广西崇左市数学中考模拟试卷
- 格式:doc
- 大小:599.50 KB
- 文档页数:14
广西崇左市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)(2020·遵化模拟) 如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C 对应的数是()A . ﹣2B . 0C . 1D . 42. (2分)下列图形是相似多边形的是()A . 所有的平行四边形B . 所有的矩形C . 所有的菱形D . 所有的正方形3. (2分) (2018七上·宜兴月考) 下列结论错误的是()A . 0既不是正数,也不是负数B . 相反数是本身的数是正数C . 一个有理数不是整数就是分数D . 0的绝对值是04. (2分) (2017七下·潮南期末) 下列运动属于平移的是()A . 冷水加热过程中小气泡上升成为大气泡B . 投篮时的篮球运动C . 急刹车时汽车在地面上的滑动D . 随风飘动的树叶在空中的运动5. (2分) (2017八下·江津期末) 下列运算正确的是()A .B .C .D .6. (2分)(2020·石家庄模拟) 如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P ,点B与点O重合,且AC大于OE ,将三角板ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x ,则x的取值范围是()A . 30≤x≤60B . 30≤x≤90C . 30≤x≤120D . 60≤x≤1207. (2分)已知关于的方程组的解满足,则的取值范围是()A .B .C .D .8. (2分)如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比是()A . 1:2B . 1:4C . 1:5D . 1:69. (2分)下列说法中,正确的是()A . 无理数包括正无理数、0和负无理数B . 无理数是用根号形式表示的数C . 无理数是开方开不尽的数D . 无理数是无限不循环小数10. (2分)某小组共10人,在一次测试成绩中,80分有3人,90分有6人,100分有1人,统计表如下:分数8090100人数361则这个小组的平均分是()A . 85B . 88C . 90D . 9511. (2分)如图,在3×3网格中,已知点A,B是网格顶点(也称格点),若点C也是图中的格点,且使得△ABC为等腰三角形,则满足条件的点C的个数为()A . 3B . 4C . 5D . 612. (2分)某工程队在金义大都市铺设一条480米的景观路,开工后,由于引进先进设备,工作效率比原计划提高50%,结果提前4天完成任务.若设原计划每天铺设x米,根据题意可列方程为()A .B .C .D .13. (2分)如图,直线l:与直线(为常数)的交点在第四象限,则可能在()A . 1<a<2B . ﹣2<a<0C . ﹣3≤a≤﹣2D . ﹣10<a<﹣414. (2分)已知线段a,b和m,求作△ABC,使BC=a,AC=b,BC边上的中线AD=m,作法合理的顺序依次为()①延长CD到B,使BD=CD;②连接AB;③作△ADC,使DC=a,AC=b,AD=m.A . ③①②B . ①②③C . ②③①D . ③②①15. (2分)(2017·河西模拟) 如图,菱形ABCD的对角线AC=3cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形ENCM的面积之比为()A . 9:4B . 12:5C . 3:1D . 5:216. (2分)(2017·佳木斯模拟) 将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h(cm)与注水时间t(min)的函数图象大致为()A .B .C .D .二、填空题 (共3题;共3分)17. (1分) (2019七上·松江期末) 当x=3时,代数式 x2+2x-1的值为________.18. (1分)若圆锥的底面直径为6 cm,母线长为5cm,则它的侧面积为________.(结果保留π)[19. (1分)点A(﹣3,y1),B(2,y2),C(3,y3)在抛物线y=2x2﹣4x+c上,则y1 , y2 , y3的大小关系是________.三、解答题 (共7题;共71分)20. (1分) (2017八下·淅川期末) 化简的结果是________.21. (10分) (2015九上·丛台期末) 现有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字﹣1,2,5,;乙袋中装有3个完全相同的小球,分别标有数字3,﹣5,﹣7;小宇从甲袋中随机摸出一个小球,记下数字为m,小惠从乙袋中随机摸出一个小球,记下的数字为n.(1)若点Q的坐标为(m,n),求点Q在第四象限的概率;(2)已知关于x的一元二次方程2x2+mx+n=0,求该方程有实数根的概率.22. (11分)(2017·渭滨模拟) 问题探究:(1)如图①,边长为4的等边△OAB位于平面直角坐标系中,将△OAB折叠,使点B落在OA的中点处,则折痕长为________;(2)如图②,矩形OABC位于平面直角坐标系中,其中OA=8,AB=6,将矩形沿线段MN折叠,点B落在x轴上,其中AN= AB,求折痕MN的长;(3)如图③,四边形OABC位于平面直角坐标系中,其中OA=AB=6,CB=4,BC∥OA,AB⊥OA于点A,点Q(4,3)为四边形内部一点,将四边形折叠,使点B落在x轴上,问是否存在过点Q的折痕,若存在,求出折痕长,若不存在,请说明理由.23. (10分) (2018九上·建平期末) 直线y=kx+b与反比例函数y= (x>0)的图象分别交于点 A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.24. (12分)(2017·抚顺) 某商场对某种商品进行销售,第x天的销售单价为m元/件,日销售量为n件,其中m,n分别是x(1≤x≤30,且x为整数)的一次函数,销售情况如表:销售第x天第1天第2天第3天第4天 (30)销售单价m(元/件)49484746 (20)日销售量n(件)45505560 (190)(1)观察表中数据,分别直接写出m与x,n与x的函数关系式:________,________;(2)求商场销售该商品第几天时该商品的日销售额恰好为3600元?(3)销售商品的第15天为儿童节,请问:在儿童节前(不包括儿童节当天)销售该商品第几天时该商品的日销售额最多?商场决定将这天该商品的日销售额捐献给儿童福利院,试求出商场可捐款多少元?25. (12分) (2019九上·大连期末) 如图,△ABC中,AB=AC,以AB为直径的圆O交BC于D,交AC于点E,过点D作DF⊥AC于点F,交AB延长线于点G,连结AD.(1)∠ADB=________°,依据是________;(2)求证:DF是圆O的切线;(3)已知BC=4 ,CF=2,求AE和BG的长.26. (15分)(2017·荆门) 已知:如图所示,在平面直角坐标系xOy中,∠C=90°,OB=25,OC=20,若点M 是边OC上的一个动点(与点O、C不重合),过点M作MN∥OB交BC于点N.(1)求点C的坐标;(2)当△MCN的周长与四边形OMNB的周长相等时,求CM的长;(3)在OB上是否存在点Q,使得△MNQ为等腰直角三角形?若存在,请求出此时MN的长;若不存在,请说明理由.参考答案一、选择题 (共16题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共3题;共3分)17-1、18-1、19-1、三、解答题 (共7题;共71分)20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列实数是无理数的是()A.B.1 C.0 D.﹣1试题2:如图,直线AB∥CD,如果∠1=70°,那么∠BOF的度数是()A.70°B.100°C.110°D.120°试题3:震惊世界的MH370失联事件发生后第30天,中国“海巡01”轮在南印度洋海域搜索过程中,首次侦听到疑是飞机黑匣子的脉冲信号,探测到的信号所在海域水深4500米左右,其中4500用科学记数法表示为()A.4.5×102B.4.5×103C.45.0×102D.0.45×104试题4:在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的()A.众数B.中位数C.平均数D.方差评卷人得分下列几何体的主视图、左视图、俯视图的图形完全相同的是()A.三棱锥B.长方体C.三棱柱D.球体试题6:如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是()A.40℃B.38℃C.36℃D.34℃试题7:若点A(2,4)在函数y=kx的图象上,则下列各点在此函数图象上的是()A.(1,2)B.(﹣2,﹣1)C.(﹣1,2)D.(2,﹣4)试题8:下列说法正确的是()A.对角线相等的平行四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线相互垂直的四边形是菱形D.有一个角是直角的平行四边形是菱形试题9:方程组的解是()A.B.C.D.试题10:已知点A(a,2013)与点B(2014,b)关于x轴对称,则a+b的值为()A.﹣1 B.1 C.2 D.3试题11:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS试题12:如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0)B.(1,﹣2)C.(1,1)D.(﹣1,﹣1)试题13:若分式的值是0,则x的值为试题14:因式分解:x2﹣1=化简:=.试题16:已知在一个样本中,50个数据分别落在5个组内,第一,二,三,四,五组数据的个数分别是2,8,15,20,5,则第四组频数为试题17:已知直角三角形的两条直角边长为6,8,那么斜边上的中线长是试题18:如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为.试题19:计算:()﹣1﹣20140﹣2sin30°+.试题20:解不等式2x﹣3<,并把解集在数轴上表示出来.试题21:写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,.求证:.试题22:如图,在四边形ABCD中,对角线AC,BD相交于点O,且AC⊥BD,点E,F,G,H分别是AB,BC,CD,DA的中点,依次连接各边中点得到四边形EFGH,求证:四边形EFGH是矩形.试题23:中国“蛟龙”号深潜器目前最大深潜极限为7062.68米.如图,某天该深潜器在海面下2000米的A点处作业,测得俯角为30°正前方的海底C点处有黑匣子信号发出.该深潜器受外力作用可继续在同一深度直线航行3000米后,再次在B点处测得俯角为45°正前方的海底C点处有黑匣子信号发出,请通过计算判断“蛟龙”号能否在保证安全的情况下打捞海底黑匣子.(参考数据≈1.732)试题24:在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小、质地完全相同,小李从布袋里随机取出一个小球,记下数字为x,小张在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y).(1)画树状图或列表,写出点Q所有可能的坐标;试题25:如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=1,ED=2.(1)求证:∠ABC=∠D;(2)求AB的长;(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.试题26:在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴分别相交于A(﹣3,0),B(0,﹣3)两点,二次函数y=x2+mx+n 的图象经过点A.(1)求一次函数y=kx+b的解析式;(2)若二次函数y=x2+mx+n图象的顶点在直线AB上,求m,n的值;(3)当﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,求m,n的值.试题1答案:A试题2答案:CB试题4答案:B试题5答案:D试题6答案:D试题7答案:A试题8答案:B试题9答案:C试题10答案:B试题11答案:C试题12答案:D试题13答案:2 .试题14答案:(x+1)(x﹣1).试题15答案:a+b .试题16答案:20 .试题17答案:5 .试题18答案:y=﹣试题19答案:解:原式=2﹣1﹣2×+2=2﹣1﹣1+2=2.试题20答案:解:3(2x﹣3)<x+16x﹣9<x+15x<10x<2∴原不等式的解集为x<2,在数轴上表示为:试题21答案:解:在△ABC中,∠B=∠C,AB=AC,证明:过点A作AD⊥BC于D,∴∠ADB=∠ADC=90°,在△ABD和△ACD中,∴△ABD≌△ACD(AAS),∴AB=AC.试题22答案:证明:∵点E、F、G、H分别是边AB、BC、CD、DA的中点,∴EF=AC,GH=AC,∴EF=GH,同理EH FG∴四边形EFGH是平行四边形;又∵对角线AC、BD互相垂直,∴EF与FG垂直.∴四边形EFGH是矩形试题23答案:解:过点C作CE⊥AB交AB延长线于E,设CE=x,在Rt△BCE中,∵∠CBE=45°,∴BE=CE=x,在Rt△ACE中,∵∠CAE=30°,∴AE=x,∵AB+BE=AE,∴3000+x=x,解得:x=1500(+1)≈4098(米),显然2000+4098=6098<7062.68,所以“蛟龙”号能在保证安全的情况下打捞海底黑匣子.试题24答案:解:列表得:yx(x,y)1 2 3 41 (1,2)(1,3)(1,4)2 (2,1)(2,3)(2,4)3 (3,1)(3,2)(3,4)4 (4,1)(4,2)(4,3)(1)点Q所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.试题25答案:∴∠ABC=∠C,∵∠C与∠D都对,∴∠C=∠D,∴∠ABC=∠D;(2)解:∵∠ABC=∠D,∠BAE=∠DAB,∴△ABE∽△ADB,∴=,即AB2=AE•(AE+ED)=3,解得:AB=;(3)答:直线FA与圆O相切.理由如下:连接OA,∵BD为圆O的直径,∴∠BAD=90°,在Rt△ABD中,AB=,AD=1+2=3,根据勾股定理得:BD=2,∴OB=OA=AB=,∵BF=OB,∴AB=FB=OB,即AB=OF,∴∠OAF=90°,则直线AF与圆O相切.试题26答案:解:(1)A(﹣3,0),B(0,﹣3)代入y=kx+b得,解得,∴一次函数y=kx+b的解析式为:y=﹣x﹣3;(2)二次函数y=x2+mx+n图象的顶点为(﹣,)∵顶点在直线AB上,∴=﹣3,又∵二次函数y=x2+mx+n的图象经过点A(﹣3,0),∴9﹣3m+n=0,∴组成方程组为解得或.(3)∵二次函数y=x2+mx+n的图象经过点A.∴9﹣3m+n=0,∵当﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,①如图1,当对称轴﹣3<﹣<0时最小值为=﹣4,与9﹣3m+n=0,组成程组为解得或(由﹣3<﹣<0知不符合题意舍去)所以.②如图2,当对称轴﹣>0时,在﹣3≤x≤0时,x为0时有最小值为﹣4,把(0,﹣4)代入y=x2+mx+n得n=﹣4,把n=﹣4代入与9﹣3m+n=0,得m=.∵﹣>0,∴m<﹣2,∴此种情况不成立,③当对称轴﹣=0时,y=x2+mx+n的最小值为﹣4,把(0,﹣4)代入y=x2+mx+n得n=﹣4,把n=﹣4代入与9﹣3m+n=0,得m=.∵﹣=0,∴m=0,∴此种情况不成立,综上所述m=2,n=﹣3.。
