最新-2018年中考模拟试卷(1) 精品
- 格式:doc
- 大小:264.69 KB
- 文档页数:10
2018年初三语文中考模拟考试题12(时间:120分钟总分:120分)第Ⅰ卷(共20分)3一、基础知识(共14分,每小题2分)451、下列词语中加点字注音完全正确的一项是( )6A.荣膺. (yīng) 泥泞.(níng ) 高屋建瓴.(líng)呱.呱坠地( guā)B.巉.岩 (chán ) 荫.庇( yìn ) 龙吟凤哕.(huì)怏.怏不乐(yàng)78C. 褴褛.(lǚ)殷.红(yīn)转弯抹.角(mǒ)周道如砥.(dǐ)9D. 拽.出(zuài)筵.席(yàn)差.强人意(chā)引颈受戮.(lù)2、下列词语书写完全正确的一项是()1011A.旖旎虬须略胜一筹一泄千里 B.恻隐脏物如法泡制斩钉截铁C.聒躁告磬相得益章红妆素裹 D.惬意棘手叱咤风云妇孺皆知12133、下列句子中加点词语使用不正确的一项是( )14A.二三线城市要想留住人才,就必须积极寻求解决人才之“高级”需求的有效举措,为留住人才打下坚实的基础。
当然,这是一项复杂的系统工程,不能一.挥.而就15..。
16B.无论在哪个领域,一次或几次挫折,绝不等于满盘皆输。
痛定思痛,以过为师,厉兵秣马17....,继续前行,才可能笑到最后。
C.五年来,反腐败保持雷霆万钧18....之势,在官场作风改善、重塑政治生态等过程中,发挥着独特的“清障”作用。
191D.“佛系青年”,冠之以“佛”,是心无旁骛20....深谙“舍得”之道的表现。
214、下列句子没有语病的一项是()22A.扶贫的关键在于扶智,因此,增强贫困地区教育体系,完善贫困地区教育供给,23应成为精准扶贫的关键。
24B.党风问题关系人心向背、党的生死存亡和事业成功。
这就是历史镜鉴。
25C.中华民族伟大复兴,绝不是轻轻松松、敲锣打鼓就能实现的。
我们要像石榴籽一26样紧紧抱在一起,齐心协力进行伟大斗争、建设伟大工程、推进伟大事业、实现伟大梦想,27齐心协力走向中华民族伟大复兴的光辉彼岸。
2018年河南中考模拟试卷(一)(附答案)一、积累与运用。
(26分)1.下列词语中加点的字,每对读音都不同的一项是:()(2分)A. 劳累./累.赘禁.止/忍俊不禁.塞.翁失马/茅塞.顿开B. 蓬蒿./竹篙.差.遣/参差.不齐以身殉.职/徇.私枉法C. 宿.儒/星宿.胸膛./瞠.目结舌七窍.生烟/翘.起辫子D. 和.煦/唱和.敌寇./豆蔻.年华言简意赅./骇.人听闻2.下面词语中没有错别字的一项是()(2分)A.寒喧添加剂洪荒之力悬梁刺骨B.典籍恶作剧蓬荜生辉慷慨淋漓C.粗拙孺子牛消声匿迹光阴荏苒D.震悚维生素颠沛流离珠连璧合3.排列正确语句,使整段文字语意完整、连贯。
()(3分)我们在向国际社会介绍中国文化的时候,既要充分展示客观事实,又要力求提供一种对于中国文化的深度认识,这样展示出来的中国文化,有活的灵魂,才有深的认识,才能照亮中国文化的本来面目。
①这就是中国文化的精神与价值。
②但同时,更要展示在这些文化遗产后面的东西。
③介绍中国文化,肯定要讲述中国的历史故事,介绍各种文化遗产。
④例如,从江南园林可以看到中国人高雅的生活品味和天人合一的建筑理念。
A. ③④①②B. ①④③②C. ③②①④D. ①②④③4.古诗文默写。
(8分)⑴足蒸暑土气,。
⑵,出则无敌国外患者。
⑶白居易在《观刈麦》一诗中深入所写对象的内心,刻画劳动人民在特定环境下近乎变态心理的句子是:,。
⑷辛弃疾《破阵子·为陈同甫赋壮词以寄之》中描写战斗场面激烈,表现义军所向披靡的句子是:,。
⑸王安石在《登飞来峰》中用“,”来表达不畏奸佞、推行新法的决心,显示出高瞻远瞩的气概。
5.名著阅读。
(4分)(任选一题作答)⑴下面两个小说回目都体现了对皇权的蔑视,请任选一个,简要叙述其故事情节。
①乱蟠桃大圣偷丹反天宫诸神捉怪(《西游记》第五回)②活阎罗倒船偷御酒黑旋风扯诏谤徽宗(《水浒》第七十五回)⑵“厄运能磨炼一个人”,请你从以下人物中选择一个,结合其相关经历来印证这一观点。
2018年河南中考模拟试卷(一)(附答案)一、积累与运用。
(26分)1.下列词语中加点的字,每对读音都不同的一项是:()(2分)A. 劳累./累.赘禁.止/忍俊不禁.塞.翁失马/茅塞.顿开B. 蓬蒿./竹篙.差.遣/参差.不齐以身殉.职/徇.私枉法C. 宿.儒/星宿.胸膛./瞠.目结舌七窍.生烟/翘.起辫子D. 和.煦/唱和.敌寇./豆蔻.年华言简意赅./骇.人听闻2.下面词语中没有错别字的一项是()(2分)A.寒喧添加剂洪荒之力悬梁刺骨B.典籍恶作剧蓬荜生辉慷慨淋漓C.粗拙孺子牛消声匿迹光阴荏苒D.震悚维生素颠沛流离珠连璧合3.排列正确语句,使整段文字语意完整、连贯。
()(3分)我们在向国际社会介绍中国文化的时候,既要充分展示客观事实,又要力求提供一种对于中国文化的深度认识,这样展示出来的中国文化,有活的灵魂,才有深的认识,才能照亮中国文化的本来面目。
①这就是中国文化的精神与价值。
②但同时,更要展示在这些文化遗产后面的东西。
③介绍中国文化,肯定要讲述中国的历史故事,介绍各种文化遗产。
④例如,从江南园林可以看到中国人高雅的生活品味和天人合一的建筑理念。
A. ③④①②B. ①④③②C. ③②①④D. ①②④③4.古诗文默写。
(8分)⑴足蒸暑土气,。
⑵,出则无敌国外患者。
⑶白居易在《观刈麦》一诗中深入所写对象的内心,刻画劳动人民在特定环境下近乎变态心理的句子是:,。
⑷辛弃疾《破阵子·为陈同甫赋壮词以寄之》中描写战斗场面激烈,表现义军所向披靡的句子是:,。
⑸王安石在《登飞来峰》中用“,”来表达不畏奸佞、推行新法的决心,显示出高瞻远瞩的气概。
5.名著阅读。
(4分)(任选一题作答)⑴下面两个小说回目都体现了对皇权的蔑视,请任选一个,简要叙述其故事情节。
①乱蟠桃大圣偷丹反天宫诸神捉怪(《西游记》第五回)②活阎罗倒船偷御酒黑旋风扯诏谤徽宗(《水浒》第七十五回)⑵“厄运能磨炼一个人”,请你从以下人物中选择一个,结合其相关经历来印证这一观点。
(完整版)2018中考语文模拟考试题及答案解析专业知识整理分享2018 年 初 中 升 学 模 拟 考 试(一)九 年 语 文 试 卷(考试时间:150分钟;试卷满分:150分)温馨提示:请考生把所有的答案都写在答题卡上,写在试卷上不给分,答题要求见答题卡。
—、积累与运用(满分30分)1.下列词语中加点字音形完全正确的一项是( )(2分)A .妥贴.(ti ě) 捷径.(j ìng )撼.卫(h àn ) 万象.更新(xi àng ) B .羞怯.(qi è) 哺.育(f ǔ) 契.机(q ì)别出心裁.(c ái) C .绵延.(y án) 心弦.(xi án)频.危(b īn) 望洋兴.叹(x īng ) D .芯.片(x īn ) 澄.清(ch éng ) 吮.吸(sh ǔn ) 眼花缭.乱(li áo)2.选出依次填入下面句子横线处的词语最恰当的一项( )(2分)二十四节气是农历的花朵,是时光的碑刻。
它是科学的也是诗性的。
它是一本历书,从天演而来,从太阳_________万物的目光中提炼出秘笈,为地气所用,为物候贴上标签,由此,天人合一,万物_________,大地井然有序;它承载着稻香谷黄,引导着蛙鸣蝉唱,它演示着_________,沉淀出蜜甜酒香,它浸润着淳朴农人的丰收之梦,也_________着知性文人的跳跃诗行.A .俯瞰 欣欣向荣 叶落花黄 润泽B .仰望 欣欣向荣 落叶黄花 润湿C .俯瞰 蒸蒸日上 叶落花黄 浸湿D .仰望 蒸蒸日上 落叶黄花 浸透3。
下列各句中,加点的成语使用恰当的一项是( )(2分) A .任何个人的成就和人民群众的伟大创造比较起来,都不过是沧海一粟。
B .这位年轻的班主任虽然工作很繁重,但看起来精神矍铄.C .他在大会上的即兴讲话逻辑严密、语无伦次,博得了与会专家的一致好评。
2018年山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分,)1.(3分)﹣的绝对值是()A.﹣B.﹣C.D.52.(3分)某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s 用科学记数法可表示为()A.0.1×10﹣8s B.0.1×10﹣9s C.1×10﹣8s D.1×10﹣9s3.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a65.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P( a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3) B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)6.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=17.(3分)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm28.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2二、填空题(本题满分18分,共有6道小题,每小题3分,)9.(3分)计算: = .10.(3分)“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有名.11.(3分)如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD= °.12.(3分)把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为.13.(3分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.14.(3分)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为cm3.三、解答题(共1小题,满分4分)15.(4分)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.四、解答题(本题满分74分,共有9道小题,)16.(8分)(1)化简:(+n)÷;(2)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值范围.17.(6分)小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.18.(6分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)19.(6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.(8分)某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?21.(8分)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.22.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?23.