遥感应用知识体系-地物波谱特性与遥感光学基础
- 格式:ppt
- 大小:10.92 MB
- 文档页数:15
名词解释1. 遥感:遥感即遥远感知,是在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术.一般指的是电磁波遥感.p12. 电磁波:根据麦克斯韦电磁场理论,变化的电场能够在它的周围引起变化的磁场,这个变化的磁场又在较远的区域内引起新的变化电场,并在更远的区域内引起新的变化磁场.这种变化的电场和磁场交替产生,以有限的速度由近及远在空间内传播的过程称为电磁波.p13. 干涉:有两个(或以上)频率、震动方向相同,相位相同或相差恒定的电磁波在空间叠加时合成的波振幅为各个波的振幅矢量和。
因此会出现交叉区域某些地方震动加强,某些地方震动减弱或完全抵消的现象成为干涉。
P24. 衍射:光通过有限大小的障碍物时偏离直线路径的现象成为光的衍射。
P25. 电磁波谱:不同电磁波由不同波源产生,如果按照电磁波在真空中传播的波长或频率按递增或递减的顺序就能得到电磁波谱图p26. 绝对黑体(黑体):如果物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。
P47. 基尔霍夫定律:任何物体的单色辐出度和单色吸收之比,等于同一温度绝对黑体的单色辐出度。
8. 太阳常数:太阳常数指不受大气影响,在距离太阳的一个天文单位内垂直于太阳辐射方向上,单位面积黑体所接受的太阳辐射能量。
P69. 太阳光谱辐照度:指投射到单位面积上的太阳辐射通量密度,该值随波长不同而异。
10. 散射:电磁波在传播过程中,遇到小微粒而使传播方向发生改变,并向各个方向散开,称为散射。
P1011. 米氏(Mie)散射:如果介质中不均匀颗粒与入射波长同数量级,发生米氏散射。
P1012. 瑞利散射:介质中不均匀颗粒直径a远小于电磁波波长,发生瑞利散射。
P1013. 无选择性散射(均匀散射):当微粒的直径比辐射波长大得多时所发生的散射。
符合无选择性散射条件的波段中,任何波段的散射强度相同。
P1014. 大气屏障:遥感所能使用的电磁波是有限的,有些大气中电磁波通过率很小,甚至完全无法透过电磁波,称为大气屏障。
收稿日期:2008-08-28作者简介:张亚梅(1969-),女,河北秦皇岛人,硕士研究生,主要研究方向为光电工程及自动控制.文章编号:1673-1255(2008)05-0006-06地物反射波谱特征及高光谱成像遥感张亚梅(东北电子技术研究所,辽宁 锦州 121000)摘 要:依据地表物体表面外形特性,物体反射分为镜面反射、漫反射和方向反射.探讨了3类反射的特性曲线,介绍了几种典型的地物类型反射波谱特征,并对影响地物光谱反射特性变化的因素进行了概略描述,以加强对地物电磁波谱特征的认知,及开展与高光谱成像领域相关的遥感图像分析、反演和应用等方面的工作.关键词:地物;反射波谱;高光谱成像;遥感中图分类号:V 443.5 文献标识码:ASpectrum Characteristics of Surface Features Reflectionand High Spectral Imaging Remote SensingZHANG Ya -mei(Northeast Res earch Institute of Electronics Technolo gy ,Jinzhou 121000,china )A bstract :Based on the external features of surface objects ,the objects reflection is divided into mirror surface re -flection ,diffuse reflection and directional reflection .In order to have a deep know ledge of the electromagnetic spectrum characteristics of surface features ,three kinds of reflected characteristic