广西崇左市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2014·金华) 在数1,0,﹣1,﹣2中,最小的数是()A . 1B . 0C . ﹣1D . ﹣22. (2分) (2020七上·双台子期末) 经统计,2019年国庆七天全国共接待游客782000000人,那么782000000用科学记数法表示()A .B .C .D .3. (2分)如图所示的圆锥,它的主视图和俯视图分别是()A . 等边三角形、圆B . 等边三角形、等腰三角形C . 等腰三角形、圆D . 圆、等腰三角形4. (2分)如果x2+ax﹣6=(x+b)(x﹣2),那么a﹣b的值为()A . 2B . ﹣2C . 3D . ﹣35. (2分)(2017·东河模拟) 下列说法正确的是()A . 为了了解我市今夏冰淇淋的质量,应采用普查的调查方式进行B . 鞋类销售商最感兴趣的是所销售的某种品牌鞋的尺码的平均数C . 明天我市会下雨是随机事件D . 某种彩票中奖的概率是1%,买100张该种彩票一定会中奖6. (2分) (2020八上·邛崃期末) 不等式组的解集在数轴上表示正确是()A .B .C .D .7. (2分)袋中有同样大小的5个小球,其中3个红色,2个白色.从袋中任意地同时摸出两个球,这两个球颜色相同的概率是()A .B .C .D .8. (2分)(2019·吉林模拟) 如图,在△ABC中,AB=AC,∠A=20°,以B为圆心,BC的长为半径画弧,交AC于点D,连接BD,则∠ADB=()A . 100°B . 160°C . 80°D . 20°9. (2分)(2019·揭阳模拟) 如图,直线l和双曲线(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连结OA、OB、OP,设△AOC面积是S1 ,△BOD面积是S2 ,△POE面积是S3 ,则()A . S1<S2<S3.B . S1>S2>S3C . S1=S2>S3.D . S1=S2<S3.10. (2分) (2019八下·株洲期末) 小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A . 小明吃早餐用了25minB . 小明从图书馆回家的速度为0.8km/minC . 食堂到图书馆的距离为0.8kmD . 小明读报用了30min二、填空题: (共5题;共5分)11. (1分) (2018八上·防城港期末) 计算:________.12. (1分)(2018·攀枝花) 如图,已知点A在反比例函数y= (x>0)的图象上,作Rt△ABC,边BC在x轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若△BCE的面积为4,则k=________.13. (1分)(2017·合川模拟) 从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为________.14. (1分) (2020八下·哈尔滨月考) 如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.15. (1分) (2018八上·河口期中) 矩形的四个角的平分线所围成的图形是________.三、解答题: (共8题;共68分)16. (5分) (2017八下·汇川期中) 化简,再求代数式的值:,其中.17. (7分)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下:(单位:颗)182195201179208204186192210204 175193200203188197212207185206 188186198202221199219208187224(1)对抽取的30株水稻稻穗谷粒颗数进行统计分析,请补全下表,并完善频数分布直方图;(2)如图所示的扇形统计图中,扇形A对应的圆心角为________度,扇形B对应的圆心角为________度.18. (6分)(2020·岐山模拟)(1) [问题发现]如图1,半圆O的直径是半圆O上的一个动点,则面积的最大值是________.(2)[问题解决]如图2所示的是某街心花园的一角.在扇形中,米,在围墙和上分别有两个入口C和D且米,D是的中点,出口E在上.现准备沿从入口到出口铺设两条景观小路,在四边形内种花,在剩余区域种草.①出口设在距直线多远处可以使四边形的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路所用的普通石材每米的造价是200元,铺设小路DE所用的景观石材每米的造价是元问:在上是否存在点E,使铺设小路和的总造价最低?若存在,请求出最低总造价和出口E距直线OB的距离;若不存在,请说明理由.19. (5分)(2018·安徽模拟) 如图,李军在A处测得风筝(C处)的仰角为30°,同时在A处正对着风筝方向距A处30m的B处,李明测得风筝的仰角为60°.求风筝此时的高度.(结果保留根号)20. (15分)(2016·嘉兴) 如图,已知一次函数y1=kx+b的图象与反比例函数y2= 的图象交于点A(﹣4,m),且与y轴交于点B,第一象限内点C在反比例函数y2= 的图象上,且以点C为圆心的圆与x轴,y轴分别相切于点D,B(1)求m的值;(2)求一次函数的表达式;(3)根据图象,当y1<y2<0时,写出x的取值范围.21. (10分)(2017·河西模拟) 小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?22. (10分)(2017·吉林模拟) 如图,在矩形ABCD中,E是边AB的中点,连接DE,△ADE沿DE折叠后得到△FDE,点F在矩形ABCD的内部,延长DF交于BC于点G.(1)求证:FG=BG;(2)若AB=6,BC=4,求DG的长.23. (10分) (2019九上·张家港期末) 如图,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式;(2)已知点P是抛物线上的一个动点,并且点P在第二象限内,过动点P作PE⊥x轴于点E,交线段AC于点D.①如图1,过D作DF⊥y轴于点F,交抛物线于M,N两点(点M位于点N的左侧),连接EF,当线段EF的长度最短时,求点P,M,N的坐标;②如图2,连接CD,若以C,P,D为顶点的三角形与△ADE相似,求△CPD的面积.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题: (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题: (共8题;共68分)16-1、17-1、17-2、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、。
广西崇左市达标名校2024届中考数学对点突破模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A.2224()39b bc c=B.0.00002=2×105C.2933xxx-=--D.3242·323x yy x x=2.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54°B.64°C.74°D.26°3.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F,S△AEF=3,则S△FCD 为()A.6 B.9 C.12 D.274.关于8的叙述正确的是()A.8=35+B.在数轴上不存在表示8的点C.8=±22D.与8最接近的整数是35.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数在第一象限内的图象经过点A,与BC交于点F,删△AOF的面积等于()A.10 B.9 C.8 D.66.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A.B.C.D.7.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.18B.16C.14D.128.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0,②当﹣1≤x≤3时,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函数图象上,当0<x1<x2时,y1<y2,其中正确的是()A.①②④B.①③C.①②③D.①③④9.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.A.6055 B.6056 C.6057 D.605810.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长:]11.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°12.下列因式分解正确的是()A.x2+9=(x+3)2B.a2+2a+4=(a+2)2C.a3-4a2=a2(a-4)D.1-4x2=(1+4x)(1-4x)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,E是▱ABCD的边AD上一点,AE=ED,CE与BD相交于点F,BD=10,那么DF=__.14.如果两圆的半径之比为32:,当这两圆内切时圆心距为3,那么当这两圆相交时,圆心距d的取值范围是__________.15.已知xy=3,那么y xx yx y______ .16.6-_____,倒数是_____,绝对值是_____17.因式分解:323x y x -=_______________.18.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AM 是△ABC 的中线,D 是线段AM 上一点(不与点A 重合).DE ∥AB 交AC 于点F ,CE ∥AM ,连结AE .(1)如图1,当点D 与M 重合时,求证:四边形ABDE 是平行四边形;(2)如图2,当点D 不与M 重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD 交AC 于点H ,若BH ⊥AC ,且BH=AM .①求∠CAM 的度数;②当FH=3,DM=4时,求DH 的长.20.(6分)先化简再求值:a b a -÷(a ﹣22ab b a-),其中a =2cos30°+1,b =tan45°. 21.(6分) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A .非常了解,B .比较了解,C .基本了解,D .不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.22.(8分)解方程:3221xx x=+-.23.(8分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.求证:CD 是⊙O的切线;若∠D=30°,BD=2,求图中阴影部分的面积.24.(10分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF ;当四边形ACDE为菱形时,求BD的长.25.(10分)如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好.此时,路灯的灯柱AB的高应该设计为多少米.(结果保留根号)26.(12分)如图,ABC ∆的顶点是方格纸中的三个格点,请按要求完成下列作图,①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.在图1中画出AB 边上的中线CD ;在图2中画出ABEF ,使得ABEF ABC S S ∆=.27.(12分)如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标;(3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、D【解题分析】在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.【题目详解】解:A 、原式=2249b c;故本选项错误; B 、原式=2×10-5;故本选项错误;C 、原式=()()3333x x x x +-=+- ;故本选项错误; D 、原式=223x ;故本选项正确; 故选:D .【题目点拨】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.2、B【解题分析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数.【题目详解】∵四边形ABCD 为菱形,∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO ,在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMO ≌△CNO(ASA),∴AO =CO ,∵AB =BC ,∴BO ⊥AC ,∴∠BOC =90°,∵∠DAC =26°,∴∠BCA =∠DAC =26°,∴∠OBC =90°﹣26°=64°.故选B .【题目点拨】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质. 3、D【解题分析】先根据AE :EB=1:2得出AE :CD=1:3,再由相似三角形的判定定理得出△AEF ∽△CDF ,由相似三角形的性质即可得出结论.【题目详解】解:∵四边形ABCD 是平行四边形,AE :EB=1:2,∴AE :CD=1:3,∵AB ∥CD ,∴∠EAF=∠DCF ,∵∠DFC=∠AFE ,∴△AEF ∽△CDF ,∵S △AEF =3, ∴AEF FCD S S =3FCD S =(13)2, 解得S △FCD =1.故选D.【题目点拨】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.4、D【解题分析】根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.【题目详解】选项AB的点;选项C选项D,与8最接近的整数是9=1.故选D.【题目点拨】本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题的关键.5、A【解题分析】过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.设OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a=a2=12,解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四边形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°,∴FN=BF•sin∠FBN=b,BN==b,∴点F的坐标为(10+b,b).∵点F 在反比例函数y=的图象上,∴(10+b )×b=12,S △AOF =S △AOM +S 梯形AMNF ﹣S △OFN =S 梯形AMNF =10故选A .“点睛”本题主要考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S △AOF =S 菱形OBCA .6、B【解题分析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【题目详解】小刚从家到学校,先匀速步行到车站,因此S 随时间t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S 又随时间t 的增长而增长,故选B .【题目点拨】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.7、B【解题分析】根据简单概率的计算公式即可得解.【题目详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是16. 故选B.考点:简单概率计算.8、B【解题分析】∵函数图象的对称轴为:x=-2b a =132-+=1,∴b=﹣2a ,即2a+b=0,①正确; 由图象可知,当﹣1<x <3时,y <0,②错误;由图象可知,当x=1时,y=0,∴a ﹣b+c=0,∵b=﹣2a ,∴3a+c=0,③正确;∵抛物线的对称轴为x=1,开口方向向上,∴若(x1,y1)、(x2,y2)在函数图象上,当1<x1<x2时,y1<y2;当x1<x2<1时,y1>y2;故④错误;故选B.点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理.9、D【解题分析】设第n个图形有a n个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a n=1+3n(n为正整数)",再代入a=2019即可得出结论【题目详解】设第n个图形有a n个〇(n为正整数),观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴a n=1+3n(n为正整数),∴a2019=1+3×2019=1.故选:D.【题目点拨】此题考查规律型:图形的变化,解题关键在于找到规律10、D【解题分析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选D.考点:生活中的平移现象11、C【解题分析】根据旋转的性质和三角形内角和解答即可.【题目详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【题目点拨】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.12、C【解题分析】试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)故选C,考点:因式分解【题目详解】请在此输入详解!二、填空题:(本大题共6个小题,每小题4分,共24分.)13、4【解题分析】∵AE=ED,AE+ED=AD,∴ED=AD,∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∴△DEF∽△BCF,∴DF:BF=DE:BC=2:3,∵DF+BF=BD=10,∴DF=4,故答案为4.14、315d <<.