=﹣(﹣1)=1,c=5.故答案为:﹣1,1,5;(2)∵PA+PB+PC=7,∴|x+1|+|x﹣1|+|x﹣5|=7,①当点P在线段AB上,即当﹣1≤x<1时,x+1+1﹣x+5﹣x=7,解得:x=0;②当点P在线段BC上,即当1≤x≤5时,x+1+x﹣1+5﹣x=7,解得:x=2.综上所述,x的值是0或2.(3)设运动时间为t,①当P、Q第一次相遇时,有:3t+t=5﹣(﹣1),解得:t=1.5,此时,相遇点在数轴上对应的数为5﹣1.5=3.5;②当P到达C点返回追上Q时,有:3t﹣t=5﹣(﹣1)解得:t=3,此时,相遇点在数轴上对应的数为5﹣3=2.∴在此运动过程中P,Q的相遇点在数轴上对应的数是3.5或2.7.已知数轴上两点A,B对应的数分别为﹣8和4,点P为数轴上一动点,若规定:点P到A的距离是点P到B的距离的3倍时,我们就称点P是关于A→B的“好点”.(1)若点P到点A的距离等于点P到点B的距离时,求点P表示的数是多少;(2)①若点P运动到原点O时,此时点P关于A→B的“好点”(填是或者不是);②若点P以每秒1个单位的速度从原点O开始向右运动,当点P是关于A→B的“好点”时,求点P的运动时间;(3)若点P在原点的左边(即点P对应的数为负数),且点P,A,B中,其中有一个点是关于其它任意两个点的“好点”,请直接写出所有符合条件的点P表示的数.【答案】(1)﹣2;.(2)1秒或10秒.(3)﹣4,﹣5,﹣12,﹣14,﹣32,﹣44.【解析】解:(1)∵数轴上两点A,B对应的数分别为﹣8和4,∴AB=4﹣(﹣8)=12,∵点P到点A、点B的距离相等,∴P为AB的中点,∴BP=PA=AB=6,∴点P表示的数是﹣2;(2)①当点P运动到原点O时,PA=8,PB=4,∵PA≠3PB,∴点P不是关于A→B的“好点”;故答案为:不是;②根据题意可知:设点P运动的时间为t秒,PA=t+8,PB=|4﹣t|,∴t+8=3|4﹣t|,解得t=1或t=10,所以点P的运动时间为1秒或10秒;(3)根据题意可知:设点P表示的数为n,PA=n+8或﹣n﹣8,PB=4﹣n,AB=12,分五种情况进行讨论:①当点A是关于P→B的“好点”时,|PA|=3|AB|,即﹣n﹣8=36,解得n=﹣44;②当点A是关于B→P的“好点”时,|AB|=3|AP|,即3(﹣n﹣8)=12,解得n=﹣12;或3(n+8)=12,解得n=﹣4;③当点P是关于A→B的“好点”时,|PA|=3|PB|,即﹣n﹣8=3(4﹣n)或n+8=3(4﹣n),解得n=10或1(不符合题意,舍去);④当点P是关于B→A的“好点”时,|PB|=3|AP|,即4﹣n=3(n+8),解得n=﹣5;或4﹣n=3(﹣n﹣8),解得n=﹣14;⑤当点B是关于P→A的“好点”时,|PB|=3|AB|,即4﹣n=36,解得n=﹣32.综上所述:所有符合条件的点P表示的数是:﹣4,﹣5,﹣12,﹣14,﹣32,﹣44.8.如图,A、B分别为数轴上的两点,A点对应的数为﹣5,B点对应的数为55,现有一动点P以6个单位/秒的速度从B点出发,同时另一动点Q恰好以4个单位/秒的速度从A点出发:(1)若P向左运动,同时Q向右运动,在数轴上的C点相遇,求C点对应的数.(2)若P向左运动,同时Q向左运动,在数轴上的D点相遇,求D点对应的数.(3)若P向左运动,同时Q向右运动,当P与Q之间的距离为20个单位长度时,求此时Q点所对应的数.【答案】(1)19.(2)﹣125,(3)11或27.【解析】解:(1)设运动时间为x秒,4x+6x=55﹣(﹣5),解得:x=6,因此C点对应的数为﹣5+4×6=19,(2)设运动时间为y秒,6y﹣4y=55﹣(﹣5),解得:y=30,点D对应的数为﹣5﹣4×30=﹣125,(3)①相遇前PQ=20时,设运动时间为a秒,4a+6a=55﹣(﹣5)﹣20,解得:a=4,因此Q点对应的数为﹣5+4×4=11,②相遇后PQ=20时,设运动时间为b秒,4b+6b=55﹣(﹣5)+20,解得:b=8,因此C点对应的数为﹣5+4×8=27,故Q点对应的数为11或27.9.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.【答案】(1)当t=时,P、Q两点相遇,相遇点M所对应的数是;(2)3或,(3)28.【解析】解:(1)根据题意得2t+t=28,解得t=,∴AM=>10,∴M在O的右侧,且OM=﹣10=,∴当t=时,P、Q两点相遇,相遇点M所对应的数是;(2)由题意得,t的值大于0且小于7.若点P在点O的左边,则10﹣2t=7﹣t,解得t=3.若点P在点O的右边,则2t﹣10=7﹣t,解得t=.综上所述,t的值为3或时,点P到点O的距离与点Q到点B的距离相等;(3)∵N是AP的中点,∴AN=PN=AP=t,∴CN=AC﹣AN=28﹣t,PC=28﹣AP=28﹣2t,2CN﹣PC=2(28﹣t)﹣(28﹣2t)=28.10.数轴是学习初中数学的一个重要工具利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:数轴上点A、点B表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为;AB=a﹣b线段AB的中点M表示的数为.如图,已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位长度的速度沿数轴向右匀速运动,点B以每秒2个单位长度向左匀速运动,设运动时间为t秒(t>0).(1)运动开始前,A、B两点的距离为个单位长度;线段AB的中点M所表示的数为;(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为.(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A、B按上述方式运动,A、B两点经过多少秒,线段AB的中点M与原点重合?【答案】(1)18;﹣1.(2)﹣10+3t;8﹣2t,(3)2.8秒或4.4秒.(4)2秒【解析】解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB的中点M所表示数为.故答案是:18;﹣1(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t.故答案是:﹣10+3t;8﹣2t(3)设它们按上述方式运动,A、B两点经过x秒会相距4个单位长度.根据题意得3x+2x=18﹣4,解得x=2.8;3x+2x=18+4,解得x=4.4.答:A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)由题意得解得t=2.答:经过2秒A、B两点的中点M会与原点重合.11.数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴时,我们发现有许多重要的规律:例如,若数轴上点A,B表示的数分别为a,b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点M表示的数为.如图,在数轴上,点A,B,C表示的数分别为﹣8,2,20.(1)如果点A和点C都向点B运动,且都用了4秒钟,那么这两点的运动速度分别是点A每秒个单位长度、点C每秒个单位长度;(2)如果点A以每秒1个单位长度沿数轴的正方向运动,点C以每秒3个单位长度沿数轴的负方向运动,设运动时间为t秒,请问当这两点与点B距离相等的时候,t为何值?(3)如果点A以每秒1个单位长度沿数轴的正方向运动,点B以每秒3个单位长度沿数轴的正方向运动,且当它们分别到达C点时就停止不动,设运动时间为t秒,线段AB的中点为点P;1.t为何值时PC=12;2.t为何值时PC=4.【答案】(1)2.5;4.5;(2)4或7,(3)1.t=.(3)2.t=20.【解析】解:(1)由题意知,=2.5(单位/秒).=4.5(单位/秒).故答案是:2.5;4.5;(2)设运动时间为t秒,此时点A表示的数是﹣8+t,点C表示的数是20﹣3t.所以AB=|﹣10+t|,BC=|18﹣3t|.那么|﹣10+t|=|18﹣3t|.解得:t=4或7.(3)1.当0<t≤6时,点A表示的数是﹣8+t,点B表示的数是2+3t,AB的中点P表示的数是﹣3+2t,PC=|﹣3+2t﹣20|=12,解得t=;2.当6<t≤28时,点A表示的数是﹣8+t,点B表示的数是20,AB的中点P表示的数是|6+|,PC=|6+﹣20|=4,解得t=20.12.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A、B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为【问题情境】如图1,已知数轴上有三点A、B、C,AB=60,点A对应的数是40.【综合运用】(1)点B表示的数是.(2)若BC:AC=4:7,求点C到原点的距离.(3)如图2,在(2)的条件下,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度2倍少5个单位长度/秒.经过5秒,点P、Q之间的距离与点Q、R之间的距离相等,求动点Q的速度;(4)如图3,在(2)的条件下,O表示原点,动点P、T分别从C、O两点同时出发向左运动,同时动点R从点A出发向右运动,点P、T、R的速度分别为5个单位长度/秒,1个单位长度/秒、2个单位长度/秒,在运动过程中,如果点M为线段PT的中点,点N为线段OR的中点.请问PT﹣MN的值是否会发生变化?若不变,请求出相应的数值;若变化,请说明理由.【答案】(1)﹣20..(2)100,(3)9个单位长度/秒.(4)30.【解析】解:(1)40﹣60=﹣20.故点B表示的数是﹣20.(2)如图1,∵AB=60,BC:AC=4:7,∴=,解得:BC=80,∵AB=60,点A对应的数是40,∴B点对应的数字为:﹣20,∴点C到原点的距离为:80﹣(﹣20)=100;(3)如图2,设R的速度为每秒x个单位,则R对应的数为40﹣5x,P对应的数为﹣100+15x,Q对应的数为10x+15,PQ=5x﹣115或115﹣5xQR=15x﹣25∵PQ=QR∴5x﹣115=15x﹣25或115﹣5x=15x﹣25解得:x=﹣9(不合题意,故舍去)或x=7∴动点Q的速度是2×7﹣5=9个单位长度/秒,(4)如图3,设运动时间为t秒P对应的数为﹣100﹣5t,T对应的数为﹣t,R对应的数为40+2t,PT=100+4t,M对应的数为﹣50﹣3t,N对应的数为20+t,MN=70+4t∴PT﹣MN=30,∴PT﹣MN的值不会发生变化,是30.13.