(10分)问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?问题探究:不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.探究一:(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形,所以,当n=4时,m=0(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形,所以,当n=5时,m=1 (4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形,所以,当n=6时,m=1 综上所述,可得表①探究二:(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(仿照上述探究方法,写出解答过程,并把结果填在表②中)(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1、4k、4k+1、4k+2,其中k是整数,把结果填在表③中)问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了根木棒.(只填结果)24.(12分)已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分,)1.(3分)﹣的绝对值是()A.﹣B.﹣C.D.5【解答】解:|﹣|=.故选:C.2.(3分)某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s 用科学记数法可表示为()A.0.1×10﹣8s B.0.1×10﹣9s C.1×10﹣8s D.1×10﹣9s【解答】解:0.000 000 001=1×10﹣9,故选:D.3.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.(3分)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a6【解答】解:a•a5﹣(2a3)2=a6﹣4a6=﹣3a6.故选:D.5.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P( a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3) B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)【解答】解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a﹣2,b+3)故选:A.6.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【解答】解:设原来的平均车速为xkm/h,则根据题意可列方程为:﹣=1.故选:A.7.(3分)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm2【解答】解:∵AB=25,BD=15,∴AD=10,∴S贴纸=2×(﹣)=2×175π=350πcm2,故选:B.8.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【解答】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵点A的横坐标为2,∴点B的横坐标为﹣2,∵由函数图象可知,当﹣2<x<0或x>2时函数y1=k1x的图象在y2=的上方,∴当y1>y2时,x的取值范围是﹣2<x<0或x>2.故选:D.二、填空题(本题满分18分,共有6道小题,每小题3分,)9.(3分)计算: = 2 .【解答】解:原式===2.故答案为:2.10.(3分)“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有2400 名.【解答】解:若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有12000×20%=2400(名),故答案为:2400.11.(3分)如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD= 62 °.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BCD=28°,∴∠ACD=62°,由圆周角定理得,∠ABD=∠ACD=62°,故答案为:62.12.(3分)把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为s=.【解答】解:由题意可得:sh=3×2×1,则s=.故答案为:s=.13.(3分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.【解答】解:∵CE=5,△CEF的周长为18,∴CF+EF=18﹣5=13.∵F为DE的中点,∴DF=EF.∵∠BCD=90°,∴CF=DE,∴EF=CF=DE=6.5,∴DE=2EF=13,∴CD===12.∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF=(BC﹣CE)=(12﹣5)=.故答案为:.14.(3分)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为144 cm3.【解答】解:如图由题意得:△ABC为等边三角形,△OPQ为等边三角形,AD=AK=BE=BF=CG=CH=4cm,∴∠A=∠B=∠C=60°,AB=BC=AC,∠POQ=60°,∴∠ADO=∠AKO=90°.连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,∴OD=AD=cm,∵PQ=OP=DE=20﹣2×4=12(cm),∴QM=OP•sin60°=12×=6(cm),∴无盖柱形盒子的容积=×12×6×=144(cm3);故答案为:144.三、解答题(共1小题,满分4分)15.(4分)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.【解答】解::①作∠ACB的平分线CD,②在CD上截取CO=a,③作OE⊥CA于E,以O为圆心,OE长为半径作圆;如图所示:⊙O即为所求.四、解答题(本题满分74分,共有9道小题,)16.(8分)(1)化简:(+n)÷;(2)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值范围.【解答】解:(1)原式=•=•=;(2)∵方程2x2+3x﹣m=0有两个不相等的实数根,∴△=9+8m>0,解得:m>﹣.17.(6分)小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.【解答】解:这个游戏对双方不公平.理由:列表如下:所有等可能的情况有16种,其中数字之和大于5的情况有(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6种,故小颖获胜的概率为: =,则小丽获胜的概率为:,∵<,∴这个游戏对双方不公平.18.(6分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)【解答】解:作AD⊥BC交CB的延长线于D,设AD为x,由题意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt △ADC 中,∠ACD=35°, ∴tan ∠ACD=, ∴=,解得,x ≈233m .19.(6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员? 【解答】解:(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10, ∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.20.(8分)某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?【解答】解:(1)设制作每个乙盒用x米材料,则制作甲盒用(1+20%)x米材料,,解得:x=0.5,经检验x=0.5是原方程的解,∴(1+20%)x=0.6(米),答:制作每个甲盒用0.6米材料;制作每个乙盒用0.5米材料.(2)根据题意得:l=0.6n+0.5(3000﹣n)=0.1n+1500,∵甲盒的数量不少于乙盒数量的2倍,∴n≥2(3000﹣n)解得:n≥2000,∴2000≤n<3000,∵k=0.1>0,∴l随n增大而增大,∴当n=2000时,l最小1700米.21.(8分)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.22.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【解答】解:(1)根据题意得B(0,4),C(3,),把B(0,4),C(3,)代入y=﹣x2+bx+c得,解得.所以抛物线解析式为y=﹣x2+2x+4,则y=﹣(x﹣6)2+10,所以D(6,10),所以拱顶D到地面OA的距离为10m;(2)由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),当x=2或x=10时,y=>6,所以这辆货车能安全通过;(3)令y=8,则﹣(x﹣6)2+10=8,解得x1=6+2,x2=6﹣2,则x1﹣x2=4,所以两排灯的水平距离最小是4m.23.(10分)问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?问题探究:不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.探究一:(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形,所以,当n=4时,m=0(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形,所以,当n=5时,m=1 (4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形,所以,当n=6时,m=1 综上所述,可得表①探究二:(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(仿照上述探究方法,写出解答过程,并把结果填在表②中)(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1、4k、4k+1、4k+2,其中k是整数,把结果填在表③中)问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了672 根木棒.