【解题分析】先根据比例式设两圆半径分别为32x x 、,根据内切时圆心距列出等式求出半径,然后利用相交时圆心距与半径的关系求解.【题目详解】解:设两圆半径分别为32x x 、,由题意,得3x-2x=3,解得3x =,则两圆半径分别为96,,所以当这两圆相交时,圆心距d 的取值范围是9696d +﹣<<,即315d <<,故答案为315d <<.【题目点拨】本题考查了圆和圆的位置与两圆的圆心距、半径的数量之间的关系,熟练掌握圆心距与圆位置关系的数量关系是解决本题的关键.15、± 【解题分析】分析:先化简,再分同正或同负两种情况作答.详解:因为xy =3,所以x 、y 同号,于是原式=当x >0,y >0时,原式当x <0,y <0时,原式=(故原式=±点睛:本题考查的是二次根式的化简求值,能够正确的判断出化简过程中被开方数底数的符号是解答此题的关键.16 ,-【解题分析】∵只有符号不同的两个数是互为相反数,∴;∵乘积为1的两个数互为倒数,∴的倒数是 ∵负数得绝对值是它的相反数,∴故答案为(1). (2). (3).17、x 3(y+1)(y-1)【解题分析】先提取公因式x 3,再利用平方差公式分解可得.【题目详解】解:原式=x 3(y 2-1)=x 3(y+1)(y-1),故答案为x 3(y+1)(y-1).【题目点拨】本题主要考查提公因式法与公式法的综合运用,解题的关键是熟练掌握一般整式的因式分解的步骤--先提取公因式,再利用公式法分解.18、2π【解题分析】 试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,, 所以()22212111πππ162π888S S AC BC AB +=+==⨯=. 故答案为2π.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析;(2)结论:成立.理由见解析;(3)①30°,②【解题分析】(1)只要证明AB=ED ,AB ∥ED 即可解决问题;(2)成立.如图2中,过点M 作MG ∥DE 交CE 于G .由四边形DMGE 是平行四边形,推出ED=GM ,且ED ∥GM ,由(1)可知AB=GM ,AB ∥GM ,可知AB ∥DE ,AB=DE ,即可推出四边形ABDE 是平行四边形;(3)①如图3中,取线段HC 的中点I ,连接MI ,只要证明MI=12AM ,MI ⊥AC ,即可解决问题;②设DH=x ,则AH=3x,AD=2x,推出AM=4+2x,BH=4+2x,由四边形ABDE是平行四边形,推出DF∥AB,推出HF HD HA HB=,可得3423xxx=+,解方程即可;【题目详解】(1)证明:如图1中,∵DE∥AB,∴∠EDC=∠ABM,∵CE∥AM,∴∠ECD=∠ADB,∵AM是△ABC的中线,且D与M重合,∴BD=DC,∴△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四边形ABDE是平行四边形.(2)结论:成立.理由如下:如图2中,过点M作MG∥DE交CE于G.∵CE∥AM,∴四边形DMGE是平行四边形,∴ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,∴AB∥DE,AB=DE,∴四边形ABDE是平行四边形.(3)①如图3中,取线段HC的中点I,连接MI,∵BM=MC,∴MI是△BHC的中位线,∴MI∥BH,MI=12 BH,∵BH⊥A C,且BH=AM.∴MI=12AM,MI⊥AC,∴∠CAM=30°.②设DH=x,则3,AD=2x,∴AM=4+2x,∴BH=4+2x,∵四边形ABDE是平行四边形,∴DF∥AB,∴HF HDHA HB=,3423xxx=+,解得515,∴5【题目点拨】本题考查了四边形综合题、平行四边形的判定和性质、直角三角形30度角的判定、平行线分线成比例定理、三角形的中位线定理等知识,解题的关键能正确添加辅助线,构造特殊四边形解决问题.20、1a b -【解题分析】先根据分式的混合运算顺序和运算法则化简原式,再由特殊锐角的三角函数值得出a 和b 的值,代入计算可得.【题目详解】 原式=a b a -÷(2a a ﹣22ab b a -) =222a b a ab b a a--+÷ =()2•a b a a a b -- =1a b-,当a =2cos30°+1=,b =tan45°=1时,原式=. 【题目点拨】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式,也考查了特殊锐角的三角函数值.21、(1)60、90°;(2)补全条形图见解析;(3)估计全校学生中对这些交通法规“非常了解”的有320名;(4)甲和乙两名学生同时被选中的概率为16. 【解题分析】【分析】(1)用A 的人数以及所占的百分比就可以求出调查的总人数,用C 的人数除以调查的总人数后再乘以360度即可得;(2)根据D 的百分比求出D 的人数,继而求出B 的人数,即可补全条形统计图;(3)用“非常了解”所占的比例乘以800即可求得;(4)画树状图得到所有可能的情况,然后找出符合条件的情况用,利用概率公式进行求解即可得.【题目详解】(1)本次调查的学生总人数为24÷40%=60人, 扇形统计图中C 所对应扇形的圆心角度数是360°×1560=90°,故答案为60、90°;(2)D 类型人数为60×5%=3,则B 类型人数为60﹣(24+15+3)=18, 补全条形图如下:(3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名; (4)画树状图为:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为21126=. 【题目点拨】本题考查了条形统计图、扇形统计图、列表法或树状图法求概率、用样本估计总体等,读懂统计图,从不同的统计图中找到必要的有关联的信息进行解题是关键.22、x=12,x=﹣2 【解题分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【题目详解】3221x x x=+-, 则2x (x+1)=3(1﹣x ),2x 2+5x ﹣3=0,(2x ﹣1)(x+3)=0,解得:x 1=12,x 2=﹣3, 检验:当x=12,x=﹣2时,2(x+1)(1﹣x )均不等于0, 故x=12,x=﹣2都是原方程的解. 【题目点拨】本题考查解分式方程的能力.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根;(3)去分母时要注意符号的变化.23、(1)证明见解析;(2)阴影部分面积为43π-【解题分析】【分析】(1)连接OC ,易证∠BCD=∠OCA ,由于AB 是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD 是⊙O 的切线;(2)设⊙O 的半径为r ,AB=2r ,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:△OAC 的面积以及扇形OAC 的面积即可求出阴影部分面积.【题目详解】(1)如图,连接OC ,∵OA=OC ,∴∠BAC=∠OCA ,∵∠BCD=∠BAC ,∴∠BCD=∠OCA ,∵AB 是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC 是半径,∴CD 是⊙O 的切线(2)设⊙O 的半径为r ,∴AB=2r ,∵∠D=30°,∠OCD=90°,∴OD=2r ,∠COB=60°∴r+2=2r ,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:易求S △AOC =12×S 扇形OAC =120443603ππ⨯=,∴阴影部分面积为43 3π-.【题目点拨】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.24、(1)证明见解析(22-1【解题分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22,于是利用BD=BE﹣DE求解.【题目详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴22,∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.25、-4)米【解题分析】延长OC,AB交于点P,△PCB∽△PAO,根据相似三角形对应边比例相等的性质即可解题.【题目详解】解:如图,延长OC,AB交于点P.∵∠ABC=120°,∴∠PBC=60°,∵∠OCB=∠A=90°,∴∠P=30°,∵AD=20米,∴OA=12AD=10米,∵BC=2米,∴在Rt△CPB中,PC=BC•tan60°=PB=2BC=4米,∵∠P=∠P,∠PCB=∠A=90°,∴△PCB∽△PAO,∴PC BC PA OA=,∴PA=PC OABC⋅=102=∴AB=PA﹣PB=(4)米.答:路灯的灯柱AB高应该设计为(4)米.26、(1)见解析;(2)见解析.【解题分析】(1)利用矩形的性质得出AB的中点,进而得出答案.(2)利用矩形的性质得出AC、BC的中点,连接并延长,使延长线段与连接这两个中点的线段相等.【题目详解】(1)如图所示:CD即为所求.(2)【题目点拨】本题考查应用设计与作图,正确借助矩形性质和网格分析是解题关键.27、(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,2)或(0,3﹣2)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【解题分析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标;(3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【题目详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩ 解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3;(2)令y=0,则x 2﹣4x+3=0,解得:x=1或x=3,∴B (3,0),∴,点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB 时,,∴或OP=PC ﹣﹣3∴P 1(0,),P 2(0,3﹣);②当PB=PC 时,OP=OB=3,∴P 3(0,-3);③当BP=BC 时,∵OC=OB=3∴此时P 与O 重合,∴P 4(0,0);综上所述,点P 的坐标为:(0,)或(0,3﹣)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=12×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.。
广西崇左市宁明县2024届中考数学全真模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.242.在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )A.最高分90 B.众数是5 C.中位数是90 D.平均分为87.53.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°4.直线AB、CD相交于点O,射线OM平分∠AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()A.相离B.相切C.相交D.不确定5.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是()A.∠1=50°,∠1=40°B.∠1=40°,∠1=50°C.∠1=30°,∠1=60°D.∠1=∠1=45°6.如图的立体图形,从左面看可能是()A.B.C.D.7.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为()。
2024届广西崇左市扶绥县中考数学模拟精编试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.一个几何体的三视图如图所示,这个几何体是()A.棱柱B.正方形C.圆柱D.圆锥2.“保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是()月用水量(吨) 4 5 6 9户数(户) 3 4 2 1A.中位数是5吨B.众数是5吨C.极差是3吨D.平均数是5.3吨3.如图,要使□ABCD成为矩形,需添加的条件是()A.AB=BC B.∠ABC=90°C.AC⊥BD D.∠1=∠24.下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.a(a+b)=a2+b D.6ab2÷2ab=3b5.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<26.点A(-1,),B(-2,)在反比例函数的图象上,则,的大小关系是()A.>B.=C.<D.不能确定7.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE= 1316,其中正确结论的个数是()A.1 B.2 C.3 D.48.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10°B.15°C.20°D.25°9.正比例函数y=2kx的图象如图所示,则y=(k-2)x+1-k的图象大致是()A .B .C .D .10.如图,AB 是定长线段,圆心O 是AB 的中点,AE 、BF 为切线,E 、F 为切点,满足AE=BF ,在EF 上取动点G ,国点G 作切线交AE 、BF 的延长线于点D 、C ,当点G 运动时,设AD=y ,BC=x ,则y 与x 所满足的函数关系式为( )A .正比例函数y=kx (k 为常数,k≠0,x >0)B .一次函数y=kx+b (k ,b 为常数,kb≠0,x >0)C .反比例函数y=kx(k 为常数,k≠0,x >0) D .二次函数y=ax 2+bx+c (a ,b ,c 为常数,a≠0,x >0) 二、填空题(本大题共6个小题,每小题3分,共18分)11.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)12.如图,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =42,点D 是AC 边上一动点,连接BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的最小值为___.13.如图所示,平行四边形ABCD 中,E 、F 是对角线BD 上两点,连接AE 、AF 、CE 、CF ,添加 __________条件,可以判定四边形AECF 是平行四边形.(填一个符合要求的条件即可)14.如图,在Rt△ABC中,∠BAC=90°,AB=AC=4,D是BC的中点,点E在BA的延长线上,连接ED,若AE=2,则DE的长为_____.15.如图,已知点E是菱形ABCD的AD边上的一点,连接BE、CE,M、N分别是BE、CE的中点,连接MN,若∠A=60°,AB=4,则四边形BCNM的面积为_____.16.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.三、解答题(共8题,共72分)17.(8分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.18.(8分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=12AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.(1)问题发现①当θ=0°时,BECD= ;②当θ=180°时,BECD= .(2)拓展探究试判断:当0°≤θ<360°时,BECD的大小有无变化?请仅就图2的情形给出证明;(3)问题解决①在旋转过程中,BE 的最大值为 ;②当△ADE 旋转至B 、D 、E 三点共线时,线段CD 的长为 .19.(8分)如图,正方形ABCD 的边长为2,BC 边在x 轴上,BC 的中点与原点O 重合,过定点M(-2,0)与动点P(0,t)的直线MP 记作l.(1)若l 的解析式为y =2x +4,判断此时点A 是否在直线l 上,并说明理由; (2)当直线l 与AD 边有公共点时,求t 的取值范围.20.(8分)如图,已知AB AD =,AC AE =,BAD CAE ∠=∠.求证:BC DE =.21.(8分)如图,在Rt △ABC 中,∠C=90°,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E. (1)求证:∠A=∠ADE ;(2)若AD=8,DE=5,求BC 的长.22.(10分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.23.(12分)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?24.