已知多项式﹣2m3n3+4中,含字母的项的系数为a,多项式的次数为b,且a、b分别是点A、B在数轴上的对应的数,如图所示:(1)点A表示的数为,点B表示的数为;(2)一小球甲从点A处以1个单位/秒的速度向左运动,同时另一小球乙从点B处以2个单位/秒的速度也向左运动,设运动的时间为t(秒):①甲小球所在的点表示的数为,乙小球所在的点表示数为(用含t的代数式表示);②求经过多长时间甲、乙小球相距2个单位长度?③试探究:甲、乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请求出甲,乙两小球到原点的距离相等时经历的时间.【答案】(1)﹣2,6;(2)①﹣2﹣t,6﹣2.②6秒或10秒③或8秒.【解析】解:(1)∵多项式﹣2m3n3+4中,含字母的项的系数为a,多项式的次数为b,且a、b分别是点A、B在数轴上的对应的数,∴a=﹣2,b=6,∴点A表示的数为﹣2,点B表示的数为6;(2)①甲小球所在的点表示的数为﹣2﹣t,乙小球所在的点表示数为6﹣2t;②甲在左边时,依题意有6﹣2t﹣(﹣2﹣t)=2,解得t=6;乙在左边时,依题意有﹣2﹣t﹣(6﹣2t)=2,解得t=10.故经过6秒或10秒长时间甲、乙小球相距2个单位长度;③原点是甲乙的中点时,依题意有﹣(﹣2﹣t)=6﹣2t,解得t=;甲乙相遇时,依题意有﹣2﹣t﹣(6﹣2t)=0,解得t=8.故甲、乙两小球到原点的距离可能相等,甲,乙两小球到原点的距离相等时经历的时间秒或8秒.14.如图,数轴上有A,B两点,A在B的左侧,表示的有理数分别为a,b,已知AB=12,原点O是线段AB上的一点,且OA=2OB.(1)a=,b=;(2)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为每秒2个单位长度,点Q 的速度为每秒1个单位长度,设运动时间为t秒,当点P与点Q重合时,P,Q两点停止运动,当t为何值时,2OP﹣OQ=4.(3)在(2)的条件下,若当点P开始运动时,动点M从点A出发,以每秒3个单位长度的速度也向右运动,当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后再立即返回,以同样的速度向点Q运动,如此往返,直到点P,Q停止时,点M也停止运动,求在此过程中点M行驶的总路程和点M停止运动时在数轴上所对应的有理数.【答案】(1)﹣8;4;(2)1.6秒或8秒,(3)点M行驶的总路程为36和点M最后位置在数轴上对应的实数为16.【解析】解:(1)∵AB=12,AO=2OB,∴AO=8,OB=4,∴A点所表示的实数为﹣8,B点所表示的实数为4,∴a=﹣8,b=4.故答案是:﹣8;4;(2)当0<t<4时,如图1,AP=2t,OP=8﹣2t,BQ=t,OQ=4+t,∵2OP﹣OQ=4,∴2(8﹣2t)﹣(4+t)=4,t==1.6,当点P与点Q重合时,如图2,2t=12+t,t=12,当4<t<12时,如图3,OP=2t﹣8,OQ=4+t,则2(2t﹣8)﹣(4+t)=4,t=8,综上所述,当t为1.6秒或8秒时,2OP﹣OQ=4;(3)当点P到达点O时,8÷2=4,此时,OQ=4+t=8,即点Q所表示的实数为8,如图4,设点M 运动的时间为t 秒,由题意得:2t ﹣t =12,t =12,此时,点P 表示的实数为﹣8+12×2=16,所以点M 表示的实数是16, ∴点M 行驶的总路程为:3×12=36, 答:点M 行驶的总路程为36和点M 最后位置在数轴上对应的实数为16.15.如图,已知数轴上点A 表示的数为6,且AB =10,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒(t >0).(1)数轴上点B 表示的数为 ,当t =2时,点P 表示的数为 ;(2)动点R 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P ,R 同时出发,问经过多长时间P ,R 两点相遇?(3)动点R 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P ,R 同时出发,问点R 运动多长时间P ,R 两点相距2个单位长度?【答案】(1)4-,2;(2)2秒;(3)85或125秒. 【解析】(1)根据点A 表示的数为6,且AB =10,点B 在点A 的左则,列出算式求解即可;根据点P 从点A 出发,每秒2个单位长度向左匀速运动,列出算式求解即可;(2)设经过t 秒后P ,R 两点相遇,根据题意列出方程求解即可;(3)根据两种情况:当P ,R 两点还没有相遇,相距2个单位长度;当P ,R 两点相遇后再相离,相距2个单位长度,据此根据题意列出方程求解即可.【详解】解:(1)B 点表示的数为6104-=-;当2t =时,点P 表示的数为:6222-⨯=;故答案是:4-,2;(2)设经过t 秒后P ,R 两点相遇,依题意得:2310t t +=,解之得:2t=;∴经过2秒后P,R两点相遇;(3)设P,R两点运动的时间是t当P,R两点还没有相遇,相距2个单位长度,依题意得:23102t t+=-,解之得:85t=;当P,R两点相遇后再相离,相距2个单位长度,依题意得:23102t t+=+,解之得:125t=;综上所述,85或125秒后,P,R两点相距2个单位长度【点睛】本题考查了两点间的距离,根据已知得出各线段之间的等量关系是解题关键,要注意分类讨论.16.已知数轴上A、B两点对应的数分别是a、b,点A在原点的左侧且到原点的距离是4,点B在原点的右侧,且到原点的距离是点A到原点的距离的4倍.(1)a=,b=,AB=;(2)动点M、N分别从点A、B的位置同时开始在数轴上做没有折返的运动,已知动点M的运动速度是1个单位长度/秒,动点N的运动速度是3个单位长度/秒.①若点M和点N相向而行,经过几秒点M与点N相遇?②若点M和点N都向左运动,经过几秒点N追上点M?③若点M和点N的运动方向不限,经过几秒M、N相距6个单位长度?【答案】(1)-4,16,20;(2)①5秒,②10秒,③72秒或132秒或7秒或13秒【解析】(1)根据数轴上点的位置及两点之间的距离解答即可.(2)①相遇问题,两者的路程和等于两点间的距离;②追及问题,两者的路程差等于两点的距离;③分类讨论,根据相向运动及同时向左运动,然后分相遇前和相遇后,根据数轴上两点间距离,列方程求解即可.【详解】解:(1)已知AB两点对应的数分别为a,b,∵A在原点的左侧,且距离为4,∴a=-4.当B在原点的右侧,且到原点的距离是A到原点距离的4倍,∴b=|a|×4=16,∴AB=|AO|+|OB|=4+16=20.即a=-4,b=16,AB=20.故答案为:-4,16,20.(2)①若M,N相向而行,设x秒相遇,则1×x+3x=20,解得x=5.∴5秒M与N相遇.答:5秒M与N相遇.②当M,N都向左运动,设x秒相遇,则3×x-x×1=20,解得x=10.答:10秒点N追上点M.③当M,N运动方向不限时,设y秒M,N相距6个单位长度.有两种情况:①当M,N相向运动,相遇前相距6个单位长度.则20﹣y×1﹣y×3=6,解得y=72,当M,N相向运动,相遇后相距6个单位长度.则y×1+y×3=20+6,解得y=13 2②当M,N都向左运动,N追上M前相距6个单位长度.则3y+6-1×y=20,解得y=7.当M,N都向左运动,N追上M后相距6个单位长度.则3y-1×y=20+6,解得y=13,综上所述,当M,N相向运动时72秒或132秒时,M,N相距6个单位;当M,N均向左运动时,7秒或13秒时M,N相距6个单位.【点拨】本题一元一次方程的应用和相遇知识点,利用数形结合思想解题是关键.17.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值:a=;b;c=;(2)在(1)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而变化?若变化,请说明理由;若不变,请求其值.【答案】(1)-1;1;5;(2)不变,BC-AB=2.【解析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b是最小的正整数,∴b=1.根据题意得:c-5=0且a+b=0,∴a=-1,b=1,c=5.故答案为:-1;1;5;(2)不变.理由如下:t秒时,点A对应的数为-1-t,点B对应的数为2t+1,点C对应的数为5t+5.∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t)=3t+2,∴BC-AB=(3t+4)-(3t+2)=2.【点睛】本题考查了一元一次方程的应用,数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.18.已知数轴上,点A和点B分别位于原点O两侧,点A对应的数为a,点B对应的数为b,且|a-b|=7(1)若b=-3,则a的值为__________;(2)若OA=3OB,求a的值;(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,求所有满足条件的c的值.【答案】(1)4;(2)a=±5.25;(3)C点对应±2.8,±4.【解析】(1)根据|a-b|=7,a、b异号,即可得到a的值;(2)分两种情况讨论,依据OA=3OB,即可得到a的值;(3)分四种情况进行讨论,根据O为AC的中点,OB=3BC,即可求出所有满足条件的c 的值.【详解】(1)∵|a﹣b|=14,∴|a+3|=14,又∵a>0,∴a=4,故答案为:4;(2)设B点对应的数为a+7.3(a+7﹣0)=0﹣a,解得a=﹣5.25;设B点对应的数为a﹣7.3[0﹣(a﹣7)]=a﹣0,解得a=5.25,综上所得:a=±5.25;(3)满足条件的C有四种情况:①如图:3x+4x=7,解得x=1,则C对应﹣4;②如图:x+2x+2x=7,解得x=1.4,则C对应﹣2.8;③如图:x+2x+2x=7,解得x=1.4,则C对应2.8;④如图:3x+4x=7,解得x=1,则C对应4;综上所得:C点对应±2.8,±4.