curves are discussed ,and sev -eral types of spectrum characteristics of surface features reflection are introduced .The factors influencing the spectral reflection characteristics of surface features are sum marized and the wo rk on remote sensing image analy -sis ,counterevidence and application related to the field of high spectral imaging are done .Key words :surface features ;reflected spectrum ;high spectral imaging ;remote sensing 自1948年原苏联的克里诺夫出版了有关地物波谱特性研究以来,人们开展了大量的地物波谱特性的观测和研究.20世纪60年代美国为发射地球资源卫星曾全面地开展了地物波谱特性研究,20世纪70年代该项研究进入高潮.目前研究的波段基本覆盖了遥感所使用的波段,测量和研究的对象包括了自然界的植被、土壤、岩石、水体和人工建筑等地物.这些研究对认识遥感成像机理、遥感图像解译、遥感仪器最佳探测波段选择和遥感仪器研制等起到了推动作用.随着遥感应用的深入,遥感信息与地物相互作用的研究有了进一步发展;特别是成像光谱仪的应用,不仅显示了地物波谱特性研究的重要性,而且也推动了这一领域的研究.因为它可以获得图谱合一的信息,可以直接将地物波谱特性和遥感图像结合在一起,在图像分析和应用方面都取得了很好的结果.现代遥感技术的发展,不仅延伸了地物的成像波段范围,而且可以在需要的任何波段独立成像或连续成像,提高了地物光谱分辨力,有利于区别各类物质在不同波段的光谱响应特性,突出特定地物反射峰值波长的微小差异.开展地物可见光和近红外反射波谱特征分析研究是对遥感图像进行数据利用和评价的物理基础[1].1 地物的反射类别及反射特性曲线地物波谱特性是电磁辐射与地物相互作用的一种表现,可见光和近红外波段主要表现地物反射作用和地物的吸收作用.因此,地物反射波谱特征也就第23卷第5期2008年10月 光电技术应用ELECT RO -O PT IC T ECHNO LOG Y APP LICA TI ON Vo l .23,No .5October .2008是指地物可见光和近红外波段波谱特征.根据地表目标物体表面性质的不同,物体反射大体上可以分为3种类型,即镜面反射、漫反射、方向反射(实际物体的反射).镜面反射是指物体的反射满足反射定律.当发生镜面反射时,对于不透明物体,其反射能量等于入射能量减去物体吸收的能量.自然界中真正的镜面很少,非常平静的水面可以近似认为是镜面.漫反射,如果入射电磁波波长λ不变,表面粗糙度h 逐渐增加,直到h 与λ同数量级,这时整个表面均匀反射入射电磁波,入射到此表面的电磁辐射按照朗伯余弦定律反射,其反射辐照亮度是一个常数,这种反射面又叫朗伯面.实际地物表面由于地形起伏,在某个方向上反射最强烈,称为方向反射,是介于镜面和朗伯面(漫反射)之间的一种反射.自然界中绝大多数地物的反射都属于这种类型的反射,又叫非朗伯面反射.它发生在地物粗糙度继续增大的情况下,反射具有各向异性,即实际物体面在有入射波时各个方向都有反射能量,但大小不同.从空间对地面观察时,对于平面地区,并且地面物体均匀分布,可以看成漫反射;对于地形起伏和地面结构复杂的地区,为方向反射.图1示出了3种反射的情况.图1 3种反射形式反射率是物体的反射辐射通量与入射辐射通量之比,ρ=E r /E ,这个反射率是在理想漫反射体的情况下,整个电磁波长的反射率.实际上由于物体固有的结构特点,对于不同波长的电磁波会产生有选择的反射,例如绿色植物的叶子由于表皮、叶绿素颗粒组成的栅栏组织和多孔薄壁细胞组织构成,如图2所示.入射到叶子上的太阳辐射透过上表皮,蓝、红光辐射能被叶绿素吸收进行光合作用;绿光也吸收了一大部分,但仍反射一部分,所以叶子呈现绿色;而近红外线可以穿透叶绿素,被多孔薄壁细胞组织所反射.