(只填结果)【解答】解:探究二:(1)7=1+1+5(舍去);7=2+2+3(符合要求);7=3+3+1(符合要求);(2)8=1+1+6(舍去);8=2+2+4(舍去);8=3+3+2(符合要求);9=1+1+7(舍去);9=2+2+5(舍去);9=3+3+3(符合要求);9=4+4+1(符合要求);10=1+1+8(舍去);10=2+2+6(舍去);10=3+3+4(符合要求);10=4+4+2(符合要求);填表如下:解决问题:令n=a+a+b=2a+b,则:b=n﹣2a,根据三角形三边关系定理可知:2a>b且b>0,∴,解得:,若n=4k﹣1,则,a的整数解有k个;若n=4k,则k<a<2k,a的整数解有k﹣1个;若n=4k+1,则,a的整数解有k个;若n=4k+2,则,a的整数解有k个;填表如下:问题应用:(1)∵2016=4×504,∴k=504,则可以搭成k﹣1=503个不同的等腰三角形;(2)当等腰三角形是等边三角形时,面积最大,∴2016÷3=672.24.(12分)已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.【解答】解:(1)∵在矩形ABCD中,AB=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM=AO=,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ACD,∴,∴AP=t=,②当AP=AO=t=5,∴当t为或5时,△AOP是等腰三角形;(2)过点O作OH⊥BC交BC于点H,则OH=CD=AB=3cm.由矩形的性质可知∠PDO=∠EBO,DO=BO,又得∠DOP=∠BOE,∴△DOP≌BOE,∴BE=PD=8﹣t,则S△BOE=BE•OH=×3(8﹣t)=12﹣t.∵FQ∥AC,∴△DFQ∽△DOC,相似比为=,∴=∵S△DOC=S矩形ABCD=×6×8=12cm2,∴S△DFQ=12×=∴S五边形OECQF=S△DBC﹣S△BOE﹣S△DFQ=×6×8﹣(12﹣t)﹣=﹣t2+t+12;∴S与t的函数关系式为S=﹣t2+t+12;(3)存在,∵S△ACD=×6×8=24,∴S五边形OECQF:S△ACD=(﹣t2+t+12):24=9:16,解得t=3,或t=,∴t=3或时,S五边形S五边形OECQF:S△ACD=9:16;(4)如图3,过D作DM⊥PE于M,DN⊥AC于N,∵∠POD=∠COD,∴DM=D N=,∴ON=OM==,∵OP•DM=3PD,∴O P=5﹣t,∴PM=﹣t,∵PD2=PM2+DM2,∴(8﹣t )2=(﹣t )2+()2,解得:t=16(不合题意,舍去),t=,∴当t=时,OD 平分∠COP .。
2018年中考数学模拟试卷及答案(共五套)2018年中考数学模拟试卷及答案(一)[满分:120分 考试时间:120分钟]一、选择题(每小题3分,共36分)1.下列四个图形中,是轴对称图形但不是中心对称图形的有( )图M2-12.下列运算正确的是( )A .(x -y)2=x 2-y 2B .x 2·x 4=x 6C.(-3)2=-3 D .(2x 2)3=6x 63.下列二次根式中,与3是同类二次根式的是( ) A.13B.18C.24D.0.3 4.据统计,2013年河南省旅游业总收入达到约3875.5亿元,若将3875.5亿用科学记数法表示为3.8755×10n ,则n 等于( )A .10B .11C .12D .13图M2-25.如图M2-2,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A.34 B.43 C.35 D.456.把8a 3-8a 2+2a 进行因式分解,结果正确的是( ) A .2a(4a 2-4a +1) B .8a 2(a -1) C .2a(2a -1)2 D .2a(2a +1)27.不等式组⎩⎨⎧12x -1≤7-32x ,5x -2>3(x +1)的解集表示在数轴上,正确的是()图M2-3图M2-48.已知菱形OABC 在平面直角坐标系的位置如图M2-4所示,顶点A(5,0),OB =4 5,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A .(0,0)B .(1,12)C .(65,35)D .(107,57)9.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x ,3,4,6.已知他们平均每人捐5本,则这组数据的众数、中位数和方差分别是( )A .5,5,32B .5,5,10C .6,5.5,116D .5,5,5310.已知下列命题:①若||a =-a ,则a≤0;②若a>||b ,则a 2>b 2;③两个位似图形一定是相似图形;④平行四边形的对边相等.其中原命题与逆命题均为真命题的个数是( )A .1个B .2个C .3个D .4个11.若x =-3是关于x 的一元二次方程x 2+2ax +a 2=0的一个根,则a 的值为( ) A .4 B .-3 C .3 D .-4图M2-512.二次函数y =ax 2+bx +c 的图象如图M2-5所示,对称轴是直线x =-1,有以下结论:①abc>0;②4ac<b 2;③2a+b =0;④a-b +c>2.其中正确的结论的个数是( )A .1B .2C .3D .4二、填空题(每小题3分,共24分)13.计算:2cos45°-()π+10+14+⎝ ⎛⎭⎪⎫12-1=________. 14.在一个不透明的袋子中装有8个红球和16个白球,它们只有颜色上的区别.现从袋中取走若干个白球,并放入相同数量的红球,搅拌均匀后,要使从袋中任意摸出一个球是红球的概率是58,则取走的白球为________个.15.化简:(a2a-3+93-a)÷a+3a=________.16.如图M2-6,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=________.图M2-617.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图M2-7表示,当甲车出发________h时,两车相距350 km.图M2-718.若关于x的分式方程x+mx-2+2m2-x=3的解为正实数,则实数m的取值范围是________.19.如图M2-8,点A在双曲线y=5x上,点B在双曲线y=8x上,且AB∥x轴,则△OAB的面积等于________.图M2-820.如图M2-9,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连接BF 交AC于点M,连接DE、BO,若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE ︰S△BCM=2︰3.其中所有正确的结论的序号是________.图M2-9三、解答题(共60分)21.(8分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为s甲2=0.8、s乙2=0.4、s丙2=0.81)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能地传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)22.(8分)如图M2-11所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D 处测得大树顶端B的仰角为30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若坡角∠FAE=30°,求大树的高度.(结果保留整数.参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,3≈1.73)图M2-1123.(10分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?24.(10分)如图M2-12,在△ABC中,AB=AC,以AC为直径的⊙O分别交AB、BC于点M、N,点P 在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线;(2)若BC=2 5,sin∠BCP=55,求点B到AC的距离;(3)在(2)的条件下,求△ACP的周长.图M2-1225.(12分)如图M2-13①,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE.连接FG,FC.(1)请判断:FG与CE的数量关系是________,位置关系是________;(2)如图M2-13②,若点E、F分别是CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请给出判断并予以证明;(3)如图M2-13③,若点E、F分别是BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断.图M2-1326.(12分)如图M2-14,在平面直角坐标系中,已知抛物线y=32x2+bx+c与x轴交于A(-1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=-x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点M关于y轴的对称点为点M′,点H的坐标为(1,0).若四边形OM′NH的面积为53.求点H到OM′的距离d的值.图M2-14参考答案1.B 2.B 3.A 4.B 5.D 6.C 7.A8.D [解析] 如图,连接AD ,交OB 于点P ,P 即为所求的使CP +DP 最短的点;连接CP ,AC ,AC 交OB 于点E ,过E 作EF⊥OA,垂足为F.∵点C 关于OB 的对称点是点A , ∴CP =AP ,∴CP +DP 的最小值即为AD 的长度; ∵四边形OABC 是菱形,OB =4 5, ∴OE =12OB =2 5,AC ⊥OB.又∵A(5,0), ∴在Rt △AEO 中,AE =OA 2-OE 2=52-(2 5)2=5; 易知Rt △OEF ∽Rt △OAE , ∴OE OA =EF AE, ∴EF =OE·AE OA =2 5×55=2,∴OF =OE 2-EF 2=(2 5)2-22=4. ∴E 点坐标为(4,2).设直线OE 的解析式为:y =kx ,将E(4,2)的坐标代入,得y =12x ,设直线AD 的解析式为:y =kx +b ,将A(5,0),D(0,1)的坐标代入,得y =-15x +1,⎩⎪⎨⎪⎧y =12x ,y =-15x +1,解得⎩⎪⎨⎪⎧x =107,y =57.∴点P 的坐标为⎝ ⎛⎭⎪⎫107,57.9.D 10.A 11.C12.C [解析] ①a<0,b<0,c>0,故正确,②Δ=b 2-4ac>0,故正确,③x =-1,即-b2a=-1,b =2a ,故错误.④当x =-1时,a -b +c>2.故正确.13.2+3214.715.a [解析] 先算小括号,再算除法.