计算:|﹣|2﹣π)0+2cos45°.解方程:33xx-=1﹣13x-参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】试题解析:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱.故选C.2、C【解题分析】根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案.【题目详解】解:A、中位数=(5+5)÷2=5(吨),正确,故选项错误;B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;C、极差为9﹣4=5(吨),错误,故选项正确;D、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误.故选:C.【题目点拨】此题主要考查了平均数、中位数、众数和极差的概念.要掌握这些基本概念才能熟练解题.3、B【解题分析】根据一个角是90度的平行四边形是矩形进行选择即可.【题目详解】解:A、是邻边相等,可判定平行四边形ABCD是菱形;B、是一内角等于90°,可判断平行四边形ABCD成为矩形;C、是对角线互相垂直,可判定平行四边形ABCD是菱形;D、是对角线平分对角,可判断平行四边形ABCD成为菱形;故选:B.【题目点拨】本题主要应用的知识点为:矩形的判定.①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.4、D【解题分析】各项计算得到结果,即可作出判断.【题目详解】解:A、原式=2a,不符合题意;B、原式=a2-2ab+b2,不符合题意;C、原式=a2+ab,不符合题意;D、原式=3b,符合题意;故选D【题目点拨】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5、C【解题分析】【分析】一次函数y1=kx+b落在与反比例函数y2=cx图象上方的部分对应的自变量的取值范围即为所求.【题目详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【题目点拨】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.6、C【解题分析】试题分析:对于反比例函数y=,当k>0时,在每一个象限内,y随x的增大而减小,根据题意可得:-1>-2,则.考点:反比例函数的性质.7、C【解题分析】∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,AD ABDAP ABQ AP BQ=⎧⎪∠=∠⎨⎪=⎩,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴AO OP OD OA=,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中FCQ EBPQ PCQ BP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,AD CDADC DCE DF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴43 PB PAEB DA==,∴BE=34,∴QE=134,∵△QOE∽△PAD,∴1345 QO OE QEPA AD PD===,∴QO=135,OE=3920,∴AO=5﹣QO=125,∴tan∠OAE=OEOA=1316,故④正确,故选C.点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.8、A【解题分析】先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF 的大小.【题目详解】由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°−50°=10°,故选A.【题目点拨】本题考查了平行线的性质,熟练掌握这一点是解题的关键.9、B【解题分析】试题解析:由图象可知,正比函数y=2kx的图象经过二、四象限,∴2k<0,得k<0,∴k−2<0,1−k>0,∴函数y=(k−2)x+1−k图象经过一、二、四象限,故选B.10、C【解题分析】延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,由AE与BF为圆的切线,利用切线的性质得到AE与EO 垂直,BF与OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE与直角BOF全等,利用全等三角形的对应角相等得到∠A=∠B,利用等角对等边可得出三角形QAB为等腰三角形,由O为底边AB的中点,利用三线合一得到QO垂直于AB,得到一对直角相等,再由∠FQO与∠OQB为公共角,利用两对对应角相等的两三角形相似得到三角形FQO与三角形OQB相似,同理得到三角形EQO与三角形OAQ相似,由相似三角形的对应角相等得到∠QOE=∠QOF=∠A=∠B,再由切线长定理得到OD与OC分别为∠EOG与∠FOG的平分线,得到∠DOC为∠EOF 的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC与三角形OBC相似,同理三角形DOC与三角形DAO相似,进而确定出三角形OBC与三角形DAO相似,由相似得比例,将AD=x,BC=y代入,并将AO与OB 换为AB的一半,可得出x与y的乘积为定值,即y与x成反比例函数,即可得到正确的选项.【题目详解】延长AD ,BC 交于点Q ,连接OE ,OF ,OD ,OC ,OQ ,∵AE ,BF 为圆O 的切线,∴OE ⊥AE ,OF ⊥FB ,∴∠AEO=∠BFO=90°,在Rt △AEO 和Rt △BFO 中,∵{AE BF OE OF==, ∴Rt △AEO ≌Rt △BFO (HL ),∴∠A=∠B ,∴△QAB 为等腰三角形,又∵O 为AB 的中点,即AO=BO ,∴QO ⊥AB ,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO ,∴△QOF ∽△QBO ,∴∠B=∠QOF ,同理可以得到∠A=∠QOE ,∴∠QOF=∠QOE ,根据切线长定理得:OD 平分∠EOG ,OC 平分∠GOF ,∴∠DOC=12∠EOF=∠A=∠B , 又∵∠GCO=∠FCO ,∴△DOC ∽△OBC ,同理可以得到△DOC ∽△DAO ,∴△DAO ∽△OBC , ∴AD AO OB BC=,∴AD•BC=AO•OB=14AB 2,即xy=14AB 2为定值, 设k=14AB 2,得到y=k x , 则y 与x 满足的函数关系式为反比例函数y=k x (k 为常数,k≠0,x >0). 故选C .【题目点拨】本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识.二、填空题(本大题共6个小题,每小题3分,共18分)11、12y y >【解题分析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为>12、25﹣2【解题分析】连结AE ,如图1,先根据等腰直角三角形的性质得到AB=AC=4,再根据圆周角定理,由AD 为直径得到∠AED=90°,接着由∠AEB=90°得到点E 在以AB 为直径的 O 上,于是当点O 、E 、C 共线时,CE 最小,如图2,在Rt △AOC 中利用勾股定理计算出OC=25,从而得到CE 的最小值为25﹣2.【题目详解】连结AE ,如图1,∵∠BAC=90°,AB=AC,BC=42∴AB=AC=4,∵AD 为直径,∴∠AED=90°,∴∠AEB=90°,∴点E在以AB为直径的O上,∵O的半径为2,∴当点O、E. C共线时,CE最小,如图2在Rt△AOC中,∵OA=2,AC=4,∴2225+AC OA=∴52,即线段CE长度的最小值为5 2.故答案为5﹣2.【题目点拨】此题考查等腰直角三角形的性质,圆周角定理,勾股定理,解题关键在于结合实际运用圆的相关性质.13、BE=DF【解题分析】可以添加的条件有BE=DF等;证明:∵四边形ABCD是平行四边形,∴AB=CD,∠ABD=∠CDB;又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.∴∠AEF=∠CFE.∴AE∥CF;∴四边形AECF是平行四边形.(一组对边平行且相等的四边形是平行四边形)故答案为BE=DF.14、5【解题分析】过点E作EF⊥BC于F,根据已知条件得到△BEF是等腰直角三角形,求得BE=AB+AE=6,根据勾股定理得到BF=EF=2,求得DF=BF−BD2,根据勾股定理即可得到结论.【题目详解】解:过点E作EF⊥BC于F,∴∠BFE =90°,∵∠BAC =90°,AB =AC =4,∴∠B =∠C =45°,BC =42, ∴△BEF 是等腰直角三角形, ∵BE =AB +AE =6,∴BF =EF =32,∵D 是BC 的中点,∴BD =22,∴DF =BF−BD 2,∴DE =22DF EF +=22(32)(2)+=25.故答案为25.【题目点拨】本题考查了等腰直角三角形的性质,勾股定理,正确的作出辅助线构造等腰直角三角形是解题的关键.15、33【解题分析】如图,连接BD .首先证明△BCD 是等边三角形,推出S △EBC =S △DBC =34×42=43,再证明△EMN ∽△EBC ,可得EMN EBC S S ∆∆=(MN BC )2=14,推出S △EMN =3,由此即可解决问题. 【题目详解】解:如图,连接BD .∵四边形ABCD 是菱形,∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD ∥BC ,∴△BCD 是等边三角形,∴S △EBC =S △DBC=4×42∵EM=MB ,EN=NC ,∴MN ∥BC ,MN=12BC , ∴△EMN ∽△EBC , ∴EMN EBC S S ∆∆=(MN BC )2=14, ∴S △EMN,∴S 阴故答案为【题目点拨】本题考查相似三角形的判定和性质、三角形的中位线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16、3【解题分析】分析:由已知条件易得:EF ∥AB ,且EF :AB=1:2,从而可得△CEF ∽△CAB ,且相似比为1:2,设S △CEF =x ,根据相似三角形的性质可得方程:194x x =+,解此方程即可求得△EFC 的面积. 详解:∵在△ABC 中,点E ,F 分别是AC ,BC 的中点,∴EF 是△ABC 的中位线,∴EF ∥AB ,EF :AB=1:2,∴△CEF ∽△CAB ,∴S △CEF :S △CAB =1:4,设S △CEF =x ,∵S △CAB =S △CEF +S 四边形ABFE ,S 四边形ABFE =9,∴194x x =+, 解得:3x =,经检验:3x =是所列方程的解.故答案为:3.点睛:熟悉三角形的中位线定理和相似三角形的面积比等于相似比的平方是正确解答本题的关键.三、解答题(共8题,共72分)17、(1)180;(2)每件销售价为55元时,获得最大利润;最大利润为2250元.【解题分析】分析:(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.详解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为180;(2)由题意得:y=(x ﹣40)[200﹣10(x ﹣50)]=﹣10x 2+1100x ﹣28000=﹣10(x ﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.点睛:此题主要考查了二次函数的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握.18、(1(2)无变化,证明见解析;(3)①+2+1﹣1.【解题分析】(1)①先判断出DE ∥CB ,进而得出比例式,代值即可得出结论;②先得出DE ∥BC ,即可得出,AE AD AB AC=,再用比例的性质即可得出结论;(2)先∠CAD =∠BAE ,进而判断出△ADC ∽△AEB 即可得出结论;(3)分点D 在BE 的延长线上和点D 在BE 上,先利用勾股定理求出BD ,再借助(2)结论即可得出CD .【题目详解】解:(1)①当θ=0°时,在Rt △ABC 中,AC=BC=2,∴∠A=∠B=45°,,∵AD=DE=12, ∴∠AED=∠A=45°,∴∠ADE=90°,∴DE ∥CB , ∴CD BE AC AB =, ∴222CD BE =, ∴2BE CD =, 故答案为2,②当θ=180°时,如图1,∵DE ∥BC ,∴AE AD AB AC=, ∴AE AB AD AC AB AC++=, 即:BE CD AB AC =, ∴222BE AB CD AC === 2;(2)当0°≤θ<360°时,BE CD的大小没有变化, 理由:∵∠CAB=∠DAE ,∴∠CAD=∠BAE ,∵AD AE AC AB=, ∴△ADC ∽△AEB ,∴2222BE AB CD AC ==(3)①当点E 在BA 的延长线时,BE 最大,在Rt △ADE 中,AE=2AD=2, ∴BE 最大=AB+AE=22+2;②如图2,当点E 在BD 上时,∵∠ADE=90°,∴∠ADB=90°,在Rt △ADB 中,AB=22,AD=2,根据勾股定理得,BD=22-AB AD =6,∴BE=BD+DE=6+2,由(2)知,2BE CD=, ∴CD=62322BE +==+1, 如图3,当点D 在BE 的延长线上时,在Rt △ADB 中,2,2,根据勾股定理得,22-AB AD 6,∴BE=BD ﹣62,由(2)知,2BE CD=,∴CD=62322BE-==﹣1.故答案为3+1或3﹣1.【题目点拨】此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DE∥BC,解(2)的关键是判断出△ADC∽△AEB,解(3)关键是作出图形求出BD,是一道中等难度的题目.19、(1)点A在直线l上,理由见解析;(2)43≤t≤4.【解题分析】(1)由题意得点B、A坐标,把点A的横坐标x=-1代入解析式y=2x+4得出y的值,即可得出点A在直线l上;(2)当直线l经过点D时,设l的解析式代入数值解出即可【题目详解】(1)此时点A在直线l上.∵BC=AB=2,点O为BC中点,∴点B(-1,0),A(-1,2).把点A的横坐标x=-1代入解析式y=2x+4,得y=2,等于点A的纵坐标2,∴此时点A在直线l上.(2)由题意可得,点D(1,2),及点M(-2,0),当直线l经过点D时,设l的解析式为y=kx+t(k≠0),∴解得由(1)知,当直线l经过点A时,t=4.∴当直线l与AD边有公共点时,t的取值范围是≤t≤4.【题目点拨】本题考查的知识点是一次函数综合题,解题的关键是熟练的掌握一次函数综合题.20、证明见解析.【解题分析】根据等式的基本性质可得BAC DAE ∠=∠,然后利用SAS 即可证出ABC ADE ∆≅∆,从而证出结论.【题目详解】证明:BAD CAE ∠=∠,BAD DAC CAE DAC ∴∠+∠=∠+∠,即BAC DAE ∠=∠,在ABC ∆和ADE ∆中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()ABC ADE SAS ∴∆≅∆,BC DE ∴=.【题目点拨】此题考查的是全等三角形的判定及性质,掌握利用SAS 判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.21、(1)见解析(2)7.5【解题分析】(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;(2)首先证明AC=2DE=10,在Rt △ADC 中,求得DC=6,设BD=x,在Rt △BDC 中,BC 2=x 2+62,在Rt △ABC 中,BC 2=(x+8)2-102,可得x 2+62=(x+8)2-102,解方程即可解决问题.【题目详解】(1)证明:连接OD ,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠A=∠ADE;(2)连接CD,∵∠A=∠ADE∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=5,∴AC=2DE=10,在Rt△ADC中,DC=22-=,1086设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,∴x2+62=(x+8)2-102,解得x=4.5,∴BC=22+=6 4.57.5【题目点拨】此题主要考查圆的切线问题,解题的关键是熟知切线的性质.22、(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标.【解题分析】试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案.试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,根据题意得:700(1+x)2=1183,解得:x1=0.3=30%,x2=﹣2.3(舍去),答:这两年该市推行绿色建筑面积的年平均增长率为30%;(2)根据题意得:1183×(1+30%)=1537.9(万平方米),∵1537.9>1500,∴2017年该市能完成计划目标.【题目点拨】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.23、(1)一个足球需要50元,一个篮球需要80元;(2)1个.【解题分析】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,根据购买2个足球和3个篮球共需340元,4个排球和5个篮球共需600元,可得出方程组,解出即可;【题目详解】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:,解得:.答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100﹣m)≤6000,解得:m≤1,∵m是整数,∴m最大可取1.答:这所中学最多可以购买篮球1个.【题目点拨】本题考查了一元一次不等式及二元一次方程组的知识,解答本题的关键是仔细审题,得到等量关系及不等关系,难度一般.24、(1)﹣1;(2)x=﹣1是原方程的根.【解题分析】(1)直接化简二次根式进而利用零指数幂的性质以及特殊角三角函数值进而得出答案;(2)直接去分母再解方程得出答案.【题目详解】(1)原式﹣1+2×2=﹣=﹣1;(2)去分母得:3x=x﹣3+1,解得:x=﹣1,检验:当x=﹣1时,x﹣3≠0,故x=﹣1是原方程的根.【题目点拨】此题主要考查了实数运算和解分式方程,正确掌握解分式方程的方法是解题关键.。
