浅析动点问题中的函数图像
- 格式:pdf
- 大小:681.49 KB
- 文档页数:2
动点的函数图像描述规律(一)物体运动的轨迹与函数图像是有区别的(2016•潍坊)木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()(二)易写出函数解析式(2016•荆门)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()(2016•泰安)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()(三)不易写出函数解析式(2016•衡阳)如图,已知A,B是反比例函数y= /(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为()注意函数的增减规律及自变量的范围(2016•黄石)如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是()巩固练习:1、(2016•烟台)如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()2、(2016•鄂州)如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()。
xxxxyy yyDCBA63636363OOOO图5OCD ABP 动点问题的函数图象1.(2013•牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s 与t 的大致图象应为 ( )2.(2013•北京 )如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是 ( )3.(2013•葫芦岛)如图5矩形ABCD 的对角线交于点O ,∠BOC=60°,AD=3.动点P 从点A 出发,沿折线AD-DO 以每秒1个单位的速度运动到点O 停止,设运动时间为x 秒,y=S △POC ,则y 与x 的函数关系式为( )4.(2013•兰州)如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( )A .B . C.D C B A s t o s t o s t o o t sD .5.(2013•铁岭)如图,点G 、E 、A 、B 在一条直线上,Rt △EFG 从如图所示是位置出发,沿直线AB 向右匀速运动,当点G 与B 重合时停止运动.设△EFG 与矩形ABCD 重合部分的面积为S ,运动时间为t ,则S 与t 的图象大致是( ) A .B .C .D .6.(2012•铁岭)如图, ABCD 的边长为8,面积为32,四个全等的小平行四边形对称中心分别在ABCD 的顶点上,它们的各边与 ABCD 的各边分别平行,且与 ABCD 相似.若小平行四边形的一边长为 ,且0< ≤8,阴影部分的面积的和为 ,则与 之间的函数关系的大致图象是 ( )A. B. C. D.7.(2011•安徽)如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是 ( )8.(2011•葫芦岛)如图,在矩形中截取两个相同的圆作为圆柱的上下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长与宽分别为y 和x ,则y 与x 函数的图象大致是( ).OOOOx x x x y y y y 1 2 1 2 1 2 1 2 A .B .C .D . x x y y x ABCDMN P9.(2012•营口)如图,菱形ABCD 的边长为2,∠B=30°.动点P 从点B 出发,沿B ﹣C ﹣D 的路线向点D 运动.设△ABP 的面积为y (B 、P 两点重合时,△ABP 的面积可以看做0),点P 运动的路程为x ,则y 与x 之间函数关系的图象大致为( )10.(2011•辽阳)如图,等边△ABC 的边长为4,M 为BC 上一动点(M 不与B 、C 重合),若EB =1,∠EMF =60°,点E 在AB 边上,点F 在AC 边上.设BM =x ,CF =y ,则当点M 从点B 运动到点C 时,y 关于x 的函数图象是( ).11.(2011•营口)如图,半径为1的圆和边长为3的正方形在同一水平线上,圆沿水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S (阴影部分),则S 与t 的大致图象为( ).12.(2013•营口)如图1,在矩形ABCD 中,动点E 从点B 出发,沿B A DA .B .C .D .A DEyC 方向运动至点C 处停止,设点E 运动的路程为x ,△BCE 的面积为y ,如果y 关于x 的函数图象如图2所示,则当7 x 时,点E 应运动到( )A .点C 处B .点D 处C .点B 处D .点A 处13.(2012•鞍山)如图,在直角梯形ABCD 中,AD ∥BC ,∠A=90°,AB=BC=4,DE ⊥BC 于点E ,且E 是BC 中点;动点P 从点E 出发沿路径ED→DA→AB 以每秒1个单位长度的速度向终点B 运动;设点P 的运动时间为t 秒,△PBC 的面积为S ,则下列能反映S 与t 的函数关系的图象是( ) 14.15.(2013•自贡)如图,已知A 、B 是反比例函数上的两点,BC ∥x轴,交y 轴于C ,动点P 从坐标原点O 出发,沿O→A→B→C 匀速运动,终点为C ,过运动路线上任意一点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,设四边形OMPN 的面积为S ,P 点运动的时间为t ,则S 关于t 的函数图象大致是( )A .B .C .D .A .B .C .D .16.(2012•烟台)如图,矩形ABCD 中,P 为CD 中点,点Q 为AB 上的动点(不与A ,B 重合).过Q 作QM ⊥PA 于M ,QN ⊥PB 于N .设AQ 的长度为x ,QM 与QN 的长度和为y .则能表示y 与x 之间的函数关系的图象大致是( ) A . B . C . D .17.