原式=(a 2a -3-9a -3)÷a +3a =a 2-9a -3÷a +3a =(a +3)·aa +3=a.故答案为a. 16.39217.32[解析] 由题意,得AC =BC =240 km ,甲车的速度为240÷4=60(km/h),乙车的速度为240÷3=80(km/h). 设甲车出发x 小时甲、乙两车相距350 km ,由题意,得 60x +80(x -1)+350=240×2,解得x =32,即甲车出发32h 时,两车相距350 km.故答案为32.18.m<6且m≠219.32 [解析] 设点A 的坐标为(a ,5a ).∵AB ∥x 轴, ∴点B 的纵坐标为5a.将y =5a 代入y =8x ,求得x =8a 5.∴AB =8a 5-a =3a 5.∴S △OAB =12·3a 5·5a =32.故答案为3 2 .20.①③④21.[解析] (1)众数是一组数据中出现次数最多的数,观察表格可以知道甲运动员测试成绩的众数是7分.中位数是一组数据按从大到小或从小到大的顺序排列,最中间的一个或两个数的平均数,观察表格并将数据按从小到大排列得5,6,7,7,7,7,7,8,8,8,可以知道甲运动员测试成绩的中位数是7分.(2)经计算x甲=7分,x乙=7分,x丙=6.3分,根据题意不难判断.(3)画出树状图,即可解决问题.解:(1)甲运动员测试成绩的众数和中位数都是7分.(2)选乙运动员更合适,理由:经计算x甲=7分,x乙=7分,x丙=6.3分,∵x甲=x乙>x丙,s丙2>s甲2>s乙2,∴选乙运动员更合适.(3)画树状图如图所示.由树状图知共有8种等可能的结果,回到甲手中的结果有2种,故P(回到甲手中)=28=14.22.解:过点D作DM⊥EC于点M,DN⊥BC于点N,设BC=h,在直角三角形DMA中,∵AD=6,∠DAE=30°,∴DM=3,AM=3 3,则CN=3,BN=h-3.在直角三角形BDN中,∵∠BDN=30°,∴DN=3BN=3(h-3);在直角三角形ABC中,∵∠BAC=48°,∴AC=htan48°,∵AM+AC=DN,∴3 3+htan48°=3(h-3),解之得h≈13.答:大树的高度约为13米.23.解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1-x%)2=324,解得:x=10或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100-m)件,第一次降价后的单件利润为:400×(1-10%)-300=60(元/件);第二次降价后的单件利润为:324-300=24(元/件).依题意得:60m+24×(100-m)=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元,第一次降价后至少要售出该种商品23件.24.解:(1)证明:连接AN.∵AC是直径,∴∠ANC=90°.∵AB=AC,∴∠CAB=2∠CAN.∵∠CAB=2∠BCP,∴∠CAN=∠BCP.∵∠CAN+∠ACN=90°,∴∠BCP+∠ACN=90°,∴直线CP是⊙O的切线.(2)∵BC=2 5,∴CN= 5. 过B点作BD⊥AC交AC于点D.∵sin∠BCP=sin∠CAN=5 5,∴AC=5.∴AN=2 5.∵AC·BD=BC·AN,∴5·BD=2 5·2 5.∴BD=4.故点B到AC的距离为4.(3)∵AB=AC=5,BD=4,∴AD=3.∴C△ADB C△ACP =ADAC=35=12C△ACP,∴C△ACP=20.25.解:(1)相等平行[解析] ∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD. ∵CE=BF,∴△ECD≌△FBC,∴CF=DE,∠DEC=∠BFC.∴∠DEC+∠BCF=90°,∴FC⊥DE. ∵EG⊥DE,EG=DE,∴FC∥GE,GE=CF,∴四边形GECF是平行四边形,∴GF∥CE,GF=CE.(2)成立.证明:∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD. ∵CE=BF,∴△ECD≌△FBC,∴CF=DE,∠DEC=∠BFC.∴∠DEC+∠BCF=90°,∴FC⊥DE. ∵EG⊥DE,EG=DE,∴FC∥GE,GE=CF,∴四边形GECF是平行四边形,∴GF∥CE,GF=CE.(3)仍然成立.[解析] 证明方法同上.26.[解析] (1)由已知点的坐标,利用待定系数法求得抛物线的解析式为y=32x2-32x-3;(2)①利用待定系数法求出直线BC 解析式为y =32x -3,求出E 点坐标,将E 点坐标代入直线解析式y =-x +n中求出n =-2;②利用一次函数与二次函数解析式求出交点D 的坐标,再利用平行线的性质得角相等证明两个三角形全等;(3)先证明四边形OM′NH 是平行四边形,由面积公式,根据点M 、N 关于直线x =12对称,点M 与点M′关于y 轴对称,求解点M 、M′的坐标,最后由勾股定理和平行四边形面积公式求得d =5 4141. 解:(1)∵抛物线y =32x 2+bx +c 与x 轴交于A(-1,0),B(2,0)两点,∴⎩⎨⎧32-b +c =0,6+2b +c =0,解得⎩⎨⎧b =-32,c =-3,∴该抛物线的解析式为y =32x 2-32x -3.(2)①过点E 作EE′⊥x 轴于点E′. ∴EE ′∥OC , ∴BE′OE′=BE CE, ∵BE =4CE , ∴BE ′=4OE′.设点E 坐标为(x ,y),OE ′=x ,BE ′=4x. ∵点B 坐标为(2,0),∴OB =2,∴x +4x =2,∴x =25.∵抛物线y =32x 2-32x -3与y 轴交于点C ,∴当x =0时,y =-3,即C(0,-3).设直线BC 的解析式为y =kx +b 1. ∵B(2,0),C(0,-3), ∴⎩⎨⎧2k +b 1=0,b 1=-3,解得⎩⎨⎧k =32,b 1=-3,∴直线BC 的解析式为y =32x -3.∵当x =25时,y =-125,∴E(25,-125).∵点E 在直线y =-x +n 上, ∴-25+n =-125,得n =-2.②全等;理由如下:∵直线EF 的解析式为y =-x -2, ∴当y =0时,x =-2,即F(-2,0),OF =2. ∵A(-1,0),∴OA =1,AF =1. 由⎩⎨⎧y =32x 2-32x -3,y =-x -2,解得⎩⎪⎨⎪⎧x 1=-23,y 1=-43,和⎩⎨⎧x 2=1,y 2=-3.∵点D 在第四象限,∴D(1,-3). ∵点C(0,-3), ∴CD ∥x 轴,CD =1,∴∠AFG =∠CDG,∠FAG =∠DCG, 又∵CD=AF =1, ∴△AGF ≌△CGD. (3)∵-b 2a =12.∴该抛物线的对称轴是直线x =12.∵直线y =m 与该抛物线交于M 、N 两点, ∴点M 、N 关于直线x =12对称,设N(t ,m),则M(1-t ,m),∵点M 与点M′关于y 轴对称, ∴M ′(t -1,m),∴点M′在直线y =m 上,∴M ′N ∥x 轴,M ′N =t -(t -1)=1,∵H(1,0),∴OH =1, ∴OH =M′N,∴四边形OM′NH 是平行四边形, 设直线y =m 与y 轴交于点P ,∵S ▱OM ′NH =53,即OH·OP=OH·m=53,得m =53,∴当32x 2-32x -3=53时,解得x 1=-43,x 2=73,∴点M 的坐标为(-43,53),M ′(43,53),∴OP =53,PM ′=43,在Rt △OPM ′中,∠OPM ′=90°, ∴OM ′=OP 2+PM′2=413.∵S ▱OM ′NH =53,∴OM ′·d =53,d =5 4141.2018年中考数学模拟试卷及答案(二)[满分:120分 考试时间:120分钟]一、选择题(每小题3分,共36分) 1.-2的相反数是( ) A .- 2 B.22 C. 2 D .-222.函数y =x -2x +3中自变量x 的取值范围是( ) A .x ≠-3 B .x≥2 C .x >2 D .x ≠03.统计显示,2016年底某市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为( )A.11.4×104 B.1.14×104 C.1.14×105 D.0.114×106 4.下列运算正确的是( ) A.a2+a3=a5B.(-2a2)3÷(a2)2=-16a4C.3a-1=13aD.(2 3a2-3a)2÷3a2=4a2-4a+1图M1-15.如图M1-1,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8 cm,CD=3 cm,则圆O的半径为( )A.256cm B.5 cmC.4 cm D.196cm6.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中摸出的2个球的颜色相同的概率是( )A.34B.15C.35D.257.方程(m-2)x2-3-mx+14=0有两个实数根,则m的取值范围为( )A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠28.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.32B.3 32C.32D.不能确定9.下列命题中,原命题与逆命题均为真命题的个数是( ) ①若a=b,则a2=b2;②若x >0,则|x|=x ;③一组对边平行且对角线相等的四边形是矩形; ④一组对边平行且不相等的四边形是梯形. A .1个 B .2个 C .3个 D .4个 10.如图M1-2,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,将Rt △ABC 绕点B 旋转90°至△DBE 的位置,连接EC 交BD 于F ,则CF∶FE 的值是( )图M1-2A .3∶4B .3∶5C .4∶3D .5∶311.定义新运算,a*b =a(1-b),若a 、b 是方程x 2-x +14m =0(m<0)的两根,则b*b -a*a 的值为( )A .0B .1C .2D .与m 有关方程图M1-312.反比例函数y =a x (a >0,a 为常数)和y =2x 在第一象限内的图象如图M1-3所示,点M 在y =ax 的图象上,MC ⊥x 轴于点C ,交y =2x 的图象于点A ;MD⊥y 轴于点D ,交y =2x 的图象于点B ,当点M 在y =ax 的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点. 其中正确结论的个数是( ) A .0 B .1 C .2 D .3二、填空题(每小题3分,共24分)13.计算:8-312+2=________.14.不等式组⎩⎨⎧x -1≤2-2x ,2x 3>x -12的解集为________.图M1-415.如图M1-4,OP 为∠AOB 的平分线,PC ⊥OB 于点C ,且PC =3,点P 到OA 的距离为________. 16.小亮应聘小记者,进行了三项素质测试,测试成绩分别是:采访写作90分,计算机输入85分,创意设计70分,若将采访写作、计算机输入、创意设计三项成绩按5∶2∶3的比例来计算平均成绩,则小亮的平均成绩是________分.