【点拨】此题考查的是一元一次方程的应用和数轴的知识,用到知识点还有线段的中点,关键是根据线段的和差关系求出线段的长度.19.已知数轴上有A,B两点,分别代表﹣40,20,两只电子蚂蚁甲,乙分别从A,B两点同时出发,甲沿线段AB以1个单位长度/秒的速度向右运动,甲到达点B处时运动停止,乙沿BA方向以4个单位长度/秒的速度向左运动.(1)A,B两点间的距离为个单位长度;乙到达A点时共运动了秒.(2)甲,乙在数轴上的哪个点相遇?(3)多少秒时,甲、乙相距10个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲,乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.【答案】(1)60,15;(2)甲,乙在数轴上的﹣28点相遇;(3)10秒或14秒时,甲、乙相距10个单位长度;(4)甲,乙能在数轴上相遇,相遇点表示的数是﹣20【解析】(1)根据A,B两点之间的距离AB=|﹣40﹣20|,根据题意即可求解;(2)根据题意列方程即可得到结论;(3)根据题意列方程即可得到结论;(4)设甲到达B点前,甲,乙经过a秒在数轴上相遇,根据题意得方程解方程即可.【详解】(1)A、B两点的距离为AB=|﹣40﹣20|=60,乙到达A点时共运动了60÷4=15秒;故答案为:60,15;(2)设甲,乙经过x秒会相遇,根据题意得:x+4x=60,解得x=12,﹣40+x=﹣28.即甲,乙在数轴上的﹣28点相遇;(3)两种情况:相遇前,设y秒时,甲、乙相距10个单位长度,根据题意得,y+4y=60﹣10,解得y=10;相遇后,设y秒时,甲、乙相距10个单位长度,根据题意得,y+4y﹣60=10,解得:y=14,即10秒或14秒时,甲、乙相距10个单位长度;(4)乙到达A点需要15秒,甲行驶了15个单位长度,设甲到达B点前,甲,乙经过a秒在数轴上相遇根据题意得方程:4(a-15)=15+1×(a-15)解方程得:a=20由于甲到达B点需要时间为60秒,而20<60此时甲运动的个单位长度为:20×1=20此时甲在数轴上的位置表示的数为:-40+20=-20故甲,乙能在数轴上相遇,相遇点表示的数是﹣20.【点睛】本题考查了数轴和一元一次方程的应用,关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程.20.如图,已知数轴上两点A ,B 表示的数分别为-2和7,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使2AC BC =,求点C 表示的数;(3)点P 和点Q 是数轴上的两个动点,点P 从A 出发以2个单位/秒的速度向右运动,同时点Q 从B 出发以1个单位/秒的速度向左运动,设运动时间为1秒,当12PB AQ +=时,请直接写出t 的值:【答案】(1)9;(2)4或16;(3)2t =或10t =【解析】(1)数轴上点B 在点A 的右侧,故用电B 的坐标减去点A 的坐标即可得AB 的值;(2)设点C 表示的数为x ,根据AC =2BC ,列绝对值方程求解即可;(3)利用两点间距离公式用含t 的式子表示出PB 和AQ ,再列方程即可.【详解】解:(1)数轴上两点A ,B 表示的数分别为-2,7,∴AB = 7-(-2)= 9,答:A B 的值为9;(2)设点C 表示的数为x ,由题意得:| x -(-2)|= 2|x - 7|,∴|x +2|=2|x - 7|,∴x =16或x =4..答:点C 表示的数为4或16;(3)t 秒后,PB = |2t - 2- 7|= |2t - 9|,AQ =|7- t + 2|= |9- t|,当PB + AQ = 12时,|2t - 9|+|9-t |= 12,当0≤t ≤4.5时,解得:t =2;当4.5 < t ≤9时,解得:t = 12(舍);。
数轴上的距离与动点问题专题练习一、选择题1、在数轴上到数为1的点距离等于2的点表示的数是().A. 1或3B. 1或-3C. -1或-3D. -1或3答案:D解答:在1的左右各一个,1向左移2个单位为-1,1向右移2个单位为3,∴答案为-1或3.2、一个数在数轴上所对应的点向右移动8个单位后,得到它的相反数,则这个数是().A. 4B. -4C. 8D. -8答案:B解答:设该数为x,则其向右移动8个单位后,为x+8,∵两者互为相反数,∴x+x+8=0,∴x=-4.3、在数轴上,与表示数-2的点的距离是5的点表示的数是().A. -3B. 7C. ±3D. 3或-7答案:D解答:到-2的点距离为5的点可能在-2的左侧,即为-7,也可能在-2右侧,即为3.4、已知A、B是数轴上任意两点,对应的数分别是a、b,则表示A、B两点的距离正确的是().A. |a|+|b|B. |a|-|b|C. |a+b|D. |a-b|答案:D解答:数轴上的数从左到右依次变大,用右边的数减去左边的数,即为两点之间的距离,故选D.5、如图,数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D对应的数分别是整数a、b、c、d,且d-2a=10,那么数轴的原点应是().A. A点B. B点C. C点D. D点答案:B解答:若原点是A点,则a=0,d=7.此时d-2a=7,与题意不符.A排除.若原点是B点,则a=-3,d=4.此时d-2a=10,与题意相符.B选项正确.若原点是C点,则a=-4,d=3.此时d-2a=11,与题意不符.C排除.若原点是D点,则a=-7,d=0.此时d-2a=14,与题意不符.D排除.选B.6、把一个刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x,则x的值为().A. 4.2B. 4.3C. 4.4D. 4.5答案:C解答:根据数轴可知:x-(-3.6)=8-0,解得x=4.4,选C.二、填空题7、数轴上P点对应的数是5,把P点右移3个单位长度后,再向左移动1个单位长度到达Q点,这时Q点表示的数是______.答案:7解答:先向右:5+3=8,再向左:8-1=7,则Q点表示的数是7.8、已知数轴上A、B两点对应数分别为-2和4,P为数轴上一点,对应数为x,若数轴上存在点P,使P点到A点、B点距离和为10,则x的值为______.答案:-4或6解答:设P表示的数为x,①当P在AB左侧,P A+PB=10,4-x+(-2-x)=10,解得x=-4.②当P在AB右侧时,x+2+x-4=10,解得:x=6,故答案为:-4或6.三、解答题9、如图,数轴上点A对应的有理数为20,点P以每秒2个单位长度的速度从点A出发,点Q以每秒4个单位长度的速度从原点O出发,且P,Q两点同时向数轴正方向运动,设运动时间为t秒.(1)当t=2时,P,Q两点对应的有理数分别是______,______,PQ=______.(2)当PQ=10时,求t的值.答案:(1)24;8;16(2)t的值为5秒或15秒.解答:(1)点P对应的有理数为2×2+20=24,点Q对应的有理数为4×2=8,∴PQ=24-8=16.(2)①当点P在点Q右侧时,∵PQ=(20+2t)-4t=10,∴解得,t=5.②当点P在点Q左侧时,∵PQ=4t-(20+2t)=10,∴解得,t=15.综上所述,t的值为5秒或15秒.10、数轴上两点A、B对应的数分别为a、b,已知(a+5)2+|b-1|=0,点P从A出发向右以每秒3个单位长度的速度运动,点Q从B出发向右以每秒4个单位长度的速度运动.求t 秒后P、Q之间的距离(用含t的式子表示).答案:PQ=1+4t-(-5+3t)=t+6.解答:∵(a+5)2≥0,|b-1|≥0,(a+5)2+|b-1|=0,∴(a+5)2=0,|b-1|=0,∴a=-5,b=1,∴P对应的数为:-5+3t,Q对应的数为:1+4t,由题意:Q始终在P右边,故PQ=1+4t-(-5+3t)=t+6.11、已知点A在数轴上对应的数是a,点B在数轴上对应的数是b,且|a+4|+(b-1)2=0.现将A、B之间的距离记作|AB|,定义|ABa-b|.(1)|AB|=______.(2)设点P在数轴上对应的数是x,当|P A|-|PB|=2时,求x的值.答案:(1)5(2)x=-12.解答:(1)由题可知:4010ab+=⎧⎨-=⎩,解得41ab=-⎧⎨=⎩,∴|ABa-b-4-1|=5.(2)当x<-4时,|P A|-|PBx+4|-|x-1|=-x-4+x-1=-5≠2;当-4≤x≤1时,|P A|-|PBx+4|-|x-1|=x+4+x-1=2x+3=2,解得x=-12;当x>1时,|P A|-|PBx+4|-|x-1|=x+4-x+1=5≠2;综上所述,x=-12.12、在数轴上,动点A从原点O出发向负半轴匀速运动,同时动点B从原点O出发向正半轴匀速运动,动点B的速度是动点A的速度的两倍,经过5秒后A、B两点间的距离为15个单位长度.(1)直接写出动点B的运动速度.(2)若5秒后,动点A立即开始以原来的速度大小向正半轴运动,动点B继续按照原来的方式运动,问再经过多长时间OB=3OA(其中OB表示点B到原点的距离,OA表示点A 到原点的距离)?答案:(1)2个单位每秒.(2)再经过1秒或25秒OB=3OA.解答:(1)设动点A的速度为x,则动点B的速度2x,由题意得:5x+5×2x=15.∴x=1,2x=2,∴B的速度:2个单位每秒.(2)设再经过t秒,OB=3OA,此时A点表示的数:-5+t.B点表示的数:10+2t,∵OB=3OA,∴3|-5+t-010+2t-0|,∴t=1或25,∴再经过1秒或25秒OB=3OA.13、已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则-2表示的点与数______表示的点重合. (2)若-1表示的点与3表示的点重合,5表示的点与数______表示的点重合.(3)若数轴上A ,B 两点之间的距离为c 个单位长度,点A 表示的有理数是a ,并且A ,B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少? 答案:(1)2(2)-3(3)a ±2c. 解答:(1)根据对称性,中心为原点. (2)根据对称性,中心为“1”.(3)先求A 点与对称中心的距离,再进一步得到折线与数轴的交点表示的有理数. 14、如图,点A 、B 和线段CD 都在数轴上,点A 、C 、D 、B 起始位置所表示的数分别为-2、0、3、12;线段CD 沿数轴的正方向以每秒1个单位的速度移动,移动时间为t 秒.