因此,在近红外波段上形成强反射.图2 叶子的结构及其反射反射波谱是某物体的反射率(或反射辐射能)随波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线即称为该物体的反射波谱特性曲线,光谱反射率ρl =E rlE l.物体的反射波谱的特征主要取决于该物体与入射辐射相互作用的波长选择,即对入射辐射的反射、吸收和透射的选择性,其中反射作用是主要的.物体对入射辐射的选择性作用受物体的组成成分、结构、表面状态以及物体所处环境的控制和影响.在漫反射的情况下,组成成分和结构是控制因素.如图3所示为4种地物的反射光谱特性曲线.从图3中曲线可以看到,雪的反射光谱与太阳光谱最相似,在蓝光0.49μm 附近有个波峰,随着波长增加反射率逐渐降低.沙漠的反射率在橙色0.6μm 附近有峰值,但在长波范围里比雪的反射率要高.湿地的反射率较低,色调发暗灰.小麦叶子的反射光谱与太阳的光谱有很大差别,在绿波处有个反射波峰,在红外部分0.7~0.9μm 附近有一个强峰值.图3 4种地物的反射波谱特性曲线各种物体,由于其结构和组成成分不同,反射特性曲线的形状是不一样的,即便是在某波段相似,甚7第5期 张亚梅:地物反射波谱特征及高光谱成像遥感 至一样,但在另外的波段还是有很大的区别的.例如图4所示的柑桔、番茄、玉米、棉花4种地物的反射特性曲线,在0.6~0.7μm 之间很相似,而其他波长(例如0.75~2.5μm 波段之间)的光谱反射特性曲线形状则不同,有很大差别.图4 4种植物的反射波谱特性曲线2 常见的几种地物类型波谱特征2.1 植被的反射波谱特性由于植物均进行光合作用,所以各类绿色植物具有很相似的反射波谱特性,其特征是:在可见光波段0.55μm (绿光)附近有反射率为10%~20%的一个波峰,两侧0.45μm (蓝)和0.67μm (红)则有2个吸收带.这一特征是由于叶绿素的影响造成的,叶绿素对蓝光和红光吸收作用强,而对绿色反射作用强.在近红外波段0.8~1.0μm 间有一个反射的陡坡,至1.1μm 附近有一峰值,形成植被的独有特征.这是由于植被叶的细胞结构的影响,除了吸收和透射的部分,形成的高反射率.图5 绿色植物反射波谱曲线在中红外波段1.3~2.5μm ,以1.45、1.95μm 和2.7μm 为中心是水的吸收带,受到绿色植物含水量的影响,吸收率大增,反射率下降,形成低谷.而1.5~1.9μm 光谱区反射率增大.绿色植物反射波谱曲线如图5所示[2].植物波谱在上述基本特征下仍有细部差别,这种差别与植物种类、季节、病虫害影响、含水量多少有关系,如图6所示3种类型树木的光谱曲线比较.图6 3种类型树木的光谱曲线比较2.2 土壤的反射波谱特性自然状态下土壤表面的反射率没有明显的峰值和谷值,一般来讲土壤的光谱特性曲线与以下一些因素有关,即:土壤类别、含水量、有机质含量、砂、土壤表面的粗糙度、粉砂相对百分含量等.土壤含水量增加,土壤的反射率就会下降,在水的各个吸收带(1.4、1.9、2.7μm 处附近区间),反射率的下降尤为明显.此外肥力也对反射率有一定的影响.由图7可以看出,土壤反射波谱特性曲线较平滑,因此在不同光谱段的遥感影像上,土壤的亮度图7 3种不同类型土壤在干燥环境下的光谱曲线8 光 电 技 术 应 用 第23卷区别不明显[2].2.3 水体的反射波谱特性水体对0.45~0.56μm 蓝绿光波段透射能力较强,一般深度可达10~20m ,清澈水体可达100m 的深度.同时,水体的反射也主要在蓝绿光波段,其他波段吸收率很强,特别在近红外、中红外波段有很强的吸收带,反射率几乎为零,因此在遥感中常用近红外波段确定水体的位置和轮廓,在此波段的黑白正片上,水体的色调很黑,与周围的植被和土壤有明显的反差,很容易识别和判读.但是当水中含有其他物质时,反射光谱曲线会发生变化.水含泥沙时,由于泥沙的散射作用,可见光波段发射率会增加,峰值出现在黄红区.如图8所示水中含有叶绿素时,近红外波段明显抬高,这些都是影像分析的重要依据.图8 叶绿素含量不同时水体的光谱曲线2.4 岩石的反射波谱特性岩石的反射波谱主要由矿物成分、矿物含量、物质结构等决定.