(2012•岳阳)如图,两个边长相等的正方形ABCD 和EFGH ,正方形EFGH 的顶点E 固定在正方形ABCD 的对称中心位置,正方形EFGH 绕点E 顺时针方向旋转,设它们重叠部分的面积为S ,旋转的角度为θ,S 与θ的函数关系的大致图象是( ) 18.(2012•攀枝花)如图,直角梯形AOCD 的边OC 在x 轴上,O为坐标原点,CD 垂直于x 轴,D (5,4),AD=2.若动点E 、F 同时从点O 出发,E 点沿折线OA→AD→DC 运动,到达C 点时停止;F 点沿OC 运动,到达C 点是停止,它们运动的速度都是每秒1个单位长度.设E 运动秒x 时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为( )A .B .C .D .19.(2012•桂林)如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位A .B .C .D .长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC →CD 方向运动,当P 运动到B 点时,P 、Q 两点同时停止运动.设P 点运动的时间为t ,△APQ 的面积为S ,则S 与t 的函数关系的图象是( )20.(2010•烟台)如图,AB 为半圆的直径,点P 为AB 上一动点,动点P 从点A 出发,沿AB 匀速运动到点B ,运动时间为t ,分别以AP 于PB 为直径做半圆,则图中阴影部分的面积S 与时间t 之间的函数图像大致为A B CD。
专题一几何动点函数图象分析【专题解读】几何动点函数图像问题=常以选择题、填空题的形式出现.命题方式常涉及四种题型:①分析实际问题判断函数图象;②结合几何图形中的动点问题判断函数图象;③分析函数图象判断结论正误;④根据函数性质判断函数图象.题目难度中等,属于中考热点题型.类型一一个动点与图形线段长、面积(2020•佛山模拟)如图,△ABC为等边三角形,点P从点A出发沿A→B→C路径匀速运动到点C,到达点C时停止运动,过点P作PQ⊥AC于点Q.若△APQ的面积为y,AQ 的长为x,则下列能反映y与x之间的大致图象是()A.B.C.D.【思路点拨】分两段来分析:①点P从点A出发运动到点B之前,写出此段的函数解析式,则可排除A和B;②设△ABC的边长为m,则当x>m2时,P点过了B点向C点运动,作出图形,写出此阶段的函数解析式,根据图象的开口方向可得答案.【自主解答】∵△ABC为等边三角形,PQ⊥AC于点Q.AQ=x,PQ=AQ•tan60°=√3x∴点P从点A出发运动到点B之前,如图所示:y=12x×√3x=√32x2,∴此时函数图象为顶点在原点,开口向上的抛物线,∴选项A、B不符合题意,排除A和B;设△ABC的边长为m,则当x>m2时,P点过了B点向C点运动,作出图形如下:则CQ=m﹣x,PQ=CQ•tan60°=√3(m﹣x),∴y=12x×√3(m﹣x)=−√32x2+√32mx,∴此时函数图象为开口向下的抛物线,∵选项C此阶段的图象仍然为开口向上的抛物线,选项D为开口向下的抛物线,∴D正确.故选:D.1.(2020•南海区期末)如图,已知A、B是反比例函数图象上的点,BC∥x轴,交y轴于点C,连接OA,动点P从坐标标原点O出发,沿O﹣A﹣B﹣C匀速运动,终点为C.过运动路线上任意一点P,作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是()A.B.C.D.【答案】A【解析】(1)当点P在AO上运动时,设反比例函数的表达式为:y=kx,设点A(m,n),则mn=k,设∠AOM=∠α,则tanα=nm ,则sinα=√m2+n2,cosα=√m2+n2,则S=PM×PN=t2×sinαcosα=kOA2t2,其中kAO2常数,故函数的表达式为二次函数;(2)当点P在AB段时,S=k为常数;(3)当点P在BC上时,设点P运动的总时间为T,则在BC上运动的时间为T﹣t,S=OC×(T﹣t)为一次函数;故选:A.2.(2020•龙岗区模拟)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,图中阴影部分△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形PQMN的面积为()A.16B.20C.36D.45【答案】B【解析】由图2可知:当x=4时,点R与点P重合,PN=4,当x=9时,点R与点Q重合,PQ=5,所以矩形PQMN的面积为4×5=20.故选:B.3.(2019•镜湖区一模)如图,菱形ABC D中,AB=2,∠B=120°,点M是AD的中点,点P由点A出发,沿A→B→C→D作匀速运动,到达点D停止,则△APM的面积y与点P经过的路程x之间的函数关系的图象大致是()A .B .C .D .【答案】B【解析】当点P 在AB 上运动时,即0≤x ≤2,如图1,作PH ⊥AD 于H ,AP =x ,∵菱形ABC D 中,AB =2,∠B =120°,点M 是AD 的中点,∴∠A =60°,AM =1,∴∠APH =30°,在Rt △APH 中,AH =12AP =12x ,PH =√3AH =√32x , ∴y =12AM •PH =12•1•√32x =√34x ;当点P 在BC 上运动时,即2<x ≤4,如图2,作BE ⊥AD 于E ,AP +BP =x ,∵四边形ABCD 为菱形,∠B =120°,∴∠A =60°,AM =1,AB =2,BC ∥AD ,∴∠ABE =30°,在Rt △ABE 中,AE =12AB =1,PH =√3AE =√3,∴y =12AM •BE =12•1•√3=√32;当点P 在CD 上运动时,即4<x ≤6,如图3,作PF ⊥AD 于F ,AB +BC +PC =x ,则PD =6﹣x ,∵菱形ABC D 中,∠B =120°, ∴∠ADC =120°,∴∠DPF =30°,在Rt △DPF 中,DF =12DP =12(6﹣x ),PF =√3DF =√32(6﹣x ),∴y =12AM •PF =12•1•√32(6﹣x )=√34(6﹣x )=−√34x +3√32,∴△APM 的面积y 与点P 经过的路程x 之间的函数关系的图象为三段:当0≤x ≤2,图象为线段,满足解析式y =√34x ;当2≤x ≤4,图象为平行于x 轴的线段,且到x 轴的距离为√32;当4≤x ≤6,图象为线段,且满足解析式y =−√34x +3√32.