(1)当t =0秒时,AC 的长为______;当t =2s 时,AC 的长为______. (2)用含有t 的代数式表示AC 的长为______.(3)当t =______秒时,AC -BD =5;当t =______秒时,AC +BD =15. 答案:(1)2;4(2)t +2(3)6;11 解答:(1)当t =0秒时,AC =|-2-0-2|=2, 当t =2秒时,移动后C 表示的数为2, ∴AC =|-2-2|=4. 故答案为:2;4.(2)点A 表示的数为-2,点C 表示的数为t , ∴AC =|-2-t |=t +2. 故答案为:t +2.(3)∵t 秒后点C 运动的距离为t 个单位长度,点D 运动的距离为t 个单位长度, ∴C 表示的数是t ,D 表示的数是3+t , ∴AC =t +2,BD =|12-(3+t )|,∵AC-BD=5,∴t+2-|12-(t+3)|=5,解得:t=6,∴当t=6秒时AC-BD=5,∵AC+BD=15,∴t+2+|12-(t+3)|=15,t=11,当t=11秒时AC+BD=15.故答案为:6,11.15、如图,点A在数轴上表示的数是-4,点B表示的数是8,P,Q两点同时分分别以1个单位/秒和2个单位/秒的速度从A,B两点出发沿数轴运动,设运动时间为t(秒),(1)线段AB的长度为多少个单位.(2)如果点P向右运动,点Q向左运动,几秒后PQ=12 AB?(3)如果点P,Q同时向左运动,M,N分别是P A和BQ的中点,是否存在这样的时间t使得线段MN=14AB?若存在,求出t的值.若不存在,请说明理由.答案:(1)12.(2)2秒或6秒后PQ=12 AB.(3)存在t=18或30秒时,MN=14 AB.解答:(1)AB=8-(-4)=12.(2)设t秒后,PQ=12 AB,①当P在Q左侧时,(8-2t)-(-4+t)=6,t=2.②当P在右侧Q时,(-4+t)-(8-2t)=6,t=6,∴2秒或6秒后PQ=12 AB.(3)①M在N右侧时,frac{-4+(-4-t)}2-frac{8+(8-2t)}2=3,解得t=30.②M在N左侧时,frac{8+(8-2t)}2-frac{-4+(-4-t)}2=3,解得t=18,存在t=18或30秒时,MN=14 AB.16、已知数轴上两点A、B对应的数分别为-2,6,点P为数轴上一动点,其对应的数为x.(1)若点P为AB的中点,则点P对应的数为______.(2)数轴上是否存在点P,使点P到点A,B的距离之和为16,若存在,请求出x的值,若不存在,请说明理由.(3)如果点P以每秒钟5个单位长度的速度从点O向右运动时,点A和点B分别以每秒钟2个单位长度和每秒钟3个单位长度的速度也向右运动,且三点同时出发,那么经过几秒钟,点P到点A、点B的距离相等.答案:(1)2(2)存在,x=-6或10时.(3)过45秒,点P到点A,点B的距离相等.解答:(1)262-+=2,∴P对应的数字为2.(2)①若P在A左边,则P A+PB=(-2-x)+(6-x)=16,∴x=-6,②若P在A、B中间,则P A+PB=8,不符合题意,③若P在B右边,则P A+PB=(x+2)+(x-6)=16,∴x=10,即当x=-6或10时,P A+PB=16.(3)经过t秒后,P对应的数字为:5t,A对应的数字为:-2+2t,B对应的数字为:6+3t,显然,B始终在A右边,∴要使P A=PB,P可能是A、B的中点,∴22632t t-+++=5t,∴t=45,即过45秒,点P到点A,点B的距离相等.17、对数轴上的点P进行如下操作:先把点P表示的数乘2,再把所得数的对应点向右平移1个单位,得到点P的对应点P}||=’,现对数轴上的A、B两点进行上述操作后得到其对应点A’,B’.(1)如图,若点A表示的数是-4,则点{A||=’表示的数是______.(2)若点{B||=’表示的数是41,求点B表示的数,并在数轴上标出点B.(3)若(1)中点A、(2)中点B同时分别以2个单位长度/秒的速度相向运动,点M(M 点在原点)同时以4个单位长度/秒的速度向右运动.①是否存在M点,使3MA=2MB?若存在,直接写出点M对应的数;若不存在,请说明理由.②几秒后点M到点A、B的距离相等?求此时点M对应的数.答案:(1)-7(2)20;(3)①存在,点M表示的数为569或1043.②2秒;8.6秒;24.解答:(1)若点A表示的数是-4,则点{A||=’表示的数是-4×2+1=-7.故答案为:-7.(2)设点B表示的数为b,则2b+1=41,解得:b=20,数轴上表示如图:(3)①略.②设t秒后点M到点A,B的距离相等,AM=4t-(-4+2t)=2t+4,BM=20-2t-4t=20-6t,则2t+4=20-6t,解得:t=2,2×4=8,则点M对应的数是8;当点A与点B重合时有20-2t=2t-4,解得:t=6,6×4=24,则点M对应的数是24.18、已知a,b分别是两个不同的点A、B所表示的有理数,且|a|=5,|b|=2,它们在数轴上的位置如图所示.(1)则a=______,b=______.(2)|a-b|=______.(3)若C点在数轴上,C点到B点的距离是C点到A点距离的13,求C点表示的数.答案:(1)-5;-2(2)3(3)-114或-12.解答:(1)∵|a|=5,|b|=2,∴a=-5,b=-2.(2)|a-b-5-(-2)-5+2-3|=-3.(3)由题可知:分两种情况,①当a<c<b<0时,有b-c=13(c-a),即-2-c=13[c-(-5)]得:c=-114.②当a<b<c时,有c-b=13(c-a),即c-(-2)=13[c-(-5)]得c=-12,综上,c表示的数为-114或-12.19、如图,点A、B、C是数轴上三点,点C表示的数为6,BC=4,AB=12.(1)写出数轴上点A、B表示的数:______,______.(2)动点P、Q同时从A、C出发,点P以每秒4个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.①求数轴上点P、Q表示的数(用含t的式子表示).②t为何值时,点P、Q相距6个单位长度.答案:(1)-10;2(2)①点P表示的数为-10+4t,点Q表示的数为6-2t.②53或113.解答:(1)∵6-4=2,∴B表示的数为2,∵2-12=-10,∴A表示的数为-10.(2)①根据题意得:点P表示的数为-10+4t,点Q表示的数为6-2t.②当点P、Q相距6个单位长度时,若P在Q的左侧,则6-2t-(-10+4t)=6,解得t=53,若P在Q右侧,则-10+4t-(6-2t)=6,解得t=11 3,∴t的值为53或113.20、如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照图并思考,完成下列问题.(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是______.A,B两点间的距离是______.(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是______,A,B两点间的距离为______.(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是______,A,B两点间的距离是______.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A,B两点间的距离为多少?答案:(1)4;7(2)1;2(3)-92;88(4)m+n-p,|n-p|.解答:(1)∵-3+7=4,∴点B表示的数是4.A,B之间的距离是|-3-4|=7.(2)∵3-7+5=-4+5=1,∴点B表示的数是1,A、B之间的距离是|3-1|=2.(3)∵-4+168-256=-92.∴点B表示的数是-92.A,B之间的距离是|-4-(-92)|=88.(4)点A表示数m,向右移动n个单位;再向左移动p个单位后,点B表示的数是m+n-p.A,B两点间的距离为|m+n-p-mn-p|.21、已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0.动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值.(2)若点P到A点的距离是点P到B点距离的2倍,求P点对应的数.(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.答案:(1)a=-24,b=-10,c=10.(2)4或-443.(3)当Q点开始运动后第5、9、252、292秒时,P、Q两点之间的距离为4,证明见解答.解答:(1)∵|a+24|+|b+10|+(c-10)2=0,且|a+24|≥0,|b+10|≥0,(c-10)2≥0,∴|a+24|=0,|b+10|=0,(c-10)2=0,∴a=-24,b=-10,c=10.(2)设P点对应的数为x.|x-(-24)|=2|x-(-10)|,|x+24|=2|x+10|,x+24=2(x+10)或x+24=-2(x+10).得:x=4或x=-443.∴P点对应的数为4或-443.(3)①当P点在Q点右侧,且Q点还没追上P点时,3t+4=14+t,得:t=5.②当P在Q点左侧,且Q点追上P点后,3t-4=14+t,得:t=9.③当Q点到达C点后,当P点在Q点左侧时,14+t+4+3t-34=34,t=252.④当Q点到达C点后,当P点在Q点右侧时,14+t-4+3t-34=34,得t=292.综上所述,当Q点开始运动后第5、9、252、292秒时,P、Q两点之间的距离为4.。
专题——数轴上的动点问题类型1 数轴上的规律探究问题方法:用由特殊到一般的思想例1. 如图,A 点的初始位置位于数轴上表示1的点,现对A 点做如下移动:第1次向左移动3个单位长度至B 点,第2次从B 点向右移动6个单位长度至C 点,第3次从C 点向左移动9个单位长度至D 点,第4次从D 点向右移动12个单位长度至E 点,…,依此类推,这样第_____次移动到的点到原点的距离为2018。
【分析】: 本题考查了数轴上点的坐标变化和平移规律(左减右加),考查了一列数的规律探究。
对这列数的奇数项、偶数项的规律分别进行探究,是解决这道题的关键。