广西壮族自治区崇左市龙州县市级名校2024届中考数学全真模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定2.如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是()A.着B.沉C.应D.冷3.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长:]4.2017年,小榄镇GDP总量约31600000000元,数据31600000000科学记数法表示为()A.0.316×1010B.0.316×1011C.3.16×1010D.3.16×10115.如图是一个正方体展开图,把展开图折叠成正方体后,“爱”字一面相对面上的字是()A .美B .丽C .泗D .阳6.如下图所示,该几何体的俯视图是 ( )A .B .C .D .7.如图,菱形ABCD 中,∠B =60°,AB =4,以AD 为直径的⊙O 交CD 于点E ,则DE 的长为( )A .3πB .23π C .43π D .76π 8.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是( ) A .平均数B .众数C .中位数D .方差9.如图,将△ABC 绕点C 旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB 扫过的图形面积为( )A .32πB .83π C .6π D .以上答案都不对10.若二次函数y=ax 2+bx+c 的x 与y 的部分对应值如下表: x﹣2﹣112y 8 3 0 ﹣1 0则抛物线的顶点坐标是( )A .(﹣1,3)B .(0,0)C .(1,﹣1)D .(2,0)二、填空题(本大题共6个小题,每小题3分,共18分)11.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图所示,则x +y 的值是_____. 2x 3 2 y ﹣34y12.如图,直线a ∥b ,∠P=75°,∠2=30°,则∠1=_____.13.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为_____. 14.若关于x 的方程230x x m --=有两个相等的实数根,则m 的值是_________. 15.等腰梯形是__________对称图形. 16.计算22111x x x +--的结果为 . 三、解答题(共8题,共72分)17.(8分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD ,交AD 的延长线于点E .(1)求证:∠BDC =∠A ;(2)若CE =4,DE =2,求AD 的长.18.(8分)如图,在平面直角坐标系中,矩形DOBC 的顶点O 与坐标原点重合,B 、D 分别在坐标轴上,点C 的坐标为(6,4),反比例函数y=1k x(x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F . (1)求反比例函数的解析式;(2)求△OEF 的面积;(3)设直线EF 的解析式为y=k 2x+b ,请结合图象直接写出不等式k 2x+b >1k x的解集.19.(8分)先化简,再求代数式(22222x y x x xy y x xy ---+-)÷2yx y-的值,其中x=sin60°,y=tan30°.20.(8分)我校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分. 组别 正确数字x 人数 A 0≤x <8 10 B 8≤x <16 15 C 16≤x <24 25 D 24≤x <32 m E32≤x <40n根据以上信息解决下列问题:(1)在统计表中,m= ,n= ,并补全条形统计图. (2)扇形统计图中“C 组”所对应的圆心角的度数是 .(3)有三位评委老师,每位老师在E 组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:每位学生至少获得两位评委老师的“通过”才能代表学校参加鄂州市“汉字听写”比赛,请用树形图求出E 组学生王云参加鄂州市“汉字听写”比赛的概率.21.(8分)如图,Rt △ABC 的两直角边AC 边长为4,BC 边长为3,它的内切圆为⊙O ,⊙O 与边AB 、BC 、AC 分别相切于点D 、E 、F ,延长CO 交斜边AB 于点G . (1)求⊙O 的半径长; (2)求线段DG 的长.22.(10分)先化简,再求值:1+÷(1﹣),其中x=2cos30°+tan45°.23.(12分)(1)观察猜想如图①点B 、A 、C 在同一条直线上,DB ⊥BC ,EC ⊥BC 且∠DAE=90°,AD=AE ,则BC 、BD 、CE 之间的数量关系为______; (2)问题解决如图②,在Rt △ABC 中,∠ABC=90°,CB=4,AB=2,以AC 为直角边向外作等腰Rt △DAC ,连结BD ,求BD 的长; (3)拓展延伸如图③,在四边形ABCD 中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA ,请直接写出BD 的长.24.如图,已知:C F 90∠∠==,AB DE =,CE BF =,求证:AC DF =.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】直接利用圆周角定理结合三角形的外角的性质即可得.【题目详解】连接BE,如图所示:∵∠ACB=∠AEB,∠AEB>∠D,∴∠C>∠D.故选:A.【题目点拨】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.2、A【解题分析】正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答【题目详解】这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对.故选:A【题目点拨】本题主要考查了利用正方体及其表面展开图的特点解题,明确正方体的展开图的特征是解决此题的关键3、D【解题分析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选D.考点:生活中的平移现象4、C【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】31600000000=3.16×1.故选:C.【题目点拨】本题考查科学记数法,解题的关键是掌握科学记数法的表示.5、D【解题分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【题目详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”字一面相对面上的字是“阳”;故本题答案为:D.【题目点拨】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形是解题的关键.6、B【解题分析】根据俯视图是从上面看到的图形解答即可.【题目详解】从上面看是三个长方形,故B是该几何体的俯视图.故选B.【题目点拨】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.7、B【解题分析】连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.【题目详解】解:连接OE,如图所示:∵四边形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴DE的长=602180π⨯=23π;故选B.【题目点拨】本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.8、D【解题分析】A. ∵原平均数是:(1+2+3+3+4+1) ÷6=3;添加一个数据3后的平均数是:(1+2+3+3+4+1+3) ÷7=3; ∴平均数不发生变化. B. ∵原众数是:3;添加一个数据3后的众数是:3; ∴众数不发生变化; C. ∵原中位数是:3;添加一个数据3后的中位数是:3; ∴中位数不发生变化;D. ∵原方差是:()()()()()22222313233234355=63-+-+-⨯+-+-; 添加一个数据3后的方差是:()()()()()222223132333343510=77-+-+-⨯+-+-;∴方差发生了变化. 故选D.点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键. 9、D 【解题分析】从图中可以看出,线段AB 扫过的图形面积为一个环形,环形中的大圆半径是AC ,小圆半径是BC ,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积. 【题目详解】 阴影面积=()603616103603π⨯-=π. 故选D . 【题目点拨】本题的关键是理解出,线段AB 扫过的图形面积为一个环形. 10、C 【解题分析】分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标. 详解:当0x =或2x =时,0y =,当1x =时,1y =-,04201c a b c a b c =⎧⎪∴++=⎨⎪++=-⎩ ,解得120a b c =⎧⎪=-⎨⎪=⎩ , ∴二次函数解析式为222(1)1y x x x =-=--, ∴抛物线的顶点坐标为()1,1-,故选C .点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分) 11、0 【解题分析】根据题意列出方程组,求出方程组的解即可得到结果. 【题目详解】 解:根据题意得:23223424232x yx y y x ++=-+⎧⎨++=++⎩,即231x y y ①②+=-⎧⎨=⎩,解得:-11x y =⎧⎨=⎩,则x +y =﹣1+1=0, 故答案为0 【题目点拨】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键. 12、45° 【解题分析】过P 作PM ∥直线a ,根据平行线的性质,由直线a ∥b ,可得直线a ∥b ∥PM ,然后根据平行线的性质,由∠P=75°,∠2=30°,可得∠1=∠P-∠2=45°. 故答案为45°.点睛:本题考查了平行线的性质的应用,能正确根据平行线的性质进行推理是解此题的关键,注意:两直线平行,内错角相等. 13、﹣1【解题分析】【分析】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k 的值即可.【题目详解】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,整理得k 2+1k=0,解得k 1=0,k 2=﹣1,因为k≠0,所以k 的值为﹣1.故答案为:﹣1.【题目点拨】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14、m=-34 【解题分析】根据题意可以得到△=0,从而可以求得m 的值.【题目详解】∵关于x 的方程230x x m --=有两个相等的实数根,∴△=2(3)41()0m --⨯⨯-=,解得:34m =-. 故答案为34-. 15、轴【解题分析】根据轴对称图形的概念,等腰梯形是轴对称图形,且有1条对称轴,即底边的垂直平分线.【题目详解】画图如下:结合图形,根据轴对称的定义及等腰梯形的特征可知,等腰梯形是轴对称图形.故答案为:轴【题目点拨】本题考查了关于轴对称的定义,运用定义会进行判断一个图形是不是轴对称图形.16、11x - 【解题分析】直接把分子相加减即可.【题目详解】22111x x x +--=11(1)(1)1x x x x +=+--,故答案为:11x -. 【题目点拨】本题考查了分式的加减法,关键是要注意通分及约分的灵活应用.三、解答题(共8题,共72分)17、(1)证明过程见解析;(2)1.【解题分析】试题分析:(1)连接OD ,由CD 是⊙O 切线,得到∠ODC=90°,根据AB 为⊙O 的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO ,根据等腰直角三角形的性质得到∠ADO=∠A ,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC ,根据相似三角形的性质得到,解方程即可得到结论. 试题解析:(1)连接OD , ∵CD 是⊙O 切线, ∴∠ODC=90°, 即∠ODB+∠BDC=90°,∵AB 为⊙O 的直径, ∴∠ADB=90°, 即∠ODB+∠ADO=90°, ∴∠BDC=∠ADO ,∵OA=OD , ∴∠ADO=∠A , ∴∠BDC=∠A ;(2)∵CE ⊥AE , ∴∠E=∠ADB=90°, ∴DB ∥EC , ∴∠DCE=∠BDC , ∵∠BDC=∠A , ∴∠A=∠DCE , ∵∠E=∠E , ∴△AEC ∽△CED , ∴, ∴EC 2=DE•AE , ∴11=2(2+AD ), ∴AD=1.考点:(1)切线的性质;(2)相似三角形的判定与性质.18、(1)y=6x ;(2)454;(3)32<x <1.【解题分析】(1)先利用矩形的性质确定C 点坐标(1,4),再确定A 点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k 1=1,即反比例函数解析式为y=6x ;(2)利用反比例函数解析式确定F 点的坐标为(1,1),E 点坐标为(32,4),然后根据△OEF 的面积=S 矩形BCDO ﹣S △ODE ﹣S △OBF ﹣S △CEF 进行计算;(3)观察函数图象得到当32<x <1时,一次函数图象都在反比例函数图象上方,即k 2x+b >1k x . 【题目详解】(1)∵四边形DOBC 是矩形,且点C 的坐标为(1,4),∴OB=1,OD=4,∵点A 为线段OC 的中点,∴A 点坐标为(3,2),∴k 1=3×2=1,∴反比例函数解析式为y=6x ; (2)把x=1代入y=6x得y=1,则F 点的坐标为(1,1); 把y=4代入y=6x 得x=32,则E 点坐标为(32,4), △OEF 的面积=S 矩形BCDO ﹣S △ODE ﹣S △OBF ﹣S △CEF=4×1﹣12×4×32﹣12×1×1﹣12×(1﹣32)×(4﹣1) =454; (3)由图象得:不等式不等式k 2x+b >1k x 的解集为32<x <1. 【题目点拨】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可.19、【解题分析】先根据分式混合运算的法则把原式进行化简,再计算x 和y 的值并代入进行计算即可【题目详解】原式()()22,2x y x x y x x y y x y ⎡⎤--=-⋅⎢⎥--⎢⎥⎣⎦112,2x y x y x y y ⎛⎫-=-⋅ ⎪--⎝⎭()()()()22,22x y x y x y x y x y x y x y y ⎡⎤---=-⋅⎢⎥----⎢⎥⎣⎦()()22,2x y x y x y x y x y y --+-=⋅-- ()()2,2y x y x y x y y--=⋅-- 1,x y=-- 33sin60tan3023x y =︒==︒=,, ∴原式1123333236=-=-=--. 【题目点拨】考查分式的混合运算,掌握运算顺序是解题的关键.20、(1)m=30, n=20,图详见解析;(2)90°;(3)727. 