图M1-517.如图M1-5,Rt △A ′BC ′是由Rt △ABC 绕B 点顺时针旋转而成的,且点A ,B ,C ′在同一条直线上,在Rt △ABC 中,若∠C=90°,BC =2,AB =4,则斜边AB 旋转到A′B 所扫过的扇形面积为________.18.化简x x 2+2x +1÷(1-1x +1)=________.19.如图M1-6,在Rt △ABC 中,∠B =90°,AB =3,BC =4,点D 在BC 上,以AC 为对角线的所有▱ADCE 中,DE 最小的值为________.M1-6M1-720.如图M1-7,CB =CA ,∠ACB =90°,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG⊥CA,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC=FG ;②S △FAB ∶S四边形CBFG =1∶2;③∠ABC=∠ABF;④AD 2=FQ ·AC ,其中所有正确结论的序号是________.三、解答题(共60分)21.(8分)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分).A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100,并绘制如图M1-8两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有________名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是________,E组人数占参赛选手的百分比是________;(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.图M1-822.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图M1-9,老师测得升旗台前斜坡FC的坡比为iFC=1∶10(即EF∶CE=1∶10),学生小明站在离升旗台水平距离为35m(即CE=35 m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=37,升旗台高AF=1 m,小明身高CD=1.6 m,请帮小明计算出旗杆AB的高度.23.(10分)某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车按规定满载,并且只装一种水果).下表为装运甲、乙、丙三种水果的重量及利润.(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),设装运甲种水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?24.(10分)如图M1-10,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.(1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.①试判断DF与DH的数量关系,并说明理由;②求⊙O的半径.图M1-1025.(12分)提出问题:(1)如图M1-11①,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH 于点O,求证:AE=DH.类比探究:(2)如图②,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上.若EF⊥HG 于点O.探究线段EF与HG的数量关系,并说明理由.综合运用:(3)在(2)问条件下,HF∥GE,如图③所示,已知BE=EC=2,OE=2OF,求图中阴影部分的面积.图-1126.(12分)如图M1-12,已知抛物线y =ax 2+bx +c(a≠0)经过A(-1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E 为抛物线上一动点,是否存在点E 使以A 、B 、E 为顶点的三角形与△COB 相似?若存在,试求出点E 的坐标;若不存在,请说明理由;(3)若将直线BC 平移,使其经过点A ,且与抛物线相交于点D ,连接BD ,试求出∠BDA 的度数.图M1-12参考答案1.C 2.B 3.C 4.D 5.A 6.D7.B [解析] 因为方程有两个实数根,所以⎩⎨⎧m -2≠0,(-3-m )2-4×14(m -2)≥0,解得m≤52且m≠2.故选B.8.B [解析] 如图,△ABC是等边三角形,AB=3,点P是△ABC内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于H.则BH=32,AH=AB2-BH2=3 32.连接PA,PB,PC,则S△PAB +S△PBC+S△PCA=S△ABC.∴12AB·PD+12BC·PE+12CA·PF=12BC·AH.∴PD+PE+PF=AH=3 32.故选B.9.A 10.A11.A [解析] b*b-a*a=b(1-b)-a(1-a)=b-b2-a+a2,因为a,b为方程x2-x+14m=0的两根,所以a2-a+14m=0,化简得a2-a=-14m,同理b2-b=-14m,代入上式得原式=-(b2-b)+a2-a=14m+(-14m)=0.12.D13.32214.-3<x≤115.3 [解析] 如图,过P作PD⊥OA于D,∵OP为∠AOB的平分线,PC⊥OB,∴PD=PC,∵PC=3,∴PD=3.故答案为3.16.8317.16π318.1x+119.320.①②③④ [解析] ∵∠G=∠C =∠FAD=90°, ∴∠CAD =∠AFG. ∵AD =AF ,∴△FGA ≌△ACD. ∴AC =FG , ①正确.∵FG =AC =BC ,FG ∥BC ,∠C =90°, ∴四边形CBFG 为矩形, ∴S △FAB =12FB·FG=12S 四边形CBFG ,②正确.∵CA =CB ,∠C =∠CBF=90°, ∴∠ABC =∠ABF=45°, 故③正确.∵∠FQE =∠DQB=∠ADC,∠E =∠C=90°, ∴△ACD ∽△FEQ ,∴AC ∶AD =FE∶FQ, ∴AD ·FE =AD 2=FQ·AC, ④正确.21.[解析] (1)由A 组或D 组对应频数和百分比可求选手总数为40,进而求出B 组频数;(2)C 组对应的圆心角=1240×360°,E 组人数占参赛选手的百分比是640×100%;(3)用列表或画树状图表示出所有可能的结果,注意选取不放回.解:(1)40,补全频数分布直方图如图;(2)108°,15%;(3)两名男生分别用A 1、A 2表示,两名女生分别用B 1、B 2表示.根据题意可画出如下树状图:或列表如下:的结果有8种.∴选中一名男生和一名女生的概率是812=23.22.解:∵i FC =1∶10,CE =35 m , EF =3510=3.5(m). 过点D 作BE 的垂线交BE 于点G.在Rt △BGD 中 ,∵tan α=37,DG =CE =35 m ,∴BG =15 m.又∵CD=1.6 m ,CD =EG , ∴FG =3.5-1.6=1.9(m). 又∵AF=1 m ,∴AB =BG -AF -FG =15-1-1.9=12.1(m).23.解:(1)设装运乙、丙两种水果的汽车分别为x 辆,y 辆,由题意得 ⎩⎨⎧x +y =8,2x +3y =22,∴⎩⎨⎧x =2,y =6.答:装运乙种水果有2辆车,装运丙种水果有6辆车. (备注:也可列一元一次方程)(2)设装运乙、丙两种水果的车分别为a 辆,b 辆,由题意得 ⎩⎨⎧m +a +b =20,4m +2a +3b =72,∴⎩⎨⎧a =m -12,b =32-2m. (3)设总利润为w 千元,w =4×5m+2×7(m-12)+4×3(32-2m) =10m +216,∵⎩⎨⎧m≥1,m -12≥1,32-2m≥1,∴13≤m ≤15.5. ∵m 为正整数, ∴m =13,14,15.在w=10m+216中,w随m的增大而增大,当m=15时,w最大=366千元.答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆时,有最大利润,最大利润为366千元.24.解:(1)证明:连接OD.∵BC与⊙O相切于点D,∴OD⊥BC.又∵∠C=90°,∴OD∥AC,∴∠CAD=∠ODA.∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠BAD,∴AD平分∠CAB.(2)①DF=DH.理由如下:∵FH平分∠AFE,∴∠AFH=∠EFH,又∠DFG=∠EAD=∠HAF,∴∠DFG+∠GFH=∠HAF+∠HFA,即∠DFH=∠DHF,∴DF=DH.②设HG=x,则DH=DF=1+x.∵OH⊥AD,∴AD=2DH=2(1+x).∵∠DFG=∠DA F,∠FDG=∠ADF,∴△DFG∽△DAF,∴DFAD=DGDF,∴1+x2(1+x)=11+x,∴x=1.∴DF=2,AD=4.∵AF为直径,∴∠ADF=90°,∴AF=DF2+AD2=22+42=2 5,∴⊙的半径为 5.25.解:(1)证明:如图①,在正方形ABCD中,AD=AB,∠B=90°,∴∠1+∠3=90°,∵AE⊥DH,∴∠1+∠2=90°.∴∠2=∠3.∴△ADH≌△BAE(AAS).∴AE=DH.(2)相等,理由如下:如图②,过点D作DH′∥GH交AB于H′,过点A作AE′∥FE交BC于E′,AE′分别交DH′,GH于点S,T,DH′交EF于点R.∴四边形ORST为平行四边形.又∵EF⊥HG,∴四边形ORST为矩形,∴∠RST=90°.由(1)可知,DH′=AE′.∵AF∥EE′,∴四边形AE′EF是平行四边形,∴EF=AE′.同理,HG=DH′,∴EF=GH.(3)如图③,延长FH,CB交于点P,过点F作FQ⊥BC于点Q.∵AD∥BC,∴∠AFH=∠P,∵HF∥GE,∴∠GEC=∠P,∴∠AFH =∠GEC.又∵∠A=∠C=90°,∴△AFH ∽△CEG. ∴AF CE =HF EG =OF OE =OF 2OF =12. ∵BE =EC =2,∴AF =1, ∴BQ =AF =1,QE =1.设OF =x ,∴OE =2OF =2x ,∴EF =3x ,∴HG =EF =3x. ∵HF ∥GE ,∴OH OG =OF OE =12,∴OH =OF =x ,OG =OE =2x.在Rt △EFQ 中,∵QF 2+QE 2=EF 2, ∴42+12=(3x)2,解得x =173. ∴S 阴影=S △HOF +S △EOG =12x 2+12(2x)2=52x 2=52×(173)2=8518.26.解:(1)∵该抛物线过点C(0,2),∴可设该抛物线的解析式为y =ax 2+bx +2, 将A(-1,0),B(4,0)代入,得 ⎩⎨⎧a -b +2=0,16a +4b +2=0, 解得⎩⎪⎨⎪⎧a =-12,b =32.∴该抛物线的解析式为y =-12x 2+32x +2.(2)存在.