根据数轴上点的坐标变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对奇数项、偶数项分别探究,找出其中的规律(相邻两数都相差3),写出表达式就可解决问题.【解答】:第1次从点A 向左移动3个单位至点B ,则B 表示为:1﹣3=﹣2;第2次从点B 向右移动6个单位至点C ,则C 表示为:﹣2+6=4;第3次从点C 向左移动9个单位至点D ,则D 表示为:4﹣9=﹣5;第4次从点D 向右移动12个单位至点E ,则点E 表示为﹣5+12=7;第5次从点E 向左移动15个单位至点F ,则F 表示为7﹣15=﹣8;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:-(3n+1)/2,当移动次数为偶数时,点在数轴上所表示的数满足:(3n+2)/2。
①当移动次数n 为奇数时,-(3n+1)/2=﹣2018,n=1345,②当移动次数n 为偶数时,(3n+2)/2=2018,n=4034/3(不合题意)。
故答案为:1345。
类型2 数轴上的两点距离问题方法:用分类讨论及数形结合思想例2.已知M 、N 在数轴上,M 对应的数是﹣3,点N 在M 的右边,且距M 点4个单位长度。
点P 、Q 是数轴上两个动点;(1)直接写出点N 所对应的数;(2)当点P 到点M 、N 的距离之和是5个单位时,点P 所对应的数是多少?(3)如果P 、Q 分别从点M 、N 出发,均沿数轴向左运动,点P 每秒走2个单位长度,先出发5秒钟;点Q 每秒走3个单位长度。
初一数学动点问题20题及答案数轴上动点问题1.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.(1)线段AC的长为__________个单位长度;点M表示的数为;(2)当t=5时,求线段MN的长度;(3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).2.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为_________,线段BC的中点D所表示的数是;(2)若AC=8,求x的值;(3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位?3.动点A、B同时从数轴上的原点出发向相反的方向运动,且A、B的速度之比是1:4(速度单位:长度单位/秒),3秒后,A、B两点相距15个单位长度.(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置.(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?5.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=_______,b=_______;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,更多好题请进入:437600809,请问经过多少秒甲追上乙?6.在数轴上有A、B两动点,点A起始位置表示数为﹣3,点B起始位置表示数为12,点A的速度为1单位长度/秒,点B的运动速度是点A速度的二倍.(1)若点A、B同时沿数轴向左运动,多少秒后,点B与点A相距6单位长度?(2)若点A、点B同时沿数轴向左运动,是否有一个时刻,表示数﹣3的点是线段AB 的中点?如果有,求出运动时间;如果没有,说明理由.7.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H 同时出发,问点P运动多少秒时追上点H?8.如图,数轴上的点A,B对应的数分别为﹣10,5.动点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)求线段AB的长;(2)直接用含t的式子分别表示数轴上的点P,Q对应的数;(3)当PQ=AB时,求t的值.9.如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O 出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数______;当t=3时,OP=_______.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?10.如图.点A、点C是数轴上的两点,0是原点,0A=6,5AO=3CO.(1)写出数轴上点A、点C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒1个单位长度的速度沿数轴向右匀速运动,点Q以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后,这两个动点到原点O的距离存在2倍关系?11.已知数轴上两点A,B对应的数分别为﹣1,3,P为数轴上的动点,其对应的数为x.(1)数轴上是否存在点P,使P到点A、点B的之和为5?若存在,请求出x的值;若不存在,说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问,它们同时出发几分钟时点P到点A、点B的距离相等?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点能否相遇?如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距18个单位长度?如果能,求相距18个单位长度的时刻;如不能,请说明理由.13.如图1,点A,B是在数轴上对应的数字分别为﹣12和4,动点P和Q分别从A,B 两点同时出发向右运动,点P的速度是5个单位/秒,点Q的速度是2个单位/秒,设运动时间为t秒.(1)AB=.(2)当点P在线段BQ上时(如图2):①BP=______________(用含t的代数式表示);②当P点为BQ中点时,求t的值.。
七年级数学数轴上的动点压轴题专题练习题目一:小明在数轴上从0点出发向右走,每走一步距离为3,走了n步后,他所在的位置是多少?解答:小明每走一步距离为3,所以n步后走的距离为3n。
由于小明从0点出发向右走,所以他所在的位置为0 + 3n = 3n。
题目二:小华在数轴上从原点出发向右走,每走一步距离为4,走了n步后,他所在的位置是多少?解答:小华每走一步距离为4,所以n步后走的距离为4n。
由于小华从原点出发向右走,所以他所在的位置为0 + 4n = 4n。
题目三:小明和小华同时从原点出发向右走,小明每走一步距离为3,小华每走一步距离为4。
他们同时走了n步后,他们之间的距离是多少?解答:小明每走一步距离为3,小华每走一步距离为4,所以他们同时走了n步后,小明走的距离为3n,小华走的距离为4n。
他们之间的距离为4n - 3n = n。
题目四:小明和小华同时从原点出发向右走,小明每走一步距离为3,小华每走一步距离为4。
他们走了n步后,小明比小华多走了5步,求n的值。
解答:小明每走一步距离为3,小华每走一步距离为4,所以他们走了n步后,小明走的距离为3n,小华走的距离为4n。
根据题意,小明比小华多走了5步,所以3n - 4n = 5。
化简得到 -n = 5,解方程得到 n = -5。
题目五:小明从原点出发向右走,每走一步距离为3,小华从原点出发向左走,每走一步距离为2。
他们分别走了n步后,他们之间的距离是多少?解答:小明从原点出发向右走,每走一步距离为3,所以他走的距离为3n。
小华从原点出发向左走,每走一步距离为2,所以他走的距离为-2n。
他们之间的距离为3n - (-2n) = 3n + 2n = 5n。
题目六:小明从原点出发向右走,每走一步距离为3,小华从原点出发向左走,每走一步距离为2。
他们分别走了n步后,小明比小华多走了7步,求n的值。
解答:小明从原点出发向右走,每走一步距离为3,所以他走的距离为3n。
初一數學數軸上の動點問題專題輔導卷1.已知數軸上有A、B、C三點,分別代表—24,—10,10,兩只電子螞蟻甲、乙分別從A、C兩點同時相向而行,甲の速度為4個單位/秒。
⑴問多少秒後,甲到A、B、Cの距離和為40個單位?⑵若乙の速度為6個單位/秒,兩只電子螞蟻甲、乙分別從A、C兩點同時相向而行,問甲、乙在數軸上の哪個點相遇?⑶在⑴⑵の條件下,當甲到A、B、Cの距離和為40個單位時,甲調頭返回。
問甲、乙還能在數軸上相遇嗎?若能,求出相遇點;若不能,請說明理由。
2.如圖,已知A、B分別為數軸上兩點,A點對應の數為—20,B點對應の數為100。
⑴求AB中點M對應の數;⑵現有一只電子螞蟻P從B點出發,以6個單位/秒の速度向左運動,同時另一只電子螞蟻Q恰好從A 點出發,以4個單位/秒の速度向右運動,設兩只電子螞蟻在數軸上のC點相遇,求C點對應の數;⑶若當電子螞蟻P從B點出發時,以6個單位/秒の速度向左運動,同時另一只電子螞蟻Q恰好從A點出發,以4個單位/秒の速度也向左運動,設兩只電子螞蟻在數軸上のD點相遇,求D點對應の數。
3.已知數軸上兩點A、B對應の數分別為—1,3,點P為數軸上一動點,其對應の數為x。
⑴若點P到點A、點Bの距離相等,求點P對應の數;⑵數軸上是否存在點P,使點P到點A、點Bの距離之和為5?若存在,請求出xの值。
若不存在,請說明理由?⑶當點P以每分鐘一個單位長度の速度從O點向左運動時,點A以每分鐘5個單位長度向左運動,點B 一每分鐘20個單位長度向左運動,問它們同時出發,幾分鐘後P點到點A、點Bの距離相等?4、如圖,有一數軸原點為O,點A所對應の數是-1 12,點A沿數軸勻速平移經過原點到達點B.(1)如果OA=OB,那麼點B所對應の數是什麼?(2)從點A到達點B所用時間是3秒,求該點の運動速度.(3)從點A沿數軸勻速平移經過點K到達點C,所用時間是9秒,且KC=KA,分別求點K和點C所對應の數。