【解题分析】分析:(1)、根据B 的人数和百分比得出总人数,从而根据总人数分别求出m 和n 的值;(2)、根据C 的人数和总人数的比值得出扇形的圆心角度数;(3)、首先根据题意画出树状图,然后根据概率的计算法则得出答案.详解:(1)∵总人数为15÷15%=100(人),∴D 组人数m=100×30%=30,E 组人数n=100×20%=20,补全条形图如下:(2)扇形统计图中“C组”所对应的圆心角的度数是360°×=90°,(3)记通过为A、淘汰为B、待定为C,画树状图如下:由树状图可知,共有27种等可能结果,其中获得两位评委老师的“通过”有7种情况,∴E组学生王云参加鄂州市“汉字听写”比赛的概率为7 27.点睛:本题主要考查的就是扇形统计图、条形统计图以及概率的计算法则,属于基础题型.解决这个问题,我们一定要明白样本容量=频数÷频率,根据这个公式即可进行求解.21、(1) 1;(2)1 7【解题分析】(1)由勾股定理求AB,设⊙O的半径为r,则r=12(AC+BC-AB)求解;(2)过G作GP⊥AC,垂足为P,根据CG平分直角∠ACB可知△PCG为等腰直角三角形,设PG=PC=x,则2x,由(1)可知22,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.试题解析:(1)在Rt△ABC中,由勾股定理得22AC BC+,∴☉O的半径r=12(AC+BC-AB)=12(4+3-5)=1;(2)过G作GP⊥AC,垂足为P,设GP=x,由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,∴GP=PC=x,∵Rt△AGP∽Rt△ABC,∴x3=4x4-,解得x=127,即GP=127,CG=27,∴OG=CG-CO=1227-2=527,在Rt△ODG中,DG=22OG OD=1 7 .22、【解题分析】先化简分式,再计算x的值,最后把x的值代入化简后的分式,计算出结果.【题目详解】原式==1+=1+=当x=2cos30°+tan45°=2×+1=+1时.=【题目点拨】本题主要考查了分式的加减及锐角三角函数值.解决本题的关键是掌握分式的运算法则和运算顺序.23、(1)BC=BD+CE,(2)10(3)32【解题分析】(1)证明△ADB≌△EAC,根据全等三角形的性质得到BD=AC,EC=AB,即可得到BC、BD、CE之间的数量关系; (2)过D作DE⊥AB,交BA的延长线于E,证明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,根据勾股定理即可得到BD的长;(3)过D作DE⊥BC于E,作DF⊥AB于F,证明△CED≌△AFD,根据全等三角形的性质得到CE=AF,ED=DF,设AF=x,DF=y,根据CB=4,AB=2,列出方程组,求出,x y的值,根据勾股定理即可求出BD的长.【题目详解】解:(1)观察猜想结论:BC=BD+CE,理由是:如图①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)问题解决如图②,过D作DE⊥AB,交BA的延长线于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:2262210BD=+=;(3)拓展延伸如图③,过D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,设AF=x,DF=y,则42x yx y+=⎧⎨+=⎩,解得:13,xy=⎧⎨=⎩∴BF=2+1=3,DF=3,由勾股定理得:223332BD =+=.【题目点拨】考查全等三角形的判定与性质,勾股定理,二元一次方程组的应用,熟练掌握全等三角形的判定与性质是解题的关键.24、证明见解析;【解题分析】根据HL 定理证明Rt △ABC ≌Rt △DEF ,根据全等三角形的性质证明即可.【题目详解】CE BF =,BE 为公共线段, ∴CE+BE=BF+BE ,即 CB EF =又90C F ∠∠==,AB DE =在Rt ABC 与Rt DEF 中, AB DE CB EF =⎧⎨=⎩Rt ABC ∴≌Rt DEF ()HL∴AC=DF.【题目点拨】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.。
2024届崇左市重点中学中考数学五模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,圆弧形拱桥的跨径12AB =米,拱高4CD =米,则拱桥的半径为( )米A .6.5B .9C .13D .152.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为( )A .2B .2C .2D .23.在平面直角坐标系中,将点P (﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )A .(2,4)B .(1,5)C .(1,-3)D .(-5,5)4.如图,△ABC 在平面直角坐标系中第二象限内,顶点A 的坐标是(﹣2,3),先把△ABC 向右平移6个单位得到△A 1B 1C 1,再作△A 1B 1C 1关于x 轴对称图形△A 2B 2C 2,则顶点A 2的坐标是( )A.(4,﹣3)B.(﹣4,3)C.(5,﹣3)D.(﹣3,4)5.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣36.如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=kx的图象经过点D,则k值为()A.﹣14 B.14 C.7 D.﹣77.函数y=113xx+--自变量x的取值范围是( )A.x≥1B.x≥1且x≠3C.x≠3D.1≤x≤38.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是( )A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB9.下列计算正确的是()A.﹣2x﹣2y3•2x3y=﹣4x﹣6y3B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy10.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=10,BD=6,则四边形EFGH的面积为()A.20 B.15 C.30 D.6011.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为( )A.30x=456x+B.30x=456x-C.306x-=45xD.306x+=45x12.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,43)B.(0,53)C.(0,2)D.(0,103)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,□ABCD中,E是BA的中点,连接DE,将△D A E沿DE折叠,使点A落在□ABCD内部的点F处.若∠CBF =25°,则∠FD A的度数为_________.14.已知a+b=4,a-b=3,则a2-b2=____________.15.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是______.16.因式分解:(a +1)(a ﹣1)﹣2a +2=_____.17.袋中装有红、绿各一个小球,随机摸出1个小球后放回,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率是_____.18.如图,已知P 是正方形ABCD 对角线BD 上一点,且BP =BC ,则∠ACP 度数是_____度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分) (1)计算:)10201631(1)2384π-⎛⎫---+⎪⎝⎭ (2)先化简,再求值:2214()244x x x x x x x +---÷--+,其中x 是不等式371x +>的负整数解. 20.(6分)已知x 1﹣1x ﹣1=1.求代数式(x ﹣1)1+x (x ﹣4)+(x ﹣1)(x+1)的值.21.(6分)为了解黔东南州某县中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图. 成绩分组组中值 频数 25≤x <3027.5 4 30≤x <3532.5 m35≤x<40 37.5 2440≤x<45 a 3645≤x<50 47.5 n50≤x<55 52.5 4(1)求a、m、n的值,并补全频数分布直方图;(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?22.(8分)在边长为1的5×5的方格中,有一个四边形OABC,以O点为位似中心,作一个四边形,使得所作四边形与四边形OABC位似,且该四边形的各个顶点都在格点上;求出你所作的四边形的面积.23.(8分)某商场计划从厂家购进甲、乙、丙三种型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍.具体情况如下表:甲种乙种丙种进价(元/台)1200 1600 2000售价(元/台)1420 1860 2280经预算,商场最多支出132000元用于购买这批电冰箱.(1)商场至少购进乙种电冰箱多少台?(2)商场要求甲种电冰箱的台数不超过丙种电冰箱的台数.为获得最大利润,应分别购进甲、乙、丙电冰箱多少台?获得的最大利润是多少?24.(10分)如图,在Rt △ABC 中,∠C=90°,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E. (1)求证:∠A=∠ADE ;(2)若AD=8,DE=5,求BC 的长.25.(10分)计算:2cos30°+27-33--(12)-2 26.(12分)315211x x x -⎧⎨-+-⎩<()<27.(12分)先化简,再求值:22111211a a a a a a ---÷----,其中21a =+.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、A【解题分析】试题分析:根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.得AD=6设圆的半径是r , 根据勾股定理, 得r 2=36+(r ﹣4)2,解得r=6.5考点:垂径定理的应用.2、A【解题分析】分析出此三棱柱的立体图像即可得出答案.【题目详解】由三视图可知主视图为一个侧面,另外两个侧面全等,是长×高=22×4=82,所以侧面积之和为82×2+4×4=16+162,所以答案选择A项.【题目点拨】本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.3、B【解题分析】试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.考点:点的平移.4、A【解题分析】直接利用平移的性质结合轴对称变换得出对应点位置.【题目详解】如图所示:顶点A2的坐标是(4,-3).故选A.【题目点拨】此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.5、D【解题分析】先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【题目详解】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选:D.【题目点拨】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6、B【解题分析】过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为: ,故选B.(7,2),∴k147、B【解题分析】由题意得,x-1≥0且x-3≠0,∴x≥1且x≠3.故选B.8、C【解题分析】根据线段上的等量关系逐一判断即可.【题目详解】A、∵AD-CD=AC,∴此选项表示正确;B、∵AB+BC=AC,∴此选项表示正确;C、∵AB=CD,∴BD-AB=BD-CD,∴此选项表示不正确;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此选项表示正确.故答案选:C.【题目点拨】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.9、D【解题分析】A.根据同底数幂乘法法则判断;B.根据积的乘方法则判断即可;C.根据平方差公式计算并判断;D.根据同底数幂除法法则判断.【题目详解】A.-2x-2y3 2x3y=-4xy4,故本选项错误;B. (−2a2)3=−8a6,故本项错误;C. (2a+1)(2a−1)=4a2−1,故本项错误;D.35x3y2÷5x2y=7xy,故本选项正确.故答案选D.【题目点拨】本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除法法则、积的乘方法则与平方差公式.10、B【解题分析】有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH是矩形,根据矩形的面积公式解答即可.【题目详解】∵点E、F分别为四边形ABCD的边AD、AB的中点,∴EF∥BD,且EF=12BD=1.同理求得EH∥AC∥GF,且EH=GF=12AC=5,又∵AC⊥BD,∴EF∥GH,FG∥HE且EF⊥FG.四边形EFGH是矩形.∴四边形EFGH的面积=EF•EH=1×5=2,即四边形EFGH的面积是2.故选B.【题目点拨】本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(1)对角线互相平分且相等的四边形是矩形.11、A【解题分析】设甲每小时做x个,乙每小时做(x+6)个,根据甲做30 个所用时间与乙做45 个所用时间相等即可列方程. 【题目详解】设甲每小时做x 个,乙每小时做(x+6)个,根据甲做30 个所用时间与乙做45 个所用时间相等可得30x=456x+.故选A.【题目点拨】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.12、B【解题分析】解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小.∵四边形ABOC是矩形,∴AC∥OB,AC=OB.∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0).∵D是OB的中点,∴D(﹣2,0).设直线DA′的解析式为y=kx+b,∴5402k bk b=+⎧⎨=-+⎩,∴5653kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线DA′的解析式为5563y x=+.当x=0时,y=53,∴E(0,53).故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、50°【解题分析】延长BF交CD于G,根据折叠的性质和平行四边形的性质,证明△BCG≌△DAE,从而∠7=∠6=25°,进而可求∠FDA 得度数.【题目详解】延长BF交CD于G由折叠知,BE=CF, ∠1=∠2, ∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案为50°.【题目点拨】本题考查了折叠的性质,平行四边形的性质,全等三角形的判定与性质. 证明△BCG≌△DAE是解答本题的关键.14、1.【解题分析】a2-b2=(a+b)(a-b)=4×3=1.故答案为:1.考点:平方差公式.15、113407,北京市近两年的专利授权量平均每年增加6458.5件.【解题分析】依据北京市近两年的专利授权量的增长速度,即可预估2018年北京市专利授权量.【题目详解】解:∵北京市近两年的专利授权量平均每年增加:106948940316458.52-=(件),∴预估2018年北京市专利授权量约为106948+6458.5≈113407(件),故答案为:113407,北京市近两年的专利授权量平均每年增加6458.5件.【题目点拨】此题考查统计图的意义,解题的关键在于看懂图中数据.16、(a﹣1)1.【解题分析】提取公因式(a−1),进而分解因式得出答案.【题目详解】解:(a+1)(a﹣1)﹣1a+1=(a+1)(a﹣1)﹣1(a﹣1)=(a﹣1)(a+1﹣1)=(a﹣1)1.故答案为:(a﹣1)1.【题目点拨】此题主要考查了提取公因式法分解因式,找出公因式是解题关键.17、1 4【解题分析】解:列表如下:所有等可能的情况有4种,所以第一次摸到红球,第二次摸到绿球的概率=14.故答案为14.18、22.5【解题分析】∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=12(180°-45°)=67.5°,∴∠ACP度数是67.5°-45°=22.5°三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)5;(2)2xx-,3.