由图可知,以A ,B 为直角顶点的△ABE 不存在,所以△ABE 只可能是以点E 为直角顶点的三角形.在Rt △BOC 中,OC =2,OB =4, ∴BC =22+42=2 5.在Rt △BOC 中,设BC 边上的高为h , 则12BC×h=12×2×4,∴h =455.∵△BEA ∽△COB ,设E 点坐标为(x ,y), ∴AB BC =|y|455,∴y =±2,当y =-2时,不合题意舍去, ∴E 点坐标为(0,2),(3,2).(3)如图,连接AC ,作DE⊥x 轴于点E ,作BF⊥AD 于点F ,∴∠BED =∠BFD=∠AFB=90°. 设BC 的解析式为y =kx +b , 由图像,得⎩⎨⎧2=b ,0=4k +b ,∴⎩⎨⎧k =-12,b =2.∴y BC =-12x +2.由BC∥AD,设AD 的解析式为y =-12x +n ,由图象,得0=-12×(-1)+n ,∴n =-12,y AD =-12x -12,∴-12x 2+32x +2=-12x -12,解得:x 1=-1,x 2=5.∴D(-1,0)与A 重合,舍去, ∴D(5,-3).∵DE ⊥x 轴,∴DE =3,OE =5. 由勾股定理,得BD =10. ∵A(-1,0),B(4,0),C(0,2), ∴OA =1,OB =4,OC =2, ∴AB =5.在Rt△AOC,Rt△BOC中,由勾股定理,得AC=5,BC=2 5,∴AC2=5,BC2=20,AB2=25,∴AB2=AC2+BC2,∴△ACB是直角三角形,∴∠ACB=90°.∵BC∥AD,∴∠CAF+∠ACB=180°,∴∠CAF=90°.∴∠CAF=∠ACB=∠AFB=90°,∴四边形ACBF是矩形,∴AC=BF=5,在Rt△BFD中,由勾股定理,得DF=5,∴DF=BF,∴∠ADB=45°.2018年中考数学模拟试卷及答案(三)[满分:120分考试时间:120分钟]一、选择题(每小题3分,共36分)1.下列各实数中最小的是( )A.- 2 B.-12 C.0 D.|-1|2.下列等式一定成立的是( )A.a2·a5=a10 B.a+b=a+ bC.(-a3)4=a12 D.a2=a3.估计7+1的值( )A.在1和2之间 B.在2和3之间C.在3和4之间 D.在4和5之间4.3tan30°的值等于( )A. 3 B.3 3 C.33D.325.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( )A.13B.16C.518D.566.将下列多项式分解,结果中不含有因式a+1的是( ) A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+17.正六边形的边心距为3,则该正六边形的边长是( )A. 3 B .2 C .3 D .2 38.在平面直角坐标系中,将△AOB 绕原点O 顺时针旋转180°后得到△A 1OB 1,若点B 的坐标为(2,1),则点B 的对应点B 1的坐标为( )A .(1,2)B .(2,-1)C .(-2,1)D .(-2,-1)9.化简a 2-b 2ab -ab -b 2ab -a 2等于( )A.b aB.ab C .-b a D .-a b10.如图M3-1,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:图M3-1①DE BC =12;②S △DOE S △COB=12; ③AD AB =OE OB;④S △ODE S △ADE=13. 其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个 11.已知下列命题:①若a>0,b>0,则a +b>0; ②若a≠b,则a 2≠b 2;③角平分线上的点到角两边的距离相等; ④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是( ) A .1个 B .2个 C .3个 D .4个12.如图M3-2是二次函数y =ax 2+bx +c 图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出四个结论:①c>0;②若点B(-32,y1),C(-52,y2)为函数图象上的两点,则y1<y2;③2a-b=0;④4ac-b24a<0.其中,正确结论的个数是( )图M3-2 A.1 B.2C.3 D.4二、填空题(每小题3分,共24分)13.计算:(-5)0+12cos30°-(13)-1=________.14.已知一组数据:3,3,4,7,8,则它的方差为________.15.如图M3-3,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=________.图M3-316.如图M3-4,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是________图M3-417.如图M3-5,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.图M3-518.若关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2满足x1+x2=-x1·x2,则k=________.19.如图M3-6,在平面直角坐标系中,矩形ABCD的边AB∶BC=3∶2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=kx(x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为________.图M3-620.如图M3-7,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF =2S△ABE.其中正确结论有________.图M3-7三、解答题(共60分)21.(8分)为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x(单位:℃)进行调查,并将所得的数据按照12≤x<16,16≤x<20,20≤x<24,24≤x<28,28≤x<32分成五组,得到下面频数分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24 ℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.图M3-822.(8分)如图M3-9,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E 在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度.(结果保留根号)23.(10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000 m2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为y1=⎩⎨⎧k1x(0≤x<600),k2x+b(600≤x≤1000),其图象如图M3-10所示;栽花所需费用y2(元)与x(m2)的函数关系式为y2=-0.01x2-20x+30000(0≤x≤1000).(1)请直接写出k1,k2和b的值;(2)设这块1000 m2空地的绿化总费用为W(元),请写出W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700 m2,栽花部分的面积不少于100 m2,请求出绿化总费用W的最小值.图M3-1024.(10分)如图M3-11,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC 的延长线于点E,连接BD,BE.(1)求证:△ABD∽△AEB;(2)当ABBC=43时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.图M3-1125.(12分)如图M3-12,在△ABC中,AB=AC,AD⊥BC于点D,BC=10 cm,AD=8 cm,点P从点B出发,在线段BC上以每秒3 cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2 cm的速度沿DA方向匀速平移,分别交AB,AC,AD于点E,F,H.当点P到达点C时,点P与直线m同时停止运动,设运动时间为t(t>0)秒.(1)当t=2时,连接DE,DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时t的值,若不存在,请说明理由.图M3-1226.(12分)如图M3-13,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.图M3-13参考答案1.A 2.C 3.C 4.A 5.A6.C [解析] A:原式=(a+1)(a-1),不符合题意;B:原式=a(a+1),不符合题意;C:原式=(a+2)(a-1),符合题意;228.D [解析] ∵△A 1OB 1是将△AOB 绕原点O 顺时针旋转180°后得到的图形, ∴点B 和点B 1关于原点对称, ∵点B 的坐标为(2,1),∴点B 1的坐标为(-2,-1). 故选D.9.B 10.C 11.B 12.B 13.114.4.4 [解析] 这组数据的平均数是:(3+3+4+7+8)÷5=5,则这组数据的方差为:15[(3-5)2+(3-5)2+(4-5)2+(7-5)2+(8-5)2]=4.4.15.216.3π [解析] ∵△ABC 是等边三角形, ∴∠C =60°,根据圆周角定理可得∠AOB=2∠C=120°, ∴阴影部分的面积是120π·32360=3π,故答案为:3π. 17.x>3 18.219.(2,7) [解析] 过点D 作DF⊥x 轴于点F ,则∠AOB=∠DFA=90°, ∴∠OAB +∠ABO=90°, ∵四边形ABCD 是矩形, ∴∠BAD =90°,AD =BC , ∴∠OAB +∠DAF=90°, ∴∠ABO =∠DAF, ∴△AOB ∽△DFA ,∴OA ∶DF =OB∶AF=AB∶AD,∵AB ∶BC =3∶2,点A(3,0),B(0,6), ∴AB ∶AD =3∶2,OA =3,OB =6, ∴DF =2,AF =4, ∴OF =OA +AF =7,∴点D 的坐标为(7,2),∴反比例函数的解析式为y =14x .①点C 的坐标为(4,8),设直线BC 的解析式为y =kx +b , 则⎩⎨⎧b =6,4k +b =8,解得:⎩⎨⎧k =12,b =6,联立①②得:⎩⎨⎧x =2,y =7或⎩⎨⎧x =-14,y =-1(舍去),∴点E 的坐标为(2,7).20.①②③⑤21.解:(1)这30天最高气温的平均数=14×8+18×6+22×10+26×2+30×430=20.4 (℃),中位数为22 ℃. (2)1630×90=48(天). 答:估计该地这个季度中最高气温超过(1)中平均数的天数为48天. (3)P =1230=25.22.