影响岩石矿物波谱曲线的因素包括岩石风化程度、岩石含水状况、矿物颗粒大小、岩石表面光滑程度、岩石色泽等.几种岩石的反射波谱曲线如图9所示.在遥感探测中一般根据所测岩石的具体情况选择不同的波段.2.5 城市道路、建筑物的反射波谱特性在城市遥感影像中,通常只能看到建筑物的顶部或部分建筑物的侧面,特别是建筑材料所构成的屋顶.从图10中可以看出,铁皮屋顶表面成灰色,反图9 几种岩石的反射波谱曲线射率较低而且起伏小,所以曲线较平坦.石棉瓦反射率最高,沥青粘砂屋顶,由于其表面铺着反射率较高的砂石而决定了其反射率高于灰色的水泥平顶.绿色塑料棚顶的波谱曲线在绿波段处有一反射峰值,与植被相似,但它在近红外波段处没有反射峰值,有别于植被的反射波谱.军事遥感中常用近红外波段区分在绿色波段中不能区分的绿色植被和绿色的军事目标.图10 几种建筑物屋顶的波谱特性城市中道路的主要铺面材料为水泥沙地和沥青两大类,少量部分有褐色地,如图11所示,它们的反射波谱特性曲线形状大体相似,水泥沙路在干爽状态下呈灰白色,反射率最高,沥青路反射率最低.图11 几种道路的波谱特性9第5期 张亚梅:地物反射波谱特征及高光谱成像遥感 3 影响地物光谱反射特性变化的因素有很多因素会引起反射率的变化,如:太阳位置、传感器位置、地理位置、地形、季节、气候变化、地面湿度变化、地物本身的变异、大气状况等.太阳位置主要是指太阳高度角和方位角,如果太阳高度角和方位角不同,则地面物体入射照度也就发生变化.为了减小这2个因素对反射率变化的影响,遥感卫星轨道大多设计在同一地方时间通过当地上空,但由于季节的变化和当地经纬度的变化,造成太阳高度角和方位角的变化是不可避免的.传感器位置指传感器的观测角和方位角,一般空间遥感用的传感器大部分设计成垂直指向地面,这样影响较小,但由于卫星姿态引起的传感器指向偏离垂直方向,仍会造成反射率变化.处在不同地理区域的同种地物具有不同的光谱效应,称之为空间效应.除不同地理区域地物本身的变异因素外,不同的地理位置,太阳高度角和方位角、地理景观等都会引起反射率变化,还有海拔高度不同,大气透明度改变也会造成反射率变化.同一地物的反射波谱特性一般随时间季节变化,称之为时间效应,如图12所示的新雪和陈雪反射特性曲线等.即使在很短的时间内,由于各种随机因素的影响(包括外界的随机因素和仪器的响应偏差)也会引起反射率的变化.这种随机因素的影响还表现在同一幅影像中,但是这种因素的影像引起的光谱反射率变化,将在某一个区间中出现,如图13示出了大豆反射率变化的区间.图14所示,同一春小麦在花期、灌浆期、乳熟期、黄叶期的光谱测试所得的结果.可以看出,花期的春小麦反射率明显高于灌浆期和乳熟期.至于黄叶期,由于不具备绿色植物特征,其反射光谱近似于一条斜线.这是因为黄叶的水含量降低,导致在1.45、1.95、2.7μm附近3个水图12 新雪和陈雪的反射特性曲线图13 大豆反射率变化范围图14 同一作物(春小麦)在不同生长阶段的波谱特性曲线吸收带的减弱.当叶片有病虫害时,将使反射率发生较大变化,也有与黄叶期类似的反射率.4 地物反射波谱与高光谱成像地物的波谱特征是遥感识别地物的重要依据,尤其是针对未来航空航天遥感中的成像波谱仪的重要性更加突出.因此开展各种地物的波谱特征测定和研究,不仅是遥感的基础性工作,而且是遥感应用研究中一个重要的内容.美国NASA于19世纪70年代初就初步建立了地球资源信息系统,包括植被、土壤、岩石和水体等2000余种地物的实验室反射波谱数据.从19世纪80年代,我国许多遥感科学研究部门相继建立了10余个地物波谱库,在我国不同的遥感发展时期都起到了积极的推动作用.现代遥感技术的发展,使得地物的成像范围不仅延伸到人们不可见的紫外和红外波长区,而且可以在需要的任何波段独立成像或连续成像.高光谱遥感的光谱分辨率高于百分之一波长达到纳米(nm)数量级,其光谱通道数多达数十甚至数百,使得遥感的波段宽度从早期的0.4μm(黑白摄影)、0.1μm(多光谱扫描)到5nm(成像光谱仪).遥感器10 光 电 技 术 应 用 第23卷波段宽度窄化,针对性更强,可以突出特定地物反射峰值波长的微小差异;同时,成像光谱仪等的应用,提高了地物光谱分辨力,有利于区别各类物质在不同波段的光谱响应特性.