故选:B .4.(2019•深圳模拟)如图①,在菱形ABC D 中,动点P 从点B 出发,沿折线B →C →D →B运动,设点P 经过的路程为x ,△ABP 的面积为y .把y 看作x 的函数,函数的图象如图②所示,则图②中的b 等于 3√7 .【答案】3√7【解析】如图,连接AC 交BD 于O ,由图②可知,BC =CD =4,BD =14﹣8=6,∴BO =12BD =12×6=3,在Rt △BO C 中,CO =√BC 2−BO 2=√42−32=√7,AC =2CO =2√7,所以,菱形的面积=12AC •BD =12×2√7×6=6√7,当点P 在CD 上运动时,△ABP 的面积不变,为b ,所以,b =12×6√7=3√7.故答案为:3√7.【方法总结】对于用图象描述分段函数的实际问题,要抓住以下几点:①自变量变化而函数值不变化的图象用水平线段表示,②自变量不变化而函数值变化的图象用铅垂线段表示,③自变量变化函数值也变化的增减变化情况,④函数图象的最低点和最高点.根据图象要对图象及其数量关系进行一定分析,要抓住图象中的转折点及拐点,这些拐点处往往是运动状态发生改变或者相互的数量关系发生改变的地方.类型二 二个动点与图形线段长、面积(2020•南海区二模)如图所示,在矩形ABC D 中,BA =8cm ,BC =4cm ,点E 是CD 上的中点,P 、Q 均以1cm/s 的速度在矩形ABCD 边上匀速运动,其中动点P 从点A 出发沿A →D →C 方向运动,动点Q 从点A 出发沿A →B →C 方向运动,二者均达到点C 停止运动,设点Q 的运动时间为x ,△PQE 的面积为y ,则下列能大致反应y 与x 函数关系的图象是( )A .B .C .D .【思路点拨】分0≤t ≤4、4<t ≤8、8<t ≤12三段,分别求出函数表达式即可求解. 【自主解答】(1)当0≤t ≤4时,如图,y =S 矩形ABCD ﹣S △APQ ﹣S △DPE ﹣S 梯形BCEQ =4×8−12[t 2+(4+8﹣t )×4+4(4﹣t )]=−12t 2+4t +16,该函数为开口向下的抛物线;(2)当4<t ≤8时,同理可得:y =12×PE ×AD =12×4×(4﹣t +4)=16﹣2t ,该函数为一次函数;(3)当8<t ≤12时,同理可得:y =12×PE ×CQ =12(t ﹣4﹣4)×[4﹣(t ﹣8)]=−12(t ﹣8)(t ﹣12); 该函数为开口向下的抛物线,故选:D .5.(2019•南海区二模)如图,在四边形ABC D 中,AD ∥BC ,AB =CD ,B =60°,AD =2,BC =8,点P 从点B 出发沿折线BA ﹣AD ﹣DC 匀速运动,同时,点Q 从点B 出发沿折线BC ﹣CD 匀速运动,点P 与点Q 的速度相同,当二者相遇时,运动停止,设点P 运动的路程为x ,△BPQ 的面积为y ,则y 关于x 的函数图象大致是( )A .B .C .D .【答案】B【解析】由题意得:四边形ABCD 为等腰梯形,如下图,分别过点A 、D 作梯形的高AM 、DN 交BC 于点M 、N ,则MN =AD =2,BM =NC =12(BC ﹣AD )=3,则AB =2BM =6,①当点P 在AB 上运动时(0≤x ≤6), y =12BQ ×BP sin B =√34x 2,当x =6时,y =9√3,图象中符合条件的有B 、D ; ②6<x <8,y 为一次函数;③当x ≥8时,点PC =6+2+6﹣x =14﹣x ,QC =x ﹣8, 则PQ =22﹣2x ,而△BPQ 的高常数,故y 的表达式为一次函数, 故在B 、D 中符合条件的为B , 故选:B .6.(2019•丰润区二模)如图,在矩形ABC D 中,AB =8,AD =4,E 为C D 中点,连接AE 、BE ,点M 从点A 出发沿AE 方向向点E 匀速运动,同时点N 从点E 出发沿EB 方向向点B 匀速运动,点M 、N 运动速度均为每秒1个单位长度,运动时间为t ,连接MN ,设△EMN 的面积为S ,S 关于t 的函数图象为( )A.B.C.D.【答案】D【解析】连MB,由勾股定理AE=BE=4√2,已知,AM=t,EN=t,ME=NB=4√2−t,∵S△EMNS△EMB =ENEB,∴S△EMN=ENEB⋅S△EMB,∵S△EMBS△EAB =EMAE,∴S△EMB=EMAE⋅S△EAB,∴S=4√2×√2−t4√2×12×4×8=−12t2+2√2t,∵a=−12<0,∴当t=2√2时,S的最大值为4,故选:D.。
小专题( 二)动点下的函数图象解决动态函数图象问题,要能化动为静,再由静生动,动静结合思考问题.其中关键是确定图形变化联系瞬间的静态图形位置,从而得到分界点,然后再作动态思考,确定各种情况下的取值范围.最后求出各部分对应的函数表达式,运用函数的图象、性质分析作答.有时,直接根据各运动状态( 如前后图形的对称状态带来函数图象的对称,前后图形面积的增减变化带来函数图象的递增或递减等)就能求解.类型1分析判断函数的图象判断函数图象从以下方面:①看图象的升降趋势,当函数随着自变量的增加而增加时,图象呈上升趋势,反之,呈下降趋势;②看图象的曲直,函数随着自变量的变化而均匀变化的,图象是直线,函数随着自变量的变化而不均匀变化的,图象是曲线;③表示函数不随自变量的变化而变化,即函数是一个定值,图象与横轴平行.1.用固定的速度往如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( A)2.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止( 不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( D)3.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是( D)4.( 2019·阜阳颍上期末)如图,正方形ABCD的边长为4,P为正方形边上一个动点,沿A→D→C→B→A的路径匀速移动.