动点问题专题(一)前言:数轴上的动点问题离不开数轴上两点之间的距离,为了便于我们对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的,也即用右边的数减去左边的数的差.即数轴上两点间的距离=右边点表示的数-左边点表示的数.2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度,这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a ,向左运动b 个单位后表示的数为;向右运动b 个单位后所表示的数为.3.数轴是数形结合的产物,分析数轴上点的运动耍结合图形进行分析.直在数轴上运动形成的路径可看作数轴上线段的和差关系,一、基础能力过关测试1.数轴上表示-5的点离原点的距离是个单位长度,数轴上离原点6个单位长度的点有个,它们表示的数是.2.数轴上的A 点与表示-3的点距离4个单位长度,则A 点表示的数为.3.数轴上A 、B 两点离原点的距离分别为2和3,则AB 间距离是.4.点A 、B 在数轴上对应的数分别是m 、n ,(n 在m 的右边).则AB 间距离是.5.数轴上表示x 和-2的两点间距离是;若︱x +2︱=5,则x =.6.若︱a ︱=︱b ︱,则a 、b 的关系是;若︱x -3︱=︱4-2x ︱,则x =7.若点A 、点B 表示的数分别是-2、6,则AB 的中点为,若点A 、点B 表示的数分别是a 、b ,则AB 的中点为.二、例题解析【例1】如图,动点A 从原点出发向数轴负方向运动,同时动点B 也从原点出发,向数轴正方向运动,A的速度为a 个单位长度/秒,B 的速度为b 个单位长度/秒,且a 、b 满足21(2)352a b -=--(1)求出两个动点运动的速度,并在数轴上标出A 、B 两点从原点出发运动到3秒时的位置;(2)若A 、B 两点在(1)中的位置,在数轴上存在一点C ,且AC =2BC ,求C 点对应的数-15-12-9-6-315129630(3)若A 、B 两点从(1)中的位置同时按原速度向数轴负方向运动,几秒时,原点恰好在两个动点的正中间;(4)若A、B两点从(1)中的位置同时按原速度向数轴负方向运动,问几秒后点A和点B 相距2个单位长度;(5)若A、B两点从(1)中的位置同时按原速度向数轴负方向运动,同时点C从原点出发,以1个单位长度/秒的速度向数轴负方向运动,问几秒后点C到点A的距离与到点B的距离相等.【例2】已知数轴上有A、B两点,分别表示的数为-40和20,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动,设运动时间为t秒(t>0).(1)运动开始前,A、B两点的距离为,线段AB的中点M所表示的数为.(2)它们按上述方式运动,A、B两点约经过多少秒会相遇,相遇点所表示的数是什么?(3)当t为多少时,线段AB的中点M表示的数为-5?并直接写出在这一运动过程中点M的运动方向和运动速度.【例3】己知如图,数轴上A、B、C三点对应有理数a,b,c.(1)若︱a︱>︱b︱>︱c︱,化简:3︱b-c︱-2︱a+2b︱+︱b+c︱;aC BAb c(2)若ab+c=0,︱a+5︱=7,且点B、A之间的距离与点B、C之间的距离相等,求b的值(3)在(2)的条件下,数轴上是否存在点P,使得点P分别到A、B、C三点的距离之和等于30?若存在,求出点P的数轴上所对应的数;若不存在,请说明理由.【例4】在数轴上有顺次排列的三点A、B、C,A点表示数a,B点表示数b,C点表示数c,b是最小的正整数,且a、c满足︱a+2︱+(c-7)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度的速度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC =.(用含t的代数式表示)(4)请问:3BC-2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【例5】如图,点A、B为数轴上两点(A点在负半轴,用数a表示;B点在正半轴,用数B表示)a0b(1)若︱b-a︱=︱3a︱,试求a、b的关系式;(2)在(1)的条件下,Q是线段OB上一点,且AQ –BQ =OQ,求OQ:AB的值;(3)在线段AO上有一点C,OC=4,在线段OB上有一动点D(OD>4),M、N分别是OD、CD 的中点,下列结论:①OM-ON的值不变;②OM+ON的值不变,其中只有一个结论是正确的,请你找出正确的结论,并求值.【例6】已知数轴上有A、B、C三个点,分别表示有理数-24,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:P A=,PC=.(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以相同的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.BA0C。
七年级数轴上的动点问题典型例题一、问题描述1.小明和小红分别从数轴上的点A(3)和点B(-1)开始,以相同的速度向相对方向前进。
已知小明和小红分别以每秒2个单位和每秒3个单位的速度前进,问多长时间后他们会相遇?2.小明和小红分别从数轴上的点A(3)和点B(-1)开始,以相同的速度向相对方向前进。
已知小明和小红分别以每秒2个单位和每秒3个单位的速度前进,问多长时间后他们会相距6个单位?3.小华从数轴上的点A(3)出发,以每秒4个单位的速度向右前进;小明从数轴上的点B(-1)出发,以每秒5个单位的速度向左前进。
问多长时间后他们会相遇?4.数轴上的点A、B、C分别表示3艘船在同一时刻的位置。
A、B船以每小时15公里的速度向左,C船以每小时20公里的速度向右。
问多长时间后他们会相遇?二、解题思路1.我们需要明确小明和小红分别在数轴上的运动方向和速度,查看问题中的关键数据,我们可以发现小明和小红以相对方向运动,因此速度的合成应该是小明和小红速度之差。
那么根据问题描述,小明和小红的速度差为3-2=1个单位/秒,因此他们相遇的时间应该是数轴上两点之间的距离除以他们的速度之差,即\( \frac{3-(-1)}{3-2} =\frac{4}{1} = 4\) 秒。
2.我们来解决小明和小红相距6个单位的问题。
同样根据他们速度之差的关系,我们知道他们每秒之间的距离是1个单位,那么相距6个单位就需要6秒的时间,即\(6 \div 1 = 6\) 秒。
3.对于小华和小明相遇的问题,我们同样需要计算他们的速度之差,即5-4=1个单位/秒,然后计算他们的相遇时间,即\( \frac{(-1)-3}{5-4} = \frac{-4}{1} = -4\) 秒。
但是,由于数轴上无法出现负的时间,因此小华和小明在4秒后相遇。
4.我们解决三艘船的相遇问题。
根据题目描述,我们发现三艘船的速度和运动方向不同,因此要分别计算船与船之间的相遇时间。
七年级数学上册轴动点问题专项练习题(含答案解析) 【题 1】甲乙两地相距200米,小明从甲地步行到乙地,用时3分钟,小明平均速度为多少米每秒?【答案】方法一:直接利用:速度=路程÷时间解决。
200÷180=10/9(米/秒)方法二:用方程解。
设速度为 x米/秒,根据路程=时间×速度,得:200=180x,解得 x=10/9【题 2】如图,数轴上有两点 A、B,点 A 表示的数为0 ,点 B 表示的数为200 ,一只电子蚂蚁 P 从A出发,以1个单位每秒的速度由 A 往 B 运动,到B点运动停止。
设运动时间为 t。
(1)用含t的代数式表示电子蚂蚁P运动的距离;(2)用含t的代数式表示电子蚂蚁P表示的数;(3)用含t的代数式表示电子蚂蚁P到数B距离(4)当电子蚂蚁运动多少时间后,点P为线段 AB 的三等分点【答案】(1)根据路程=速度×时间,有:AP=t ;(2)AP=t ,故点P表示的数为t ;(3)点 B 表示的数为200,点P表示的数为t ,且P在 B左边,故 PB= 200-t 。
(4)若P为AB的三等分点,有两种情况:①AP=2PB,即t = 2×(200-t ),解得t=400/3秒②2AP=PB,即:2t = 200-t ,解得t=400/3秒【题 3】如图,数轴上有两点A、B,点A表示的数为a,点B表示的数为b,且数A和数B的距离为200个单位长度,一只电子蚂蚁P从 A 出发,以1个单位每秒的速度由A往B运动,到B点运动停止。
设运动时间为t。
(1)用含a代数式表示数B;(2)用含a和t代数式表示电子蚂蚁P表示的数。
(3)用含t代数式表示电子蚂蚁P到数B的距离。
【答案】(1)由数轴上两点间距离公式可得:b-a =200,整理得:b =200+a ;(2)由路程=速度×时间得,AP= t,即A、P两点间的距离为t ;同(1)可得,点P表示的数为 a +t(3)由于数B≥数P,故根据数轴上两点间距离公式有:BP=b-(a+t)=a+200-(a+t)=200-t。
初一数学数轴上的动点问题专题辅导卷1.已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
2.如图,已知A、B分别为数轴上两点,A点对应的数为—20,B点对应的数为100。
⑴求中点M对应的数;⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。
3.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。
若不存在,请说明理由?⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?4、如图,有一数轴原点为O,点A所对应的数是-1 12,点A沿数轴匀速平移经过原点到达点B.(1)如果,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且,分别求点K和点C所对应的数。
5、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.6、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?6、数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有:1:2,若干秒钟后,C停留在-10处,求此时B点的位置?7、数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数8、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
初中数学数轴动点问题压轴题
数轴上的动点问题是一个常见的数学问题,它考察了数轴的基本概念、绝对值和一元一次方程等知识点。
以下是一个初中数学数轴动点问题的压轴题示例:
题目:在数轴上,点A表示的数是-5,若将点A向右平移3个单位到点B,则点B表示的数是 _______.