【解题分析】试题分析:(1) 原式先计算乘方运算,再计算乘运算,最后算加减运算即可得到结果;(2)先化简,再求得x的值,代入计算即可.试题解析:(1)原式=1-2+1×2+4=5;(2)原式=()()()()2212x x x xx x+----×()224xx--=2xx-,当3x+7>1,即x>-2时的负整数时,(x=-1)时,原式=121---=3..20、2.【解题分析】将原式化简整理,整体代入即可解题.【题目详解】解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)=x1﹣1x+1+x1﹣4x+x1﹣4=3x1﹣2x﹣3,∵x1﹣1x﹣1=1∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.【题目点拨】本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.21、(1)详见解析(2)2400【解题分析】(1)求出组距,然后利用37.5加上组距就是a的值;根据频数分布直方图即可求得m的值,然后利用总人数100减去其它各组的人数就是n的值.(2)利用总人数4000乘以优秀的人数所占的比例即可求得优秀的人数.【题目详解】解:(1)组距是:37.5﹣32.5=5,则a=37.5+5=42.5;根据频数分布直方图可得:m=12;则n=100﹣4﹣12﹣24﹣36﹣4=1.补全频数分布直方图如下:(2)∵优秀的人数所占的比例是:=0.6,∴该县中考体育成绩优秀学生人数约为:4000×0.6=2400(人)22、(1)如图所示,见解析;四边形OA′B′C′即为所求;(2)S四边形OA′B′C′=1.【解题分析】(1)结合网格特点,分别作出点A、B、C关于点O成位似变换的对应点,再顺次连接即可得;(2)根据S四边形OA′B′C′=S△OA′B′+S△OB′C′计算可得.【题目详解】(1)如图所示,四边形OA′B′C′即为所求.(2)S四边形OA′B′C′=S△OA′B′+S△OB′C′=×4×4+×2×2=8+2=1.【题目点拨】本题考查了作图-位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.23、(1)商场至少购进乙种电冰箱14台;(2)商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.【解题分析】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据“商场最多支出132000元用于购买这批电冰箱”列出不等式,解之即可得;(2)根据“总利润=甲种冰箱利润+乙种冰箱利润+丙种冰箱利润”列出W关于x的函数解析式,结合x的取值范围,利用一次函数的性质求解可得.【题目详解】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80﹣3x)台.根据题意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商场至少购进乙种电冰箱14台;(2)由题意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W随x的增大而减小,∴当x=14时,W取最大值,且W最大=﹣140×14+22400=20440,此时,商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.【题目点拨】本题主要考查一次函数的应用与一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的不等关系和相等关系,并据此列出不等式与函数解析式.24、(1)见解析(2)7.5【解题分析】(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;(2)首先证明AC=2DE=10,在Rt△ADC中,求得DC=6,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解决问题.【题目详解】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠A=∠ADE;(2)连接CD,∵∠A=∠ADE∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=5,∴AC=2DE=10,在Rt△ADC中,6=,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,∴x2+62=(x+8)2-102,解得x=4.5,∴7.5=【题目点拨】此题主要考查圆的切线问题,解题的关键是熟知切线的性质.25、37【解题分析】根据实数的计算,先把各数化简,再进行合并即可.【题目详解】原式=3233334+- 37【题目点拨】此题主要考查实数的计算,解题的关键是熟知特殊三角函数的化简与二次根式的运算.26、﹣2<x <2.【解题分析】分别解不等式,进而得出不等式组的解集.【题目详解】 315211x x x -⎧⎨-+-⎩<①()<② 解①得:x <2解②得:x >﹣2.故不等式组的解集为:﹣2<x <2.【题目点拨】本题主要考查了解一元一次不等式组,正确掌握不等式组的解法是解题的关键.27、1a-1,22【解题分析】先根据完全平方公式进行约分化简,再代入求值即可.【题目详解】原式=2a 1--2a-11a-1⋅()=21-a-1a-1=1a-1,将a +1=2,故答案为2. 【题目点拨】本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.。
2024学年广西壮族自治区崇左市中考数学模拟预测题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,AB为⊙O的直径,C、D为⊙O上的点,若AC=CD=DB,则cos∠CAD =()A.13B.22C.12D.322.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个3.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加16002m,设扩大后的正方形绿地边长为xm,下面所列方程正确的是()A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=16004.某公司有11名员工,他们所在部门及相应每人所创年利润如下表所示,已知这11个数据的中位数为1.部门人数每人所创年利润(单位:万元)A1 19 B3 8C7 xD43这11名员工每人所创年利润的众数、平均数分别是( ) A .10,1B .7,8C .1,6.1D .1,65.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .84B .336C .510D .13266.如图所示是放置在正方形网格中的一个ABC ∆ ,则tan ABC ∠的值为( )A .255B .55C .2D .127.如图,AB 是O 的直径,弦CD AB ⊥,CDB 30∠=,CD 23=,则阴影部分的面积为( )A .2πB .πC .π 3D .2π 38.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元. A .140B .120C .160D .1009.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是( )A .(3,-2 )B .(-2,-3 )C .(2,3 )D .(3,2)10.如图,在△ABC 中,点D 是AB 边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC 的面积为1,则△BCD 的面积为( )A .1B .2C .3D .4二、填空题(共7小题,每小题3分,满分21分)11.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心,EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin ∠EAB 的值为 .12.如图,点A 是直线y=﹣3x 与反比例函数y=kx的图象在第二象限内的交点,OA=4,则k 的值为_____.13.化简:÷(﹣1)=_____.14.分解因式39a a -=________,221218x x -+=__________. 15.已知n >1,M =1n n -,N =1n n-,P =1nn +,则M 、N 、P 的大小关系为 . 16.如图,在△ABC 中,AB =BC ,∠ABC =110°,AB 的垂直平分线DE 交AC 于点D ,连接BD ,则∠ABD = ___________°.17.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.三、解答题(共7小题,满分69分)18.(10分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.19.(5分)如图,△ABC 中,AB=AC=4,D 、E 分别为AB 、AC 的中点,连接CD ,过E 作EF ∥DC 交BC 的延长线于F ;(1)求证:DE=CF ;(2)若∠B=60°,求EF 的长.20.(8分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A ,B 都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜.如果指针落在分割线上,则需要重新转动转盘.请问这个游戏对甲、乙双方公平吗?说明理由.21.(10分)解方程:2142242x x x x +-+--=1. 22.(10分)综合与探究 如图,抛物线y=23233x x -与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,直线l 经过B ,C 两点,点M 从点A 出发以每秒1个单位长度的速度向终点B 运动,连接CM ,将线段MC 绕点M 顺时针旋转90°得到线段MD ,连接CD ,BD .设点M 运动的时间为t (t >0),请解答下列问题: (1)求点A 的坐标与直线l 的表达式;(2)①直接写出点D 的坐标(用含t 的式子表示),并求点D 落在直线l 上时的t 的值; ②求点M 运动的过程中线段CD 长度的最小值;(3)在点M 运动的过程中,在直线l 上是否存在点P ,使得△BDP 是等边三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.23.(12分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据:成绩x70≤x≤7475≤x≤7980≤x≤8485≤x≤8990≤x≤9495≤x≤100学生甲______ ______ ______ ______ ______ ______乙 1 1 4 2 1 1(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲______ 83.7 ______ 86 13.21乙24 83.7 82 ______ 46.21(3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、D 【解题分析】根据圆心角,弧,弦的关系定理可以得出AC =CD =BD =°°1180603⨯=,根据圆心角和圆周角的关键即可求出CAD ∠的度数,进而求出它的余弦值. 【题目详解】 解:AC CD DB ==AC =CD =BD =°°1180603⨯=, °°160302CAD ∠=⨯=°3cos cos302CAD ∠==故选D . 【题目点拨】本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键. 2、D 【解题分析】由抛物线的开口向下知a<0,与y 轴的交点为在y 轴的正半轴上,得c>0, 对称轴为x=2ba-<1,∵a<0,∴2a+b<0,当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2.∵244ac b a- >2,∴4ac−2b <8a ,∴2b +8a>4ac ,∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a−b+c<0. 由①,③得到2a+2c<2,由①,②得到2a−c<−4,4a−2c<−8, 上面两个相加得到6a<−6,∴a<−1.故选D.点睛:本题考查了二次函数图象与系数的关系,二次函数2(0)y ax bx c a =++≠ 中,a 的符号由抛物线的开口方向决定;c 的符号由抛物线与y 轴交点的位置决定;b 的符号由对称轴位置与a 的符号决定;抛物线与x 轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点.3、A 【解题分析】试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x 米和(x -60)米,根据长方形的面积计算法则列出方程. 考点:一元二次方程的应用. 4、D 【解题分析】根据中位数的定义即可求出x 的值,然后根据众数的定义和平均数公式计算即可. 【题目详解】 解:这11个数据的中位数是第8个数据,且中位数为1,5x ∴=,则这11个数据为3、3、3、3、1、1、1、1、1、1、1、8、8、8、19, 所以这组数据的众数为1万元,平均数为119387543615⨯+⨯+⨯+⨯=万元.故选:D . 【题目点拨】此题考查的是中位数、众数和平均数,掌握中位数的定义、众数的定义和平均数公式是解决此题的关键. 5、C 【解题分析】由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510, 故选:C .点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.【解题分析】首先过点A 向CB 引垂线,与CB 交于D ,表示出BD 、AD 的长,根据正切的计算公式可算出答案. 【题目详解】解:过点A 向CB 引垂线,与CB 交于D ,△ABD 是直角三角形, ∵BD=4,AD=2, ∴tan ∠ABC=2142AD BD == 故选:D . 【题目点拨】此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A 的对边a 与邻边b 的比叫做∠A 的正切,记作tanA . 7、D 【解题分析】分析:连接OD ,则根据垂径定理可得出CE =DE ,继而将阴影部分的面积转化为扇形OBD 的面积,代入扇形的面积公式求解即可. 详解:连接OD , ∵CD ⊥AB , ∴13,2CE DE CD === (垂径定理), 故OCEODESS,=即可得阴影部分的面积等于扇形OBD 的面积, 又∵30CDB ∠=︒,∴60COB ∠= (圆周角定理), ∴OC =2,故S 扇形OBD =260π22π3603⨯=,即阴影部分的面积为2π3.点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.8、B【解题分析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【题目详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得0.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【题目点拨】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.9、A【解题分析】因为点M(-2,3)在双曲线上,所以xy=(-2)×3=-6,四个答案中只有A符合条件.故选A 10、C【解题分析】∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴12 AC ADAB AC==,∴2ACDABCS ADS AC⎛⎫= ⎪⎝⎭,∴2 112ABCS⎛⎫= ⎪⎝⎭,∴S △BCD = S △ABC - S △ACD =4-1=1. 故选C考点:相似三角形的判定与性质.二、填空题(共7小题,每小题3分,满分21分) 11、35. 【解题分析】试题分析:设正方形的边长为y ,EC=x , 由题意知,AE 2=AB 2+BE 2, 即(x+y )2=y 2+(y-x )2, 由于y≠0, 化简得y=4x , ∴sin ∠EAB=3355BE y x x AE y x x -===+. 考点:1.相切两圆的性质;2.勾股定理;3.锐角三角函数的定义12、﹣ 【解题分析】作AN ⊥x 轴于N ,可设A (x ),在Rt △OAN 中,由勾股定理得出方程,解方程求出x=﹣2,得出A (﹣2,,即可求出k 的值. 【题目详解】解:作AN ⊥x 轴于N ,如图所示:∵点A 是直线y=与反比例函数y=kx的图象在第二象限内的交点,∴可设A (x )(x <0),在Rt △OAN 中,由勾股定理得:x 2+)2=42, 解得:x=﹣2,∴A (﹣2,,代入y=kx得:k=﹣2×﹣故答案为﹣【题目点拨】本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点A 的坐标是解决问题的关键.13、﹣.