设P点经过的路径长为x,△APD的面积是y,则下列图象能反映y与x之间的函数关系的是( B)类型2观察图象,求解综合问题用函数图象刻画实际问题中变量之间的关系,需要注意:( 1 )结合实际,理清有哪些变量;( 2 )用图象表示时,明确坐标轴表示的意义.一般方法规律是解决动点的分段函数图象问题,一是要注意分段的“段数”,二是要注意从何时起分段,该段到何时结束,三是要注意在每个分段上函数的具体变化情况.特别要抓住图象中的转折点及拐点,这些拐点处往往是运动状态发生改变或者数量关系发生改变的地方.5.如图1,在长方形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ 的面积( C)A.10B.16C.20D.366.( 2019·合肥45中期中)小苏和小林在如图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y( 单位:m )与跑步时间t( 单位:s )的对应关系如下图所示.下列叙述正确的是②④.( 填上你认为正确的序号)①两人从起跑线同时出发,同时到达终点;②小苏跑全程的平均速度小于小林跑全程的平均速度;③小苏前15 s跑过的路程大于小林前15 s跑过的路程;④小林在跑最后100 m的过程中,与小苏相遇2次.7.如图1,线段AB=12厘米,动点P从点A出发向点B运动,动点Q从点B出发向点A运动,两点同时出发,到达各自的终点后停止运动.已知动点Q运动的速度是动点P运动的速度的2倍.设点P,Q之间的距离为s( 厘米),动点P的运动时间为t( 秒),图2表示s与t之间的函数关系.( 1 )求动点P,Q运动的速度;( 2 )图2中,a=3,b=6,c=6.解:( 1 )设动点P运动的速度为x厘米/秒,则动点Q运动的速度为2x厘米/秒.根据题意,得2( x+2x)=12,解得x=2.答:动点P,Q运动的速度分别是2厘米/秒、4厘米/秒.8.一个游泳池长90米,甲、乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,请根据图形回答:( 1 )甲、乙两人分别游了几个来回?( 2 )甲、乙两人在整个游泳过程中,谁曾休息过?休息过几次?( 3 )甲游了多长时间?游泳的速度是多少?( 4 )在整个游泳过程中,甲、乙两人相遇了几次?解:( 1 )甲游了3个来回,乙游了2个来回.( 2 )乙曾休息了两次.( 3 )甲游了180秒,游泳的速度是90×6÷180=3米/秒.( 4 )甲、乙相遇了5次.9.已知动点P以每秒2 cm的速度沿如图甲所示的边框按照B→C→D→E→F→A的路径移动,相应的△ABP的面积S( cm2)关于时间t( s )的函数图象如图乙所示.若AB=6 cm,试回答下列问题:( 1 )动点P在线段CD和EF上运动的过程中△ABP的面积S保持不变.( 2 )BC=8cm;CD=4cm;DE=6cm;EF=2cm.( 3 )求出图乙中的a与b的值.( 4 )在上述运动过程中,求△ABP面积的最大值.解:( 3 )由图得,a是点P运行4秒时△ABP的面积,所以a=×6×8=24,因为b为点P走完全程的时间,所以b=9+1+7=17.( 4 )因为点P移动到点E时,△ABP的面积达到最大值,所以最大面积S=×6×( 8+6 )=42( cm2).。
动点问题的函数图象解答此类问题的策略可以归纳为三步:“看” 、“写” 、“选”。
“看”就是认真观察几何图形,彻底弄清楚动点从何点开始出发,运动到何点停止,整个运动过程分为不同的几段,何点(时刻)是特殊点(时刻),这是准确解答的前提和关键;“写”就是计算、写出动点在不同路段的函数解析式,注意一定要注明自变量的取值范围,求出在特殊点的函数数值和自变量的值;“选”就是根据解析式选择准确的函数图像或答案,多用排除法。
首先,排除不符合函数类形的图像选项,其次,对于相同函数类型的函数图像选项,再用自变量的取值范围或函数数值的最大和最小值进行排除,选出准确答案。
一、选择题(共30小题)1.已知:如图1,点G是BC的中点,点H在AF上,动点P以每秒2cm的速度沿图1的边线运动,运动路径为:G→C→D→E→F→H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2,若AB=6cm,则下列四个结论中正确的个数有()①图1中的BC长是8cm;②图2中的M点表示第4秒时y的值为24;③图1中的CD长是4cm;④图1中的DE长是3cm;⑤图2中的Q点表示第8秒时y的2y=2.如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC→CD 运动至点D 停止.设点P 运动的路程为x ,△APB 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( )的面积是×运 动,回到点A 时运动停止.设点P 运动的路程长为长为x ,AP 长为y ,则y 关于x 的函数图象大致是( ). C . 2a+2BD=y=))时,y=)2+22+21+4.(2012•绥化)如图,点A 、B 、C 、D 为⊙O 的四等分点,动点P 从圆心O 出发,沿OC ﹣﹣DO 的路线做匀速运动,设运动的时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y (度)与t (秒)之间函数关系最恰当的是( ) .BD 上运动时,∠上运动时,∠5.(2010•宜昌)如图,在圆心角为90°的扇形MNK 中,动点P 从点M 出发,沿MN ⇒⇒KM 运动,最后回到点M 的位置.设点P 运动的路程为x ,P 与M 两点之间的距离为y ,其图象可能是( ).6.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()于是他只好从家出发,乘车沿A⇒B⇒C⇒D的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是()交AB于M,交DC于N,设AE=x,则图中阴影部分的面积S与x的大致图象是()BE==BE•MN=x x xPQ为一边作正方形PQRS,若BP=x,正方形PQRS与矩形ABCD重叠部份的面积为y,则y与x的函数的大致图象是()动的路程x为自变量,△ABP面积y为函数的图象,如图2,则梯形ABCD的面积是()的面积是(向运动(点P与A不重合).