解析:由题意,点A表示的数是-5。
向右平移3个单位意味着数值会增加3。
因此,点B表示的数为$-5 + 3 = -2$。
答案:$-2$。
这道题目考察了数轴上点的平移规律,即“左减右加”。
对于任意一个点,当它在数轴上向右平移时,其对应的数值会增加平移的单位数;相反,当它向左平移时,其对应的数值会减少平移的单位数。
如果你需要更多类似的问题和解析,可以查阅初中数学教辅资料或请教数学老师。
l数轴上的动点问题专项讲练l知识储备1:分类讨论思想1(23璧中七上期中)数轴上的A点与表示-3的点距离4个单位长度,则A点表示的数为1(21南开七上期中)已知数轴上A、B两点分别表示-5、7,点C在数轴上,且满足BC:AC=1: 2,则点C表示的数为l知识储备2:绝对值方程22+t=|t-6|-10-2t2|x+1|=2|x-5||2x+1|-|3x-2|=5(tip:用零点分段法) 33t--1+t=|t-5||t-14|=8l知识储备3:动点三要素①起点:最初的位置②方向:向右加+,向左减-③速度:运动距离s =速度v ×时间t3点A在数轴上对应的数为1,沿数轴向右以每秒2单位速度运动,则7秒后A点对应的数为1(23璧中七上月考)若数轴上的点A距离原点3个单位长度,若一个点从点A出发向右移动4个单位长度,再向左移动1个单位长度,此时终点所表示的数是l知识储备4:距离表示①相对位置确定(已知大小):距离=大-小相对位置确定(已知左右):距离=右-左②相对位置不确定(未知大小或左右):距离=∣右-左|=|左-右∣5点A 在数轴上对应数为1.点B 在数轴上对应的点为3,则A .B 之间的距离为6点A 在数轴上对应的点为1,点B 在数轴上对应的点为x ,则A 、B 之间的距离为l 知识储备5:中点公式①已知两数求中点已知A 在数轴上对应的数为a ,B 在数轴上对应的数为b ,则A 、B 的中点M 对应的数为m =a +b2证明:∵m 是A ,B 的中点∴BM =MA即:b -m =m -a∴m =a +b2②已知一数和中点求另外一个数已知A 在数轴上对应的数为a ,A 、B 的中点M 对应的数为m ,则B 在数轴上对应的数为b =2m -a7点A 为3,点B 为-7则A .B 的中点是多少?8点A 为3.A .B 的中点为-7.则点B 是多少?l 知识储备6:解题步骤①画图-在数轴上表示出点的运动情况:运动方向和速度;②写点-写出所有点表示的数:一般用含有t 的代数式表示,向右运动用“+”表示,向左运动用“-”表示;③表示距离-右-左,若无法判定两点的左右需加绝对值;④列式求解-根据条件列方程或代数式,求值。
2021-2022学年度人教版七年级数学上册练习三1.2.2 数轴-数轴上的动点问题1.数轴上一动点A向左移动3个单位长度到达点B,再向右移动6个单位长度到达点C,若C表示的数为3,则点A表示的数为()A.6 B.0 C.﹣6 D.﹣22.把数轴上表示数2的点移动3个单位后,表示的数为()A.5 B.1 C.5或-1 D.5或13.在数轴上把数2对应的点移动3个单位后所得的对应点表示的数是()A.5 B.﹣1 C.5或﹣1 D.不确定4.在正方形的四个顶点处逆时针依次标上“合”“格”“优”“秀”四个字,将正方形放置在数轴上,其中“优”“秀”对应的数分别为-2和-1,现将正方形绕着顶点按顺时针方向在数轴上向右无滑动地翻滚,例如第一次翻滚后“合”所对应的数为0,则连续翻滚后与数轴上数2018重合的字是( )A.合B.格C.优D.秀5.数轴上一点A表示的有理数为2-,若将A点向右平移3个单位长度后,A点表示的有理数应为()A.3B.1-C.1D.5-6.在数轴上,把表示﹣4的点移动2个单位长度,所得到的对应点表示的数是()A.﹣2 B.﹣6 C.﹣2或﹣6 D.无法确定7.数轴上一动点A向左移动3个单位长度到达点B,再向右移动4个单位长度到达点C,若点C表示的数为1,则点A表示的数为()A.7 B.1 C.0 D.-18.在数轴上把表示2的点向右移动5个单位长度后,所得的对应点是()A.7 B.﹣3 C.6 D.89.-2和2对应的点将数轴分成3段,如果数轴上任意n个不同的点中至少有3个在其中之ㄧ段,那么n的最小值是.A.5 B.6 C.7 D.810.如图,圆的周长为4个单位长度,圆周的四等分点分别为A,B,C,D,先将圆上的A点与数轴上表示1的点重合,如果将圆沿着数轴向左滚动,那么圆上与数轴上表示-2019的点重合的点是()A.A B.B C.C D.D11.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2:则翻转2015次后,数轴上数2015所对应的点是()A.点A B.点B C.点C D.点D12.数轴上一点A表示﹣3,若将A点向左平移5个单位长度,再向右平移6个单位长度,则此时A 点表示的数是()A.﹣1 B.﹣2 C.﹣3.D.113.点A在数轴上距原点3个单位长度,若一个点从点A处左移4个单位长度,此时终点所表示的数是()A.﹣1 B.±1C.±7D.﹣1或﹣714.如图,数轴上一动A点向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的实数为()A.7 B.3 C.-3 D.-215.把数轴上表示数2的点移动5个单位后,表示的数为()A.7 B.3 C.7或3 D.7或-316.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动.设该机器人每秒前进或后退1步,并且每步的距离是一个单位长度,xn表示第n秒时机器人在数轴上的位罝所对应的数.给出下列结论:①x3=3;②x5=1;③x108<x104;④x2007<x2008,其中,正确结论的序号是()A.①③B.②③C.①②③D.①②④17.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B18.一只小球落在数轴上的某点P0处,第一次从P处向右跳1个单位到P1处,第二次从P1向左跳2个单位到P2处,第三次从P2向右跳3个单位到P3处,第四次从P3向左跳4个单位到P4处…,若小球按以上规律跳了(2n+3)次时,它落在数轴上的点P2n+3处所表示的数恰好是n﹣3,则这只小球的初始位置点P所表示的数是()A.﹣4 B.﹣5 C.n+6 D.n+319.点M为数轴上表示﹣2的点,将点M沿数轴向右平移5个单位点N,则点N表示的数是()A.3 B.5 C.—7 D.3 或一720.如图,设一枚5角硬币的半径为1个单位长度,将这枚硬币放置在平面内一条数轴上,使硬币边缘上一点P与原点O重合,让这枚硬币沿数轴正方向无滑动滚动,转动一周时,点P 到达数轴上点P'的位置,则点P'所对应的数是()A.2πB.6.28 C.πD.3.14参考答案1.B解析:根据数轴上的点左移减,右移加,可得答案.详解:解:3﹣6+3=0故选:B.点睛:此题考查数轴,解题关键在于掌握其性质.2.C解析:试题分析:把数轴上表示数2的点移动3个单位后,表示的数为5或﹣1.故选C.考点:数轴.3.C解析:若把数2对应的点向右移动3个单位后所得的对应点表示的数是2+3=5;若向左移动3个单位后所得的对应点表示的数是2﹣3=﹣1.故选C.4.C解析:由题意,画出图形如下图所示,然后结合图形与题意进行分析判断即可.详解:如下图所示,由题意可知,当正方形无滑动向右滚动一次时,“合”与0重合,滚动第二次时,“格”与1重合,滚动第三次时,“优”与2重合,滚动第四次时,“秀”与3重合,滚动第五次时,“合”与4重合,……,由此可知,从“合”与0重合开始,正方形四个顶点上的字与数轴上的正整数的重合情况,是按四个数一组循环出现的,∵2018÷4=504……2,∴正方形连续滚动后,与数轴上的2018重合的字是“优”.故选C.点睛:“读懂题意,画出如图所示的图形,找到数轴上的正整数与正方形四个顶点上的数重合的规律:当数轴上的正整数除以4,余数为:0、1、2、3时,这个正整数分别与“合”、“格”、“优”、“秀”重合”是解答本题的关键.5.C解析:根据平移的性质,进行分析选出正确答案.详解:﹣2+3=1.故A点表示的有理数应为1.故选C.点睛:本题考查了数轴,利用点在数轴上左减右加的平移规律是解决问题的关键.6.C解析:把数轴上的数进行移动包括向左移动和向右移动即可得到结果.详解:解:当向左移动时,得到的对应点所表示的数为;当向右移动时,得到的对应点所表示的数为.故选:C.点睛:本题主要考查数轴的基本概念.7.C解析:利用数轴及移动单位,点C的数确定A的值.详解:数轴上一动点A向左移动3个单位长度到达点B,再向右移动4个单位长度到达点C,若点C表示的数为1,则点A表示的数为0.所以C选项是正确的.点睛:本题主要考查了数轴,解题的关键是利用数轴确定A的值.8.A解析:根据点在数轴上移动,向右移动则数字是增大.详解:向右移动5个单位,则2+5=7.即答案选A.点睛:本题考查了数轴、两点间的距离,了解数轴上点的移动规律是解题的关键.9.C解析:本题可以用抽屉原理解决.解决的时候可以先考虑相反的情况.将数轴上的3段看成3个抽屉,先考虑相反的情况,得到的结果再取反即为答案.令每个抽屉之多有2个点,则最多有6个点.故.10.A解析:圆每转动一周,A、B、C、D循环一次,-2019与1之间有2020个单位长度,即转动2020÷4=505(周),据此可得.详解:1-(-2019)=2020,2020÷4=505(周),所以应该与字母A所对应的点重合.故选A.点睛:此题考查数轴,以及循环的有关知识,把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成.11.C解析:找出在翻转的过程中,顶点A、B、C、D分别对应数的规律,再根据2015=4×503十3可以得到答案.详解:解:在翻转过程中,点A、B、C、D对应数依次为1,2,3,4,5,6,7,8,9……4n,4n+1,4n+2,4n+3,4(n+1).∵2015=4×503+3,数油上数2015所对应的点是顶点C.故答案为:C.点睛:本题考查的是数轴上的点与实数,关键要发现各个顶点在翻转过程中所对应数的规律.12.B解析:在数轴上“左减右加”,向左平移是减向右平移是加,所以点A所表示的数先减去5再加上6得出正确答案。