【解题分析】直接利用分式的混合运算法则即可得出.【题目详解】 原式. 故答案为:.【题目点拨】此题主要考查了分式的化简,正确掌握运算法则是解题关键.14、(3)(3)a a a +- 22(3)x - 【解题分析】此题考查因式分解329(9)(3)(3),a a a a a a a -=-=+-222212182(69)2(3)x x x x x -+=-+=- 答案点评:利用提公因式、平方差公式、完全平方公式分解因式15、M >P >N【解题分析】∵n >1,∴n -1>0,n >n -1,∴M >1,0<N <1,0<P <1,∴M 最大;()11011n n P N n n n n --=-=>++, ∴P N >,∴M >P >N . 点睛:本题考查了不等式的性质和利用作差法比较两个代数式的大小.作差法比较大小的方法是:如果a -b >0,那么a >b ; 如果a -b =0,那么a =b ; 如果a -b <0,那么a <b ;另外本题还用到了不等式的传递性,即如果a >b ,b >c ,那么a >b >c . 16、1【解题分析】∵在△ABC 中,AB=BC ,∠ABC=110°,∴∠A=∠C=1°,∵AB 的垂直平分线DE 交AC 于点D ,∴AD=BD ,∴∠ABD=∠A=1°;故答案是1.17、127或2 【解题分析】由折叠性质可知B’F=BF ,△B’FC 与△ABC 相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x ,列出比例式方程解方程即可得到结果.【题目详解】由折叠性质可知B’F=BF ,设B’F=BF=x ,故CF=4-x当△B’FC ∽△ABC ,有'B F CF AB BC =,得到方程434x x -=,解得x=127,故BF=127; 当△FB’C ∽△ABC ,有'B F FC AB AC =,得到方程433x x -=,解得x=2,故BF=2; 综上BF 的长度可以为127或2. 【题目点拨】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.三、解答题(共7小题,满分69分)18、绳索长为20尺,竿长为15尺.【解题分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.【题目详解】设绳索长、竿长分别为x 尺,y 尺, 依题意得:552x y x y =+⎧⎪⎨=-⎪⎩ 解得:20x =,15y =.答:绳索长为20尺,竿长为15尺.【题目点拨】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19、()1证明见解析;()2EF =【解题分析】()1根据两组对边分别平行的四边形是平行四边形即可证明;()2只要求出CD 即可解决问题.【题目详解】()1证明:D 、E 分别是AB 、AC 的中点 DE //CF ∴, 又EF//DC∴四边形CDEF 为平行四边形DE CF ∴=.()2AB AC 4==,B 60∠= BC AB AC 4∴===, 又D 为AB 中点CD AB ∴⊥,∴在Rt BCD 中,1BD AB 22==,CD ∴==四边形CDEF 是平行四边形,EF CD ∴==【题目点拨】本题考查平行四边形的判定和性质、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、见解析【解题分析】解:不公平,理由如下:列表得:由表可知共有9种等可能的结果,其中数字之和为3的倍数的有3种结果,数字之和为4的倍数的有2种, 则甲获胜的概率为3193=、乙获胜的概率为29, ∵1239≠, ∴这个游戏对甲、乙双方不公平.【题目点拨】考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21、x=1【解题分析】方程两边同乘()()22x x +-转化为整式方程,解整式方程后进行检验即可得.【题目详解】解:方程两边同乘()()22x x +-得:()224224x x x x -+-+=-,整理,得2320x x -+=,解这个方程得11x =,22x =,经检验,22x =是增根,舍去,所以,原方程的根是1x =.【题目点拨】本题考查了解分式方程,解分式方程的关键是方程两边同乘分母的最简公分母化为整式方程然后求解,注意要进行检验.22、(1)A (﹣3,0),y=(2)①D (t ﹣t ﹣3),②CD ;(3)P (2,理由见解析.【解题分析】(1)当y=02x x +,解方程求得A (-3,0),B (1,0),由解析式得C (0),待定系数法可求直线l 的表达式;(2)分当点M 在AO 上运动时,当点M 在OB 上运动时,进行讨论可求D 点坐标,将D 点坐标代入直线解析式求得t 的值;线段CD 是等腰直角三角形CMD 斜边,若CD 最小,则CM 最小,根据勾股定理可求点M 运动的过程中线段CD 长度的最小值;(3)分当点M 在AO 上运动时,即0<t <3时,当点M 在OB 上运动时,即3≤t≤4时,进行讨论可求P 点坐标.【题目详解】(1)当y=0时,﹣233x x -+,解得x 1=1,x 2=﹣3, ∵点A 在点B 的左侧,∴A (﹣3,0),B (1,0),由解析式得C (0,设直线l 的表达式为y=kx+b ,将B ,C 两点坐标代入得mk故直线l 的表达式为y=(2)当点M 在AO 上运动时,如图:由题意可知AM=t ,OM=3﹣t ,MC ⊥MD ,过点D 作x 轴的垂线垂足为N ,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN ,在△MCO 与△DMN 中,{MD MCDCM DMN COM MND=∠=∠∠=∠,∴△MCO ≌△DMN ,∴MN=OC=3,DN=OM=3﹣t ,∴D (t ﹣3+3,t ﹣3);同理,当点M 在OB 上运动时,如图,OM=t ﹣3,△MCO ≌△DMN ,MN=OC=3,ON=t ﹣3+3,DN=OM=t ﹣3,∴D (t ﹣3+3,t ﹣3).综上得,D (t ﹣3+3,t ﹣3).将D 点坐标代入直线解析式得t=6﹣3线段CD 是等腰直角三角形CMD 斜边,若CD 最小,则CM 最小,∵M在AB上运动,∴当CM⊥AB时,CM最短,CD最短,即CM=CO=3,根据勾股定理得CD最小6;(3)当点M在AO上运动时,如图,即0<t<3时,∵tan∠CBO=OCOB3∴∠CBO=60°,∵△BDP是等边三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=3﹣t,3NB=4﹣t﹣3tan∠NBO=DN NB,43t--3,解得t=33经检验t=33过点P作x轴的垂线交于点Q,易知△PQB≌△DNB,∴BQ=BN=4﹣t3,3,OQ=2,P(23);同理,当点M在OB上运动时,即3≤t≤4时,∵△BDP是等边三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=t﹣3,NB=t﹣31=t﹣3tan∠NBD=DN NB,43t-+3t=33,经检验t=33t=33.故P(23.【题目点拨】考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度.23、(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由见解析【解题分析】(1)根据折线统计图数字进行填表即可;(2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;(3)可分别从平均数、方差、极差三方面进行比较.【题目详解】(1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,∴70⩽x⩽74无,共0个;75⩽x⩽79之间有75,共1个;80⩽x⩽84之间有84,82,1,83,共4个;85⩽x⩽89之间有89,86,86,85,86,共5个;90⩽x⩽94之间和95⩽x⩽100无,共0个.故答案为0;1;4;5;0;0;(2)由图可知:甲的最高分为89分,最低分为75分,极差为89−75=14分;∵甲的成绩为从低到高排列为:75,1,82,83,84,85,86,86,86,89,∴中位数为12(84+85)=84.5;∵乙的成绩为从低到高排列为:72,76,1,1,1,83,87,89,91,96,1出现3次,乙成绩的众数为1.故答案为14;84.5;1;(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论)故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.【题目点拨】此题考查折线统计图,统计表,平均数,中位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据.24、证明见解析【解题分析】若要证明∠A=∠E ,只需证明△ABC ≌△EDB ,题中已给了两边对应相等,只需看它们的夹角是否相等,已知给了DE//BC ,可得∠ABC=∠BDE ,因此利用SAS 问题得解.【题目详解】∵DE//BC∴∠ABC=∠BDE在△ABC 与△EDB 中AB DE ABC BDE BC BD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EDB (SAS)∴∠A=∠E。
广西崇左市数学中考模拟试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共8题;共16分)
1. (2分) (2019七上·昌平期中) -3的相反数是()
A . -3
B .
C .
D . 3
2. (2分) (2019九下·南宁月考) 2017年,我国网络购物市场交易规模达61000亿元,较2016年增长
29.6%.61000亿用科学记数法表示为()
A . 6.1×1012
B . 6.1×1011
C . 6.1×108
D . 6.1×104
3. (2分)(2018·遂宁) 如图,5个完全相同的小正方体组成了一个几何体,则这个几何体的主视图是()
A .
B .
C .
D .
4. (2分)(2017·邢台模拟) 计算正确的是()
A . a3﹣a2=a
B . (ab3)2=a2b5
C . (﹣2)0=0
D . 3a2•a﹣1=3a
5. (2分)如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A 下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()
A . 3
B . 4-
C . 4
D . 6-2
6. (2分)(2019·宁波) 已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC 与直线n交于点D.若∠1=25°,则∠2的度数为()
A . 60°
B . 65°
C . 70°
D . 75°
7. (2分) (2019九上·长葛期末) 在2017年的初中数学竞赛中,我校有5位同学获奖,他们的成绩分别是88,86,91,88,92.则由这组数据得到的以下结论,错误的是()
A . 极差为6
B . 平均数为89
C . 众数为88
D . 中位数为91
8. (2分)如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P.若四边形ABCD的面积是18,则DP的长是()
A . 3
B . 2
C . 3
D . 3
二、填空题 (共10题;共11分)
9. (2分)(2019·青海模拟) 分解因式:3ma-6mb=________;计算:(-20)+16=________.
10. (1分) (2020八上·柳州期末) 若三角形的三边长分别为,,,则的取值范围是________.
11. (1分)(2016·孝感) 若一个圆锥的底面圆半径为3cm,其侧面展开图的圆心角为120°,则圆锥的母线长是________cm.
12. (1分)已知一组数据﹣3,x ,﹣2,3,1,6的中位数为1,则其方差为________.
13. (1分)(2018·聊城) 某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是________.
14. (1分) (2018九上·渭滨期末) 某种药原来每瓶售价为40元,经过两次降价,现在每瓶售价为25.6元,若设平均每次降低的百分率为,根据题意列出方程为________.
15. (1分) (2019八下·睢县期中) 如图,平行四边形的两条对角线相交于点,
,,,则四边形的形状是________.
16. (1分)已知弦AB与CD交于点E,弧的度数比弧的度数大20°,若∠CEB=m°,则∠CAB=________(用关于m的代数式表示).
17. (1分) P为⊙O内一点,且OP=8cm,过P的最长弦长为20cm,则过P的最短弦长为________.
18. (1分)(2019·北部湾模拟) 如图,把Rt△OAB置于平面直角坐标系中,点A的坐标为(0,4),点B 的坐标为(3,0),点P是Rt△OAB内切圆的圆心.将Rt△OAB沿x轴的正方向作无滑动滚动,使它的三边依次与x 轴重合,第一次滚动后圆心为P1 ,第二次滚动后圆心为P2 ,…,依此规律,第2019次滚动后,Rt△OAB内切圆的圆心P2019的坐标是________.
三、解答题 (共9题;共91分)
19. (5分)阅读材料:对于任何实数,我们规定符号的意义是=ad-bc.例如:=1×4-2×3=-2,=(-2)×5-4×3=-22.
(1)按照这个规定,请你计算的值;
(2)按照这个规定,请你计算:当x2-4x+4=0时,的值.
20. (5分)(2019·莲湖模拟) 方程组的解a,b都是正数,求非正整数m的值.
21. (5分) (2019八上·桐梓期中) 已知:如图,BC=EF,AD=BE,AC=DF.求证:BC∥EF.
22. (10分)(2017·安次模拟) 小敏家对面新建了一幢图书大厦,小敏在自家窗口测得大厦顶部的仰角为45°,大厦底部的仰角为30°,如图所示,量得两幢楼之间的距离为20 米.
(1)
求出大厦的高度BD;
(2)
求出小敏家的高度AE.
23. (13分)中招体育考试在即,为了解我校九年级学生的体育水平,随机抽取了九年级若干名学生的模拟测试成绩进行统计分析,并根据成绩分为四个等级(A、B、C、D),绘制了如下统计图表(不完整):
成绩等级A B C D
人数6010
请根据以上统计图表提供的信息,解答下列问题:
(1)本次抽查的学生有________名,成绩为B类的学生人数为________名,这组数据的中位数所在等级为________;
(2)请补全条形统计图;
(3)根据调查结果,请估计我校九年级学生(约900名)体育测试成绩为D类的学生人数.
24. (17分)(2018·黔西南) 目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
(1)根据图中信息求出m=________,n=________;
(2)请你帮助他们将这两个统计图补全;
(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?
(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.
25. (10分) (2015九上·揭西期末) 如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与x、y 轴交于点A(1,0),B(0,﹣1)与反比例函数y= 在第一象限内的图象交于点C,点C的纵坐标为1.
(1)求一次函数的解析式;
(2)求点C的坐标及反比例函数的解析式.
26. (11分)(2019·苍南模拟) 已知如图,抛物线交x轴于A、C两点,点D是x轴上方抛物线上的点,以A,D为顶点按逆时针方向作正方形ADEF.
(1)求点A的坐标和抛物线的对称轴的表达式;
(2)当点F落在对称轴上时,求出点D的坐标;
(3)连接OD交EF于点G,记OA和EF交于点H,当△AFH的面积是四边形ADEH面积的时,则
=________.(直接写出答案)
27. (15分)(2016·梅州) 如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.
(1)
若BM=BN,求t的值;
(2)
若△MBN与△ABC相似,求t的值;
(3)
当t为何值时,四边形ACNM的面积最小?并求出最小值.
参考答案一、单选题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共10题;共11分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共9题;共91分)
19-1、20-1、21-1、
22-1、22-2、23-1、
23-2、23-3、24-1、
24-2、24-3、
24-4、25-1、25-2、
26-1、
26-2、26-3、
27-1、27-2、
27-3、。