设P的运动路程为x,则下列图象中△ADP的面积y关于x的函数关系()y=回至点O停止,点P在运动过程中速度大小不变,以点O为圆心,线段OP长为半径作圆,则该圆的周长l与点P的运动时间t之间的函数图象大致为().B D13.(2007•泰安)如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A﹣B﹣C﹣D的路径以1cm/s的速度运动(点P不与A,D重合).在这个运动过程中,△APD的面积S(cm)2随时间t(s)的变化关系用图象表示,正确的为()1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点.线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.则大致反映S与t变化关系的图象是()S=S=此题主要考查了直角梯形的面积求法,以及动点函数的应用,由动点找特殊点,是解决问题的关键.15.(2010•綦江县)如图,在矩形ABCD中,AB=4,BC=3,点P从起点B出发,沿BC、CD逆时针方向向终点D匀速运动.设点P所走过路程为x,则线段AP、AD与矩形的边所围成的图形面积为y,则下列图象中能大致反映y与x函数关系的是()时,所围成的面积为梯形,时,所围成的面积为三角形,驶到景点B,然后从B沿直径BC行驶到⊙D上的景点C.假如旅游船在整个行驶过程中保持匀速,则下面各图中能反映旅游船与景点D的距离随时间变化的图象大致是()17.(2010•十堰)如图,点C,D是以线段AB为公共弦的两条圆弧的中点,AB=4,点E,F分别是线段CD,AB上的动点,设AF=x,AE2﹣FE2=y,则能表示y与x的函数关系的图象是()时间t的关系可能是下列图形中的()19.(2005•兰州)四边形ABCD为直角梯形,CD∥AB,CB⊥AB且CD=BC=AB,若直线L⊥AB,直线L截这个梯形所得的位于此直线左方的图形面积为y,点A到直线L的距离为x,则y与x关系的大致图象为()CD=BC=BCCD=BC=xy=数图象的描述问题.此题主要考查正方形的性质与判定,等腰直角三角形的性质,三角形的面积,梯形的面积以及动点分段函20.如图,BC是⊙D的直径,A为圆上一点.点P从点A出发,沿运动到B点,然后从B点沿BC运动到C点.假如点P在整个运动过程中保持匀速,则下面各图中,能反映点P与点D的距离随时间变化的图象大致是()21.在▭ABCD中,对角线AC=4,BD=6,P是线段BD上一动点,过P作EF∥AC,与▱ABCD的两边分别交于E、F.设BP=x,EF=y,则反映y与x之间关系的图象是()得,化简可得y=时,根据平行线的性质,可得=x+9动到点B,运动时间为t,分别以AP与PB为直径做半圆,则图中阴影部分的面积S与时间t之间的函数图象大致为()=+t24.如图,已知Rt△ABC中,∠BAC=90°,BC=13,AB=12,E是BC边上一点,过点E作DE⊥BC交AC所在直线于点D,若BE=x,△DCE的面积为y,则y与x的函数图象大致是()直到AB与FE重合,直角梯形ABCD与正方形CEFG重叠部分的面积S关于移动时间t的函数图象可能是()运动时间为t,∠APB的度数为y,则y与t之间函数关系的大致图象是()∠向终点B运动,设点P所走过路程CP的长为x,△APB的面积为y,则下列图象能大致反映y与x之间的函数关系的是()y=×自左向右匀速穿过正方形.下图反映了这个运动的全过程,设正三角形的运动时间为t,正三角形与正方形的重叠部分面积为s,则s与t的函数图象大致为().B D29.如图,腰长为1和2的两个等腰直角三角形,其一腰在同一水平线上,小等腰直角三角形沿该水平线自左向右匀速穿过大等腰直角三角形,设穿过的时间为x ,大等腰三角形内减去小等腰直角三角形部分的面积为y (各个图中的阴影部分),则y 与x 的大致图象为( ). BDB 点匀速运动,那么表示△PAB 的面积S (厘米2)与点P 运动时间t (秒)之间的函数关系的图象为图( )。
动点问题的函数图像复习指要【典例分析】例1(2014•贵阳,第9题,3分)如图,三棱柱的体积为10,其侧棱AB上有一个点P从点A开始运动到点B停止,过P点作与底面平行的平面将这个三棱柱截成两个部分,它们的体积分别为x、y,则下列能表示y与x之间函数关系的大致图象是()A.B.)D.C.考点:动点问题的函数图象.分析:根据截成的两个部分的体积之和等于三棱柱的体积列式表示出y与x的函数关系式,再根据一次函数的图象解答.解答:?解:∵过P点作与底面平行的平面将这个三棱柱截成两个部分的体积分别为x、y,∴x+y=10,∴y=﹣x+10(0≤x≤10),纵观各选项,只有A选项图象符合.故选A.点评:本题考查了动点问题的函数图象,比较简单,理解分成两个部分的体积的和等于三棱柱的体积是解题的关键.例2 (2014年•河南省,第8题,3分)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()】A.B.C.D.考点:动点问题的函数图象.分析:这是分段函数:①点P在AC边上时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上时,利用勾股定理求得y与x的函数关系式,根据关系式选择图象;③点P在边AB上时,利用线段间的和差关系求得y与x的函数关系式,由关系式选择图象.解答:解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一部分.故C错误;②点P在边BC上,即1<x≤3时,根据勾股定理得AP=,即y=,则其函数图象是y随x的增大而增大,且不是线段.故B、D错误;③点P在边AB上,即3<x≤3+时,y=+3﹣x=﹣x+3+,其函数图象是直线的一部分.'综上所述,A选项符合题意.故选:A.点评:本题考查了动点问题的函数图象.此题涉及到了函数y=的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题.