解:(1)在Rt △DCE 中,DC =4米,∠DCE =30°,∠DEC =90°, ∴DE =12DC =2米.(2)过D 作DF⊥AB,交AB 于点F , ∵∠BFD =90°,∠BDF =45°, ∴∠DBF =45°,即△BFD 为等腰直角三角形, 设BF =DF =x 米,∵四边形DEAF 为矩形,∴AF =DE =2米,即AB =(x +2)米, 在Rt △ABC 中,∠ABC =30°, ∴BC =AB cos30°=x +232=2x +43=3(2x +4)3米,BD =2BF =2x 米,DC =4米,∵∠DCE =30°,∠ACB =60°,∴∠DCB =90°, 在Rt △BCD 中,根据勾股定理得:BD 2=BC 2+CD 2, 即2x 2=(2x +4)23+16,解得:x =4+4 3或x =4-4 3(舍去), 则AB =(6+4 3)米.23.[解析] (1)利用待定系数法求解;(2)分0≤x<600和600≤x≤1000两种情况求出W 关于x 的函数关系式,分别求出两种情况下的最大值并进行比较;(3)先根据不等关系求出x 的取值范围,再结∵-0.01<0,W =-0.01(x -500)2+32500, ∴当x =500时,W 取最大值为32500元.当600≤x≤1000时,W =20x +6000+(-0.01x 2-20x +30000)=-0.01x 2+36000. ∵-0.01<0,∴当600≤x≤1000时,W 随x 的增大而减小. ∴当x =600时,W 取最大值为32400元. ∵32400<32500,∴W 的最大值为32500元. (3)由题意,1000-x≥100,解得x≤900. 又x≥700,∴700≤x ≤900.∵当700≤x≤900时,W 随x 的增大而减小. ∴当x =900时,W 取最小值为27900元. 24.解:(1)证明:∵∠ABC =90°, ∴∠ABD =90°-∠DBC, 由题意知:DE 是直径, ∴∠DBE =90°,∴∠E =90°-∠BDE, ∵BC =CD ,∴∠DBC =∠BDE, ∴∠ABD =∠E, ∵∠A =∠A, ∴△ABD ∽△AEB. (2)∵AB BC =43, ∴设AB =4k ,则BC =3k , ∴AC =AB 2+BC 2=5k , ∵BC =CD =3k ,∴AD =AC -CD =5k -3k =2k , 由(1)可知:△ABD∽△AEB, ∴AB AE =AD AB =BD BE, ∴AB 2=AD·AE, ∴(4k)2=2kAE , ∴AE =8k , 在Rt △DBE 中, tanE =BD BE =AB AE =4k 8k =12.(3)过点F 作FM⊥AE 于点M ,设AB =4x ,BC =3x ,由(2)可知:AE =8x ,AD =2x , ∴DE =AE -AD =6x , ∵AF 平分∠BAC, 可证BF EF =AB AE ,∴BF EF =4x 8x =12, ∵tanE =12,∴cosE =2 55,sinE =55,∴BE DE =2 55,∴BE =2 55DE =12 55x , ∴EF =23BE =8 55x ,∵sinE =MF EF =55,∴MF =85x ,∵tanE =12,∴ME =2MF =165x ,∴AM =AE -ME =245x , ∵AF 2=AM 2+MF 2, ∴4=(245x)2+(85x)2,解得x =108, ∴⊙C 的半径为3x =3 108. 25.解:(1)证明:当t =2时,DH =AH =4 cm , ∵AD ⊥BC ,AD ⊥EF ,∴EF ∥BC , ∴EH =12BD ,FH =12CD.又∵AB=AC ,AD ⊥BC ,∴BD =CD ,∴EH =FH ,∴EF 与AD 互相垂直平分, ∴四边形AEDF 为菱形.(2)依题意得DH =2t ,AH =8-2t ,BC =10 cm ,AD =8 cm , 由EF∥BC 知△AEF∽△ABC,即8-2t 8=EF10, 解得EF =10-52t ,∴S △PEF =12⎝ ⎛⎭⎪⎫10-52t ·2t=-52t 2+10t =-52(t -2)2+10,即当t =2秒时,△PEF 的面积存在最大值10 cm 2,此时BP =3×2=6(cm). (3)过E ,F 分别作EN⊥BC 于N ,FM ⊥BC 于M ,易知EF =MN =10-52t ,EN =FM ,由AB =AC 可知BN =CM =10-⎝⎛⎭⎪⎫10-52t 2=54t.在Rt △ACD 和Rt △FCM 中,由tanC =AD CD =FM CM ,即FM 54t =85, 解得FM =EN =2t ,又由BP =3t 知CP =10-3t , PN =3t -54t =74t ,PM =10-3t -54t =10-174t ,则EP 2=(2t)2+⎝ ⎛⎭⎪⎫74t 2=11316t 2,FP 2=(2t)2+⎝⎛⎭⎪⎫10-174t 2=353t 216-85t +100,EF 2=⎝⎛⎭⎪⎫10-52t 2=254t 2-50t +100.分三种情况讨论:①若∠EPF =90°,则EP 2+PF 2=EF 2,即11316t 2+35316t 2-85t +100=254t 2-50t +100,解得t 1=280183,t 2=0(舍去).②若∠EFP=90°,则EF 2+FP 2=EP 2,即254t 2-50t +100+35316t 2-85t +100=11316t 2,40。
2018年中考模拟试卷 数学卷 满分120分 考试时间100分钟考生须知:※ 本试卷分试题卷和答题卷两部分..※ 答题前,必须在答题卷的密封区内填写校名、姓名和准考证号. ※ 所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.※ 考试结束后,上交试题卷和答题卷.试 题 卷一、细心选一选<本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请你把正确选项前的字母填涂在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.jgbWZYfygu 1.下列各组数中,互为相反数的是< ▲ )【原创】 A .2和21 B .︒30sin 和21-C .2)2(-和2)2(D .12-和21- 2.如果代数式y x a 124-与b a y x +-3561时同类项,那么< ▲ )【原创】 A .6,2-==b a B .8,3-==b a C .5,2-==b a D .9,3-==b a 3.为了记录本月蔬菜价格的变化情况,应选用的统计图是< ▲ )【原创】 A .扇形统计图 B .条形统计图 C .折线统计图 D .都可以4.2018年3月18日,美国内布拉斯加州,沙丘鹤飞过升起的月亮。
美国航空航天局发布消息说,19日,月球将到达19年来距离地球最近位置,它与地球的距离仅有356578千M ,从地球上观看,月球比远地点时面积增大14%,亮度增加30%,号称“超级月亮”。
其中356578千M 精确到万位是< ▲ )【原创】jgbWZYfygu A .51057.3⨯ B .61035.0⨯ C .5106.3⨯ D .5104⨯ 5.要得到二次函数122+--=x x y 的图象,则需将2)1(2+--=x y 的图象< ▲ )【原创】A .向右平移两个单位B .向下平移1个单位C .关于x 轴做轴对称变换D .关于y 轴做轴对称变换6.如果一个空间几何体的主视图和左视图都是边长为2的正三角形,俯视图是圆且中间有一点。
浙江省2018年中考模拟考试语文试题卷(一)考生须知:1.全卷共四大题,19小题,满分为120分(含卷面分3分),考试时间为120分钟;2.请用黑色字迹的钢笔或签字笔在“答题卷”上先填写姓名和考号。
各题的答案必须写在“答题卷”的相应位置上,否则答案无效;3.希望同学们仔细审题,沉着答题,努力做到书写规范、清楚,保持卷面整洁。
祝同学们考出好成绩!一、语文知识积累(20分)1.根据语境和拼音书写词语,并给加点字选择正确的读音。
(3分)带着感激和依恋,带着激情和梦想,我们即将踏上新的zhēng chéng。
忘不了生机盎然、温馨美好的校园,忘不了循循善诱、诲.(A.huìB.huǐ)人不倦的师长,忘不了朝气蓬勃、勤学好问的同窗。
在人生的每一个考场,我们都将wúsuǒ-wèijù,努力拼搏,积极进取,交出完美的答卷。
2.古诗文名句默写。
(8分)(1),天涯若比邻。
(王勃《送杜少府之任蜀州》)(2)峰峦如聚,,山河表里潼关路。
(张养浩《山坡羊·潼关怀古》)(3)子曰:,,乐亦在其中矣。
不义而富且贵,于我如浮云。
(《论语·述而》)(4)“水不在深,有龙则灵”,灵异之水给人遐思、动人心怀。
白居易徜徉钱塘湖,留连不忍去:“,。
”崔颢黄鹤楼远眺,烟水茫茫,乡愁百结:“?。
”3.解释下列句子中加点的文言词语。
(4分)(1)乃.石性坚重()(《河中石兽》)(2)两股.战战()(《口技》)(3)春和景.明()(《岳阳楼记》)(4)苟.富贵()(《陈涉世家》)4.名著阅读。
(5分)(1)阅读下面的文字,在括号内填写恰当的内容。
(3分)英国哲学家培根说:“读书足以怡情,足以傅彩,足以长才。
”读鲁迅的《朝花夕拾》,我们能从身上,学到严谨、热诚、正直、没有民族偏见的高尚品质。
读奥地利作家的传记文学《人类的群星闪耀时》,我们能看到人类历史上的那些“决定性瞬间”,看到个人意志与历史宿命碰撞时所绽放的绚丽光芒。
2018年江西中考模拟卷(一)说明:1.本卷共五大题,24小题,全卷满分100分。
考试时间为70分钟。
2.本卷可能用到的相对原子质量:H—1N—14O—16Na—23Al—27一、单项选择题(本大题包括10小题,每小题2分,共20分。
每小题有四个选项,其中只有一个选项符合题意)1.“东方之星”沉船事故救援时,潜水员钢瓶中携带的气体是()A.水蒸气B.氮气C.二氧化碳D.氧气2.通常情况下,下列溶液的溶质为液体的是()A.蔗糖溶液B.酒精溶液C.食盐溶液D.澄清石灰水3.如图所示实验操作中,正确的是()4.下列各项中,属于《环境空气质量标准》基本监控项目的是()A.H2O浓度B.O2浓度C.N2浓度D.SO2浓度5.下列关于燃烧和灭火的分析错误的是()A.室内着火不能立即打开门窗,是因为会提供充足的氧气B.点燃的火柴竖直向上,火焰很快熄灭,是因为它接触不到氧气C.扑灭森林火灾铲除前方树木设置隔离带,是因为清除了可燃物D.在生煤炉时,可点燃木材来引燃煤,是因为木材的着火点比煤低6.下列说法错误的是()A.地壳中含量最高的金属元素是铝B.用活性炭吸附可以降低水的硬度C.纯碱不是碱D.固态二氧化碳可用于人工降雨7.如图所示是密闭体系中某反应的微观示意图,“”和“”分别表示两种不同元素的原子。
下列说法错误的是()A.参加反应的“”和“”个数比为1∶2 B.反应前后原子种类没有改变C.反应后该密闭体系中没有单质存在D.该反应是化合反应8.如图是A、B、C三种物质的溶解度随温度的变化趋势。