如图15所示成像光谱仪的数据特点[3].图15 高光谱成像光谱仪数据示意图 1983年,世界第一台成像光谱仪AIS -1在美国研制成功,并在矿物填图、植被生化特征等研究方面取得了成功,初显了高光谱遥感的魅力.此后,许多国家先后研制了多种类型的航空成像光谱仪.如美国的AVI RIS 、DAIS ,加拿大的FLI 、CASI ,德国的ROSIS ,澳大利亚的Hy Map 等.在经过航空试验和成功运行应用之后,19世纪90年代末期终于迎来了高光谱遥感的航天发展.1999年美国地球观测计划(EOS )的Terra 综合平台上的中分辨率成像光谱仪(MODIS )、号称新千年计划第一星的EO -1,欧洲环境卫星(ENVISAT )上的M ERIS ,以及欧洲的CHRIS 卫星相继升空,宣告了航天高光谱时代的来临.中国也自行研制了更为先进的推帚式成像光谱仪(PH I ),其在可见光到近红外光谱区具有244个波段,光谱分辨率优于5nm .新的成像光谱系统不仅继续在地质和固体地球领域研究中发挥作用,而且在生物地球化学效应研究、农作物和植被的精细分类、城市地物甚至建筑材料的分类和识别方面都有很好的结果.高光谱成像技术是将由物质成分决定的地物光谱与反映地物存在格局的空间影像有机地结合起来,对空间影像的每一个像素都可赋予对它本身具有特征的光谱信息.高光谱图像的分类和识别,主要是基于地物光谱特征的分类识别和基于统计的分类识别2种方法.其中基于地物光谱特征的分类识别,是利用光谱库中已知的光谱数据,采用匹配算法来鉴别和识别图像中地物类型.这种方法既可采用全波长的比较和匹配,也可用感兴趣的光谱特征或部分波长的光谱或光谱组合参量进行匹配,达到分类和识别的目的.5 结 束 语20多年来,高光谱遥感已发展成一个颇具特色的前沿技术,并孕育形成了一门成像光谱学的新兴学科门类.它的出现和发展将人们通过遥感技术观测和认识事物的能力带入了又一次飞跃,续写和完善了光学遥感从全色经多光谱到高光谱的全部影像信息链.由于高光谱遥感影像提供了更为丰富的地(下转第21页)11第5期 张亚梅:地物反射波谱特征及高光谱成像遥感 法.相比之下,其他的数值求解方法则受D的形状限制较大.参考文献[1] Jo hn L ester M iller.P rinciples of Infrared T echnolo gy,APractical G uide to the State of the Art[M].N ew York:Chapman and Hall,1994.[2] Dereniak E L,Boreman G D.I nfrared Detecto rs andSystems[M].New Yor k:John Wiley&Sons,Inc.,1996.[3] Dale Varberg,Edwin J Purcell,Steven E Rigdo n.Calcu-lus[M].8版.北京:机械工业出版社,2003.[4] Press W H,T eukolsky S A,Vetterling W T,e t al.C语言数值算法程序大全[M].2版.傅祖芸,赵梅娜,丁岩,等.北京:电子工业出版社,1995.[5] 杨华中,汪蕙.数值计算方法与C语言工程函数库[M].北京:科学出版社,1996.[6] Mag rab E B,Azarm S,Balachandran B,et al.M A T LAB原理与工程应用[M].高会生,李新叶,胡智奇,等.北京:电子工业出版社,2002.[7] 薛定宇,陈阳泉.高等应用数学问题的MA T LA B求解[M].北京:清华大学出版社,2004.(上接第5页)探测器中注入较大的能量和照射相对较长的时间,从而可能产生较好的作用效果.另外,仅选择单个激光脉冲进行计算,是一个极为简单的静态模型.实际上,激光及探测器的开关门时间一般是周期性的,两者相互作用的关系的严格描述比较复杂.这里仅从激光脉冲波形的角度,做了一点初浅的思考.参考文献[1] 梁作亮,张喜和.超高重复频率Nd:YAG激光器的研制[J].长春光学精密机械学院学报,1992,15(1):30-33.[2] 金锋,翟刚,李晶,等.二极管泵浦声光调Q窄脉冲N d:YA G激光器[J].