例3(2014•广西桂林,第12题,3分)如图1,在等腰梯形ABCD中,∠B=60°,PQ同时从B出发,以每秒1单位长度分别沿BADC和BCD方向运动至相遇时停止,设运动时间为t(秒),△BPQ的面积为S(平房单位),S与t的函数图象如图2所示,则下列结论错误的是()A.当t=4秒时,S=43B.AD=4C.当4≤t≤8时,S=23tD.当t=9秒时,BP平分梯形ABCD的面积考点:动点问题的函数图象.}分析:根据等腰梯形的性质及动点函数图象的性质,综合判断可得答案.解答:解:由答图2所示,动点运动过程分为三个阶段:(1)OE段,函数图象为抛物线,运动图形如答图1﹣1所示.此时点P在线段AB上、点Q在线段BC上运动.△BPQ为等边三角形,其边长BP=BQ=t,高h=t,∴S=BQ•h=t•t=t2.由函数图象可知,当t=4秒时,S=4,故选项A正确.(2)EF段,函数图象为直线,运动图形如答图1﹣2所示.此时点P在线段AD上、点Q在线段BC上运动.由函数图象可知,此阶段运动时间为4s,—∴AD=1×4=4,故选项B正确.设直线EF的解析式为:S=kt+b,将E(4,4)、F(8,8)代入得:,解得,∴S=t,故选项C错误.(3)FG段,函数图象为直线,运动图形如答图1﹣3所示.此时点P、Q均在线段CD上运动.设梯形高为h,则S梯形ABCD=(AD+BC)•h=(4+8)•h=6h;当t=9s时,DP=1,则CP=3,∴S△BCP=S△BCD=××8×h=3h,·∴S△BCP=S梯形ABCD,即BP平分梯形ABCD的面积,故选项D正确.综上所述,错误的结论是C.故选:C.点评:本题考查了动点问题的函数图象分析,有一定的难度,解题关键是结合函数图象与几何图形的性质求解.例4(2014•黄冈,第8题,3分)已知:在△ABC 中,BC=10,BC 边上的高h=5,点E 在边AB 上,过点E 作EF ∥BC ,交AC 边于点F .点D 为BC 上一点,连接DE 、DF .设点E 到BC 的距离为x ,则△DEF 的面积S 关于x 的函数图象大致为( )A . 》B .C .D .考点: 动点问题的函数图象.$ 分析: 判断出△AEF 和△ABC 相似,根据相似三角形对应边成比例列式求出EF ,再根据三角形的面积列式表示出S 与x 的关系式,然后得到大致图象选择即可.解答: 解:∵EF ∥BC ,∴△AEF ∽△ABC , ∴=,∴EF=•10=10﹣2x ,∴S=(10﹣2x )•x=﹣x 2+5x=﹣(x ﹣)2+, ∴S 与x 的关系式为S=﹣(x ﹣)2+(0<x <10),纵观各选项,只有D 选项图象符合.~ 故选D .点评: 本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S 与x 的函数关系式是解题的关键,也是本题的难点.例5(2014•山东菏泽,第8题,3分)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是考点:动点问题的函数图象.分析:分类讨论:当0<x≤1时,根据正方形的面积公式得到y=x2;当1<x≤2时,ED交AB于M,EF交AB于N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面积得到y=x2-2(x-1)2,配方得到y=-(x-2)2+2,然后根据二次函数的性质对各选项进行判断.解答:当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,¥CD=x,则AD=2-x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2-x,∴EM=x-(2-x)=2x-2,∴S△ENM=,(2x-2)2=2(x-1)2,∴y=x2-2(x-1)2=-x2+4x-2=-(x-2)2+2,故选A.点评:本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.也考查了等腰直角三角形的性质.例6(2014年•福建漳州,第10题,4分)世界文化遗产“华安二宜楼”是一座圆形的土楼,如图,小王从南门点A沿AO匀速直达土楼中心古井点O处,停留拍照后,从点O沿OB也匀速走到点B,紧接着沿回到南门,下面可以近似地刻画小王与土楼中心O的距离s随时间t变化的图象是()A.B.C.D.考点:动点问题的函数图象.分析:从A→O的过程中,s随t的增大而减小;直至s=0;从O→B的过程中,s随t的增大而增大;从B沿回到A,s不变.解答:解:如图所示,当小王从A到古井点O的过程中,s是t的一次函数,s随t的增大而减小;当停留拍照时,t增大但s=0;当小王从古井点O到点B的过程中,s是t的一次函数,s随t的增大而增大.当小王回到南门A的过程中,s等于半径,保持不变.综上所述,只有C符合题意.故选:C.点评:主要考查了动点问题的函数图象.此题首先正确理解题意,然后根据题意把握好函数图象的特点,并且善于分析各图象的变化趋势.。
动点问题与函数图象作者:左加亭来源:《第二课堂(初中版)》2016年第05期动点问题是最近几年中考的一个热点题型,所谓“动点问题”是指题设图形中存在一个或多个动点,它们在线段、射线上运动的一类开放性题目.解决函数图象中的动点问题时,首先要抓住动点的瞬间状态,或者相对静止时的状态,再寻找它们的数量关系,以及几何图形的相对位置关系,做到动中求静,灵活运用有关数学知识解决问题.例1 (2015黔南州卷)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M 方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.M处B.N处C.P处D.Q处精析根据三角形的面积变化情况,可得R在PQ上时,三角形面积不变,可得答案.解答点R在NP上时,三角形面积增加,点R在PQ上时,三角形面积不变,点R在QM 上时,三角形面积变小,点R在Q处,三角形面积开始变小.故选D.点拨本题考查了动点函数图象,利用三角形面积的变化确定R的位置是解题的关键.