•上海数轴上的动点问题专题1 [WTUTAVT«^ -WSBBGB-B W YTT-19998]数轴上的动点问题专题1.已知数轴上两点A、B对应的数分别为_1, 3,点P为数轴上一动点,其对应的数为X。
⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5若存在,请求出X的值。
若不存在,请说明理由⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A 以每分钟5个单位长度向左运动,点B以每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等2・数轴上A点对应的数为-5, B点在A点右边,电子蚂蚁甲、乙在B分别以分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A以3个单位/秒的速度向右运动。
(1)若电子蚂蚁丙经过5秒运动到C点,求C点表示的数;A B-5(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B点表示的数。
-5(3)在(2)的条件下,设它们同时出发的时间为t秒,是否存在t 的值,使丙到乙的距离是丙到甲的距离的2倍若存在,求出t值;若不存在,说明理由。
A B-53•已知数轴上有顺次三点A,B,C°其中A的坐标为点坐标为40, —电子蚂蚁甲从C点出发,以每秒2个单位的速度向左移动。
(1)当电子蚂蚁走到BC的中点D处时,它离A,B两处的距离之和是多少(2)这只电子蚂蚁甲由D点走到BA的中点E处时,需要几秒钟(3)当电子蚂蚁甲从E点返回时,另一只电子蚂蚁乙同时从点C 出发,向左移动,速度为秒3个单位长度,如果两只电子蚂蚁相遇时离B点5个单位长度,求B点的坐标4・如图,已知A、B分别为数轴上两点,A点对应的数为_20, B 点对应的数为IOO o-20 100⑴求AB中点M对应的数;⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。
数轴上的动点问题专题
1.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一
动点,其对应的数为x。
⑴若点P到点A、点B的距离相等,求点P对应的数;
⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。
若不存在,请说明理由?
⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A 以每分钟5个单位长度向左运动,点B以每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?
2. 数轴上A 点对应的数为-5,B 点在A 点右边,电子蚂蚁甲、乙
在B 分别以分别以2个单位/秒、1个单位/秒的速度向左运动,电
子蚂蚁丙在A 以3个单位/秒的速度向右运动。
(1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数;
(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的
数。
(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t
的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t 值;
若不存在,说明理由。
3.已知数轴上有顺次三点A, B, C。
其中A的坐标为-20.C点坐标为40,一电子蚂蚁甲从C点出发,以每秒2个单位的速度向左移动。
(1)当电子蚂蚁走到BC的中点D处时,它离A,B两处的距离之和是多少?
(2)这只电子蚂蚁甲由D点走到BA的中点E 处时,需要几秒钟?
(3)当电子蚂蚁甲从E点返回时,另一只电子蚂蚁乙同时从点C 出发,向左移动,速度为秒3个单位长度,如果两只电子蚂蚁相遇时离B点5个单位长度,求B点的坐标
4. 如图,已知A、B分别为数轴上两点,A点对应的数为—20,B
点对应的数为100。
⑴求AB 中点M 对应的数;
⑵现有一只电子蚂蚁P 从B 点出发,以6个单位/秒的速度向左运
动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度
向右运动,设两只电子蚂蚁在数轴上的C 点相遇,求C 点对应的数;
⑶若当电子蚂蚁P 从B 点出发时,以6个单位/秒的速度向左运动,
同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度也向
左运动,设两只电子蚂蚁在数轴上的D 点相遇,求D 点对应的数。
5. 已知数轴上有A 、B 、C 三点,分别代表—24,—10,10,两只电
子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4
个单位
/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?
⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C 两点同时相向而行,问甲、乙在数轴上的哪个点相遇?
⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
6.动点A从原点出发向数轴负方向运动,同时动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度。
已知动点A,
B的速度比为1:4(速度单位:单位长度/秒)
(1)求出两个动点运动的速度,并在数轴上标出A,B两点从原点出发运动3秒时的位置;
(2)若A,B两点从(1)标出的位置同时出发,按原速度向数轴负方向运动,求几秒钟后原点恰好在两个动点之的正中间?
(3)当A,B两点从(1)标出的的位置出发向负方向运动时,另一动点C 也也同时从B点的位置出发向A运动,当遇到A后立即返回向B运动,遇到B到又立即返回向A运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,求点C一共运动了多少个单位长度。
例、已知数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?
⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?
⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
分析:易求得AB=14,BC=20,AC=34
⑴设x秒后,甲到A、B、C的距离和为40个单位。
此时甲表示的数为-24+4x。
①甲在AB之间时,甲到A、B的距离和为AB=14
甲到C的距离为10-(-24+4x)=34-4x
依题意,14+(34-4x)=40,解得x=2
②甲在BC之间时,甲到B、C的距离和为BC=20,甲到A的距离为4x
依题意,20+4x)=40,解得x=5
即2秒或5秒,甲到A、B、C的距离和为40个单位。
⑵是一个相向而行的相遇问题。
设运动t秒相遇。
依题意有,4t+6t=34,解得t=3.4
相遇点表示的数为-24+4×3.4=-10.4 (或:10-6×3.4=-10.4)
⑶甲到A、B、C的距离和为40个单位时,甲调头返回。
而甲到A、B、C的距离和为40个单位时,即的位置有两种情况,需分类讨论。
①甲从A向右运动2秒时返回。
设y秒后与乙相遇。
此时甲、乙表示在数轴上为同一点,所表示的数相同。
甲表示的数为:-24+4×2-4y;乙表示的数为:10-6×2-6y
依题意有,-24+4×2-4y=10-6×2-6y,解得y=7
相遇点表示的数为:-24+4×2-4y=-44 (或:10-6×2-6y=-44)
②甲从A向右运动5秒时返回。
设y秒后与乙相遇。
甲表示的数为:-24+4×5-4y;乙表示的数为:10-6×5-6y
依题意有,-24+4×5-4y=10-6×5-6y,解得y=-8(不合题意,舍去)
即甲从A点向右运动2秒后调头返回,能在数轴上与乙相遇,相遇点表示的数为-44。
点评:分析数轴上点的运动,要结合数轴上的线段关系进行分析。
点运动后所表示的数,以起点所表示的数为基准,向右运动加上运动的距离,即终点所表示的数;向左运动减去运动的距离,即终点所表示的数。