光电子.激光,2004,15(3):303-306.[3] 王立新,王伟祥,张克非.长脉冲N d:YAG激光器的实验研究[J].应用激光,1999,19(4):159-160.[4] 吴谨,万重怡,刘世明,等.小型T EA CO2激光器的温度特性[J].激光技术,2002,26(6):409-410.[5] 张昭,吴谨,王东蕾,等.长脉冲紫外预电离T E CO2激光器[J].中国激光,2005,32(12):1599-1604.[6] 田兆硕,王祺,王雨三,等.光栅选支电光调Q射频激励波导CO2激光器研究[J].光电子.激光,2000,11(3):282-284.(上接第11页)球表面信息,其应用领域已涵盖地球科学的各个方面,在地质找矿和制图、大气和环境监测、农业和森林调查、海洋生物和物理研究等领域发挥着越来越重要的作用.地物目标反射波谱特征分析研究,除了可以提供遥感图像设计与成像依据外,还可为农业生产、资源调整、灾害预报与评估、工程建设、环境监测、城市发展等提供更加快速可靠的信息服务和辅助决策,因此,蕴含着巨大的经济效益和社会效益.参考文献[1] 浦瑞良.高光谱遥感及其应用[M].北京:高等教育出版社,2000.[2] 贾海峰,刘雪华.环境遥感原理与应用[M].北京:清华大学出版社,2006.[3] 高昆,刘迎辉,倪国强,等.光学遥感图像星上实时处理技术的研究[J].航天返回与遥感,2008(1):11-14.(上接第17页)个视场的M TF都大于0.66,成像质量良好,各项指标都满足成像要求.参考文献[1] 薛鸣球.电影摄影物镜光学设计[M].北京:中国工作出版社,1971:167-168.[2] 刘崇进,史光辉.机械补偿法变焦镜头三个发展阶段的概况和发展方向[J].应用光学,1992,13(2):12-13.[3] 张良.中波红外变焦距系统的光学设计[J].应用光学,2006,27(1):32-34.[4] 陶纯堪,变焦距光学系统设计[M].北京:国防工业出版社,1988:115-117.21第5期 王忆锋等:用蒙特卡罗方法和M A T LAB计算矩形冷屏的视场角 。
遥感概论期末复习知识点一遥感的定义遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的科学及综合性探测技术。
二遥感的基本原理自然界的任何物体本身都具有发射、吸收、反射以及折射电磁波的能力,遥感是利用传感器主动或被动地接受地面目标反射或发射的电磁波,通过电磁波所传递的信息来识别目标,从而达到探测目标物的目的。
三遥感的物理基础(一)电磁波电磁波是遥感技术的重要物理理论基础。
1、电磁波的性质:具有波的性质和粒子的性质(波粒二相性)2、波长越短(频率越高),能量越高。
3、电磁波谱电磁波几个主要的分段:宇宙射线、伽玛射线、X射线、紫外、可见光、红外(近、中、远)、微波、无线电波。
遥感常用的电磁波段主要是近紫外、可见光、红外、微波紫外:紫外线是电磁波谱中波长从0.01~0.38um辐射的总称,主要源于太阳辐射。
由于太阳辐射通过大气层时被吸收,只有0.3~0.38um波长的光能穿过大气层到达地面,且散射严重。
由于大气层中臭氧对紫外线的强烈吸收与散射作用,紫外遥感通常在2000m 高度以下的范围进行。
可见光:是电磁波谱中人眼可以感知的部分,遥感常用的可见光是蓝波段(0.45um附近)、绿波段(0.55um附近)和红波段(0.65um附近)红外,红外线是波长介乎微波与可见光之间的电磁波,波长在0.7um至1mm之间,遥感常用的在0.7um-100mm微波,波长在0.1毫米~1米之间的电磁波。
微波波段具有一些特殊的特性:①受大气层中云、雾的散射影响小,穿透性好,不受光照等条件限制,白天、晚上均可进行地物微波成像,因此能全天候的遥感。
②微波遥感可以对云层、地表植被、松散沙层和干燥冰雪具有一定的穿透能力。
微波越长,穿透能力越强。
4、黑体辐射定律辐射出射度:在单位时间内从物体表面单位面积上发出的各种波长的电磁波能量的总和。
黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,又能全部发射,则该物体是绝对黑体。