例2 (2015荆州卷)如下图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s 的速度沿着边BC-CD-DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s 的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()精析首先根据正方形的边长与动点P、Q的速度可知动点Q始终在AB边上,而动点P可以在BC边、CD边、AD边上,再分三种情况进行讨论:①0≤x≤1;②1解答由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积为BP·BQ,则y=·3x·x=x2,则A选项错误;②1点拨本题考查动点问题的函数图象,利用数形结合、分类讨论是解题的关键.例3 (2015本溪卷)如图,在△ABC中,∠C=90°,点P是斜边AB的中点,点M从点C向点A匀速运动,点N从点B向点C匀速运动,已知两点同时出发,同时到达终点,连接PM、PN、MN,在整个运动过程中,△PMN的面积S与运动时间t的函数关系图象大致是()精析首先连接CP,根据点P是斜边AB的中点,可得S△ACP=S△BCP=S△ABC;然后分别求出出发时,点N到达BC的中点、点M也到达AC的中点时,结束时,△PMN的面积S的大小,即可推得△PMN的面积大小变化情况是:先减小后增大,而且是以抛物线的方式变化,据此判断出△PMN的面积S与运动时间t的函数关系图象大致是哪个即可.解答连接CP,如下图:∵点P是斜边AB的中点,∴ S△ACP=S△BCP=S△ABC,出发时,S△PMN=S△BCP=S△ACP.∵两点同时出发,同时到达终点,∴点N到达BC的中点时,点M也到达AC的中点,∴此时S△PMN=S△ABC.结束时,S△PMN=S△ACP=S△ABC.故△MPQ的面积大小变化情况是:先减小后增大,而且是以抛物线的方式变化,∴△PMN的面积S与运动时间t的函数关系图象大致是:故选A.点拨此题主要考查两个动点问题与函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.(编辑孙世奇)。
动点问题的函数图像1,如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D 路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.(1)请解释图中点H的实际意义?(2)求P、Q两点的运动速度;(3)将图②补充完整;(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.分析:(1)根据P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象得出H点时两点相遇;(2)利用函数图象得出当两点在F点到G点两点路程随时间变化减慢得出此时Q点停留,只有P点运动,再利用纵坐标的值得出P点和Q点运动速度;(3)根据4秒后,P点到达D点,只有Q点运动,根据运动速度为15cm/s,还需要运动120-45=75(cm),则运动时间为:75÷15=5(s),进而画出图象即可;(4)根据Q,P的位置不同,进行分类讨论得出答案即可.解:(1)图中点H的实际意义:P、Q两点相遇;(2)由函数图象得出,当两点在F点到G点两点路程随时间变化减慢得出此时Q点停留1秒,只有P 点运动,此时纵坐标的值由75下降到45,故P点运动速度为:30cm/s,再根据E点到F点S的值由120变为75,根据P点速度,得出Q点速度为120-75-30=15(cm/s),即P点速度为30cm/s,Q点速度为 15cm/s;(3)如图所示:根据4秒后,P点到达D点,只有Q点运动,根据运动速度为15cm/s,还需要运动120-45=75(cm),则运动时间为:75÷15=5(s),画出图象即可;(4)如图1所示,当QP=PC,此时12QC=BP,即30-30t=12(30-15t),解得:t=23,故当时间t=23s时,△PCQ为等腰三角形,如图2所示,当D,P重合,QD=QC时,Q为AB中点,则运动时间为:(15+60+30)÷15+1=8(s),故当时间t=8s时,△PCQ为等腰三角形.若PC=CQ故90-30t=30-15t解得:t=4则4+1=5(S)综上所述:t=23或t=5或t=8秒时,△PCQ为等腰三角形.点评:此题主要考查了动点问题的函数图象,主要运用分类讨论的思想,函数的知识和等腰三角形的知识,具有很强的综合性.2.在ABC中,点P从点A开始出发向点C运动,在运动过程中,设线段AP的长为x,线段BP的长为y(如图1),而y关于x的函数图象如图2所示,点Q是函数图象上的最低点,请仔细观察图1和图2,解答下列问题.(1)AC边的长为,BC边的长为;(2)求∠C的度数;(3)若△BPC为钝角三角形,求x的取值范围.分析:(1)观察函数图象得到当x=9时,y=4,说明此时P点运动到了C点,于是得到AC=9,BC=4;(2)作BD⊥AC于D,由函数图象得x=7时,y的值最小,即P点运动到D点时,BP最小,所以AD=7,则DC=2,然后根据含30度的直角三角形三边的关系得到∠CBD=30°,利用互余有∠C=60°;(3)作EB⊥BC交AC于E,则点P在线段AE(不含E点)或线段CD(不含端点)上运动时,△BPC为钝角三角形,利用∠CBD=30°可得到∠EBD=60°,∠BED=30°,在Rt△BCE 中,可计算出EC=8,所以AE=1,于是得到满足条件的x的取值范围为0≤x<1或7<x<9.解:(1)观察图2,当x=9时,y=4,此时P点运动到了C点,所以AC=AP=9,BC=BP=4;故答案为9,4;(2)作BD⊥AC于D,如图,∵点Q是函数图象上的最低点,即x=7时,y的值最小,∴点P运动到D点时,BP最短,即AD=7,∴DC=AC-AD=9-7=2,在Rt△BCD中,CD=2,BC=4,∴∠CBD=30°,∴∠C=60°;(3)作EB⊥BC交AC于E,如图,∵∠CBD=30°,∴∠EBD=60°,∠BED=30°,在Rt△BCE中,EC=2BC=8,∴AE=1,当点P在线段AE(不含E点)或线段CD(不含端点)上运动时,△BPC为钝角三角形,∴x的取值范围为0≤x<1或7<x<9.点评:本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.也考查了含30度的直角三角形三边的关系.3.