则下列说法正确的是()A.t1℃时A、B、C三种物质的溶解度由大到小的顺序是A、C、BB.t1℃时30g A物质加入50g水中不断搅拌,形成的溶液质量是80gC .A 、B 两种物质的混合溶液可通过蒸发结晶的方式提纯AD .将t 1℃时A 、B 、C 三种物质饱和溶液的温度升高到t 2℃时,三种溶液的溶质质量分数的大小关系是B >C >A9.归纳总结是化学学习中常用的方法,下列归纳总结正确的是( ) A .复分解反应中可能同时生成两种沉淀 B .同种元素组成的物质一定是单质C .能使无色酚酞变为红色的物质一定是碱的溶液D .有单质和化合物生成的反应一定是置换反应10.某同学利用初中科学物质间相互转化的知识,设计了如图所示的3条铜的“旅行路线”,每条路线中的每次转化都是通过一步化学反应来实现的,那么,每条路线中可能都有的化学反应类型是()A .化合反应B .分解反应C .置换反应D .复分解反应二、选择填充题(本大题包括5小题,每小题3分,共15分。
2018年中考数学模拟题一.选择题(每题3分,共计30分) 1.小怡家的冰箱冷藏室温度是5℃,冷冻室的温度是-2℃,则她家冰箱冷藏室温度比冷冻室温度高( ).A.3℃ B.-3℃ C.7℃ D.-7℃. 2.函数12y x =-的自变量x 的取值范围是( ) A . 2x = B . 2x ≠ C . 2x ≠- D . 2x >3.下列计算正确的是( ) A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
4.下面的图形中,既是轴对称图形又是中心对称图形的是( ).A .B .D .5.下列命题中,假命题是( )A 、在S=错误!未找到引用源。
R 2中,S 和R 2成正比例B 、函数y=x 2+2x+1的图像与x 轴只有一个交点C 、一次函数y=-5x-1的图像经过第二、三、四象限D 、在函数y=-3x 中,当x <0时,y 随x 的增大而增大6. 将如图所示的Rt △ABC 绕直角边BC 旋转一周,所得几何体的左视图是( )7. 已知函数y =x 2-2x -2的图像如图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( ) A .-1≤x ≤3 B .-3≤x ≤1 C .x ≥-3D .x ≤-1或x ≥38.数学活动课上,小敏、小颖分别画了△ABC 和△DEF ,尺寸如图.如果把小敏画的三角形的面积记作S △ABC ,小颖画的三角形的面积记作S △DEF ,那么你认为( ) (A )S △ABC >S △DEF (B )S △ABC <S △DEF (C )S △ABC = S △DEF (D )不能确定7题ABC FED130︒50︒545小敏画的三角小颖画的三角图1F C9.如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC =30°,弦EF ∥AB ,则EF 的长度为 ( )A .2B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
10.已知:如图1,点G 是BC 的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图 1 的边线运动,运动路径为:G -C -D -E -F -H ,相应的△A B P 的面积y(cm 2)关于运动时间t(s)的函数图像如图2,若AB=6cm ,则下列四个结论中正确的 个数是( )①图1中的BC 长是8cm ②图2中的M 点表示第4秒时错误!未找到引用源。
的值为24cm 2③图1中的CD 长是4cm ④图2中的N 点表示第12秒时y 的值为18cm 2A .1个B .2个C .3个D .4个二.填空题(每题3分,共计30分)11.现有甲、乙两支排球队,每支球队队员身高的平均数均为1.85米,方差分别为2甲S =0.32,2乙S =0.26,则身高较整齐的球是 队. 12。
把错误!未找到引用源。
分解因式的结果是___________ 13.1纳米是0.000000001米,流感病毒的直径是90纳米,用科学记数法表示是___米. 14.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米。
15.钟表的轴心到分针针端的长为5cm ,那么经过40分钟,分针针端转过的弧长________ cm . 16.从标有1,3,4,6,8的五张卡片中随机抽取两张,和为奇数的概率是17.如图,用灰白两色正方形瓷砖铺设地面,第n 个图案中白色瓷砖块数为_________.(用含n 的代数式表示)18.在四边形ABCD中,AB=3,AD=DC=4,∠A=1200,BD平分∠ABC,那么,四边形ABCD的面积为19. 如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完第1个图案第2个图案第3个图案整的圆共有 个.20.在平面直角坐标系错误!未找到引用源。
中,已知点错误!未找到引用源。
关于错误!未找到引用源。
轴的对称点为错误!未找到引用源。
,点错误!未找到引用源。
是错误!未找到引用源。
轴上的一个动点,当错误!未找到引用源。
是等腰三角形时,错误!未找到引用源。
的值是 . 三、解答题21.(本题6分)先化简,再求值:错误!未找到引用源。
,其中a=6cos60°,b=2tan45°22. (本题6分) 杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线23y=x 3x 15-++的一部分,如图所示。
(1)求演员弹跳离地面的最大高度; (2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由。
23. (本题6分)如图a ,四边形ABCD 为矩形,将图a 中的矩形ABCD 沿对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到图b 中的△A'BC'.(1)图b 中除△ADC 与△C'BA'全等外,还有哪几对全等的三角形?请一一写出来(不再添加辅助线和字母);(2)请选择(1)中写出的全等三角形的任意一对进行证明.第22题图24. (本题6分)如图所示,A 、B 两地之间有一条河,原来从A 地到B地需要经过DC ,沿折线A →D →C →B 到达,现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地.已知BC =11km ,∠A =45°,∠B =37°.桥DC 和AB 平行,则现在从A 地到达B 地可比原来少走多少路程?(结果精确到0.1km .参考数据:错误!未找到引用源。
,sin37°≈0.60,cos37°≈0.80)25.(本题8分)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小护士”组成了“控制噪声污染”课题学习研究小组.该小组抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位(1)频数分布表中的a=___________,b=____________,c=____________;(2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75 dB的测量点约有多少个?44.5 59.5 74.5 89.5 104.5 119.526.(本题8分)甲、乙两个工程队共同承包一项工程,该工程款为24000元.已知甲工程队单独完成该工程需40天.(1)若甲工程队先单独工作10天,甲、乙两工程队再合作18天完成了该工程,那么乙工程队单独完成该工程需多少天?(2)乙工程队提高工作效率后,单独完成该工程只需24天,且甲、乙两工程队每天获得工程款的比等于3:5,在此条件下,甲工程队先单独工作6天,然后甲、乙两工程队开始合作,当甲工程队先后完成的工程总量与乙工程队完成的工程量的和不少于整个工程的错误!未找到引用源。
,且乙工程队获得的工程款不低于甲工程队获得的工程款时,乙工程队至少和甲工程队合作了多少天?27.(本题10分)如图1,在正方形ABCD 中,E 为DC 的中点,动点P 在射线CB 上(不与点C 重合),PD 交AB 于G,过点P 作直线L ⊥CP 于P,过点C 作CF ⊥PD 于F, 连接EF 并延长,交直线L 于Q,交AB 于H, (1)求证:PQ+错误!未找到引用源。
BC=EQ(2)若正方形边长为3,设PB=x ,PQ=y,求y 与x 的函数关系式(不要求写出自变量x 的取值范围). (3)在(2)的条件下,探究:① 当x 为何值时,AQ+QE 的值最小?并求出其最小值.②若线段PD 、QE 分别交边AB 于G 、H (如图2),问是否存在AQ 的值,使得HG=错误!未找到引用源。
,若存在求出AQ 的值;若不存在,说明理由.28. (本题10分) 如图,在平面直角坐标系中,矩形ABCD 的顶点C 与坐标原点O 重合, BC 边与x 轴重合,CD 边与y 轴重合,点A 坐标为(-3,2),直线BE 交y 轴于点E,连接AE,将△ABE 沿直线BE 翻折,点A 恰好落在x 轴上的点A ,处,(1) 求直线A ,E 的解析式;(2)若点M 在直线A ,E 上,连接OM, 当S △BME =S △BMO 时,求BM 的长;(3)在(2)的条件下,点P 、Q 分别为直线BE 、BM 上两点,当以A 、B 、P 、Q 为顶点的四边形为等腰梯形E D P ED P时,求P 、Q 两点的坐标.2018年中考数学模拟题答案一.选择题 1.C 2.B 3.C 4.B 5.D 6.A7.D 8.C 9.B 10.D 二.填空题11.乙 12.a(a-b)2 13.9×10-8 14.120 15.20/3πcm 16.3/517.(3n+2) 18. 19.181 20。
错误!未找到引用源。
三.解答题 21.解:xyO当a=6cos60°=6×=3 b=2tan45°=2×1时原式= =522.解:(1)∵a= -<0 ∴抛物线开口向上. y有最大值.当时,答:演员弹跳离地面的最大高度是米.(2)由题意知:OC=4,当x=4时,y=-×42+3×4+1=3.4(米)答:这次表演能成功.23.解:(1)△AA′E≌△C′CF △A′DF≌△CBE(2)△AA′E≌△C′CF进行证明:证明:由题意知:AD∥BC′AC∥A′C′BA′⊥AD DC⊥BC∴四边形A′ECF为平行四边形∴A′E=CF ∵∠A=∠ACB ∠ACB=∠C′∴∠A=∠C′在△AA′E与△C′CF中∴△AA′E≌△C′CF24.解:分别过D、C作DM⊥AB于M,CN⊥AB于N,∴DM∥CN ∵AB∥CD∴四边形CNMD为平行四边形∵∠CNM=90°∴四边形CNMD为矩形在R t△CNB中,sinB= ∴CN=BC·sinB=11×sin37°≈6.6在Rt△CNB中cosB= ∴BN=BC·cosB=11×cos37°≈8.8∵∠A=45°,∠DMA=90°∴∠AND=90°-45°=45°=∠A ∴MA=MD∵MD=CN=6.6 ∴MA=6.6 在Rt△AMD中,由勾股定理知:AD= ≈9.3 ∵CD=MN∴AD+CD+CB-AB=AD+CD+CB-AM-MN-NB=AD+CB-AM-NB=4.9(千米)答:现在从A地到达B地可比原来少走4.9千米路程25.解:(1)8,12,0.3(2)(略)(3)在这一时刻噪声小于75dB的测量点约有60个.26.(1)设乙工程队单独完成该工程需用x天错误!未找到引用源。