在△ABC中,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图甲),而y关于x的函数图象如图乙所示.Q(1,3)图象上的最低点.请仔细观察甲、乙两图,解答下列问题.(1)请直接写出AB边的长和BC边上的高AH的长;(2)求∠B的度数;(3)若△ABP为钝角三角形,求x的取值范围.分析:(1)当x取0时,y的值即是AB的长度,图乙函数图象的最低点的y值是AH的值.(2)当点P运动到点H时,此时BP(H)=1,AH=3,在RT△ABH中,可得出∠B的度数.(3)分两种情况进行讨论,①∠APB为钝角,②∠BAP为钝角,分别确定x的范围即可.解:(1)当x=0时,y的值即是AB的长度,故AB=2;图乙函数图象的最低点的y值是AH的值,故AH=3;(2)在RT△ABH中,AH=33,故∠B=60°.(3)①当∠APB为钝角时,此时可得0<x<1;②当∠BAP为钝角时,过点A作AP⊥AB,则BP=ABcos∠B=4,即当4<x≤6时,∠BAP为钝角.综上可得0<x<1或4<x≤6时△ABP为钝角三角形.点评:此题考查了动点问题的函数图象,有一定难度,解答本题的关键是结合图象及函数图象得出AB、AH的长度,第三问需要分类讨论,注意不要漏解.4.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ 的面积是 .分析:易得当R在PN上运动时,面积不断在增大,当到达点P时,面积开始不变,到达Q后面积不断减小,得到PN和QP的长度,相乘即可得所求的面积.解:∵x=4时,及R从N到达点P时,面积开始不变,∴PN=4,同理可得QP=5,∴矩形的面积为4×5=20.故选C.点评:考查动点问题的函数的有关计算;根据所给图形得到矩形的边长是解决本题的关键.5.如图1,在长方形ABCD中,点P从B点出发沿着四边按B→C→D→A方向运动,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后又恢复为每秒m个单位匀速运动.在运动过程中,△ABP的面积S与运动时间t的函数关系如图2所示.(1)求长方形ABCD的长和宽;(2)求m、a、b的值.分析:(1)由图象可知,CD的长度,当t=6时,S△ABP=16,求出BC的长;(2)当t=a时,S△ABP=8,则点P此时在BC的中点处,从而得出a和m的值,当t=b时,S△ABP=4,从而求得b的值;解:(1)从图象可知,当6≤t≤8时,△ABP面积不变即6≤t≤8时,点P从点C运动到点D,且这时速度为每秒2个单位∴CD=2×(8-6)=4∴AB=CD=4(2分)当t=6时(点P运动到点C),S△ABP=16∴12AB•BC=16∴12×4×BC=16∴BC=8(4分)∴长方形的长为8,宽为4.(2)当t=a时,S△ABP=8=12×16即点P此时在BC的中点处∴PC=12BC=12×8=4∴2(6-a)=4∴a=4(6分)∵BP=PC=4∴m=BP÷a=4÷4=1,当t=b时,S△ABP=12AB•AP=4∴12×4×AP=4,AP=2∴b=13-2=11(9分);点评:本题是一次函数的综合题,重点考查了动点问题的函数图象,考查了学生观察图象的能力,用待定系数法求一次函数的解析式,是一道中考压轴题.6.已知动点P以每秒2cm的速度沿图甲的边框按从B→C→D→E→F→A的路径移动,相应的△ABP的面积S关于时间t的函数图象如图乙,若AB=6cm,试回答下列问题:(1)图甲中BC的长度是8cm.(2)图乙中A所表示的数是24.(3)图甲中的图形面积是60cm2.(4)图乙中B所表示的数是17.分析:(1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC 的长;(2)由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得图乙中A 所表示的数;(3)分析图形可得,甲中的图形面积等于AB×AF-CD×DE,根据图象求出CD和DE的长,代入数据计算可得答案;(4)计算BC+CD+DE+EF+FA的长度,又由P的速度,计算可得图乙中B所表示的数.解:(1)动点P在BC上运动时,对应的时间为0到4秒,易得:BC=2cm/秒×4秒=8cm.故图甲中BC的长度是8cm;(2)由(1)可得,BC=8cm,则:图乙中A所表示的数是:1 2 ×BC×AB=1 2 ×8×6=24(cm2).故图乙中A所表示的数是24;(3)由图可得:CD=2×2=4cm,DE=2×3=6cm,则AF=BC+DE=14cm,又由AB=6cm,则甲中的梯形面积为AB×AF-CD×DE=6×14-4×6=60(cm2).故图甲中的图形面积为60cm2;(4)根据题意,动点P共运动了BC+CD+DE+EF+FA=(BC+DE)+(CD+EF)+FA=14+6+14=34(cm),其速度是2cm/秒,34÷2=17(秒).故图乙中B所表示的数是17.故答案为8cm;24;60cm2;17.解:(1)动点P在BC上运动时,对应的时间为0到4秒,易得:BC=2cm/秒×4秒=8cm.故图甲中BC的长度是8cm;(2)由(1)可得,BC=8cm,则:图乙中A所表示的数是:12×BC×AB=12×8×6=24(cm2).故图乙中A所表示的数是24;(3)由图可得:CD=2×2=4cm,DE=2×3=6cm,则AF=BC+DE=14cm,又由AB=6cm,则甲中的梯形面积为AB×AF-CD×DE=6×14-4×6=60(cm2).故图甲中的图形面积为60cm2;(4)根据题意,动点P共运动了BC+CD+DE+EF+FA=(BC+DE)+(CD+EF)+FA=14+6+14=34(cm),其速度是2cm/秒,34÷2=17(秒).故图乙中B所表示的数是17.故答案为8cm;24;60cm2;17.点评:本题考查动点问题的函数图象,三角形的面积等知识点的理解和掌握,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.7. 如图1,在直角梯形ABCD,∠B=90°,DC∥AB,动点P从B点出发,由B--C--D--A沿边运动,设点P运动的路程为x,△ABP的面积为y,如果关于x的函数y的图象如图2,则△ABC 的面积为()。