新人教版初中数学九年级上册《第二十四章圆:复习题24》赛课教学设计_0
- 格式:doc
- 大小:373.00 KB
- 文档页数:4
第二十四章圆的复习---切线的性质与判定教学设计课标分析1.通过小组合作,经历利用所给生活中的物品,探究解决生活中与切线相关的实际问题的过程,理解圆的切线的相关规律.2.通过本节课的探究活动,体会转化思想在数学问题中的应用.教材分析一、本章是人教版九年级上册圆的知识,本节课是在基本性质学习的基础上的第一节复习课,主要复习切线的性质与判定等知识,并用生活中的物品加以演示,加深理解.本章是今后学习解析几何等知识的重要基础,解决问题常需要综合运用代数、几何、三角等多方面知识,利用切线的性质与判定解决实际问题需要学生较强的理解能力及转化能力,综合程度较高,是本章的主要难点.二、因为探究切线的性质与判定具有一定的抽象性,需要有较高的空间想象能力和逻辑推理能力,而本节课利用锅和直尺将数学的抽象内容与生产生活实际相联系,在教学中应遵循辩证唯物主义认识论的基本观点,从直观到抽象,从感性到理性,通过观察、画图让学生经历感知切线的性质与判定,让学生在画图、拼图中思考并归纳总结出.三、数学来源于生产生活实际,反过来又应用于解决生产生活实际问题,从实际问题出发引入切线的性质与判定,并通过实际问题的直观,归纳出切线的性质与判定.让学生在实际问题的解决中感受切线的性质与判定学习的重要性.学情分析一、九年级学生由于年龄特征,不具备很强的抽象思维能力,所以教学中在复习切线的性质与判定的时候,在教师的指导、提示启发下,利用生活中的物品,让学生尝试动手操作,通过自主探究、同学间的相互交流,进而引导学生用类比的方法来研究切线的性质与判定,着重加强对数学思想和方法的渗透,使学生不断由“学会”向“会学”发展.二、因为探究切线的性质与判定具有一定的抽象性,需要有较高的空间想象能力和逻辑推理能力,而本节课利用锅和直尺将数学的抽象内容与生产生活实际相联系,在教学中应遵循辩证唯物主义认识论的基本观点,从直观到抽象,从感性到理性,通过观察、画图让学生经历感知切线的性质与判定,让学生在画图、拼图中思考并归纳总结出.1.题.变式题:已知:OB=5厘米,米,⊙O的半径解疑探究2小组合作及展示训练提升2如图,达标测评信心、毅力、激情三者具备,则天下没有做不成的事。
第二十四章圆24.1圆的有关性质24.1.1圆经历圆的概念的形成过程,理解圆、弧、弦等与圆有关的概念,了解等圆、等弧的概念.重点经历形成圆的概念的过程,理解圆及其有关概念.难点理解圆的概念的形成过程和圆的集合性定义.活动1创设情境,引出课题1.多媒体展示生活中常见的给我们以圆的形象的物体.2.提出问题:我们看到的物体给我们什么样的形象?活动2动手操作,形成概念在没有圆规的情况下,让学生用铅笔和细线画一个圆.教师巡视,展示学生的作品,提出问题:我们画的圆的位置和大小一样吗?画的圆的位置和大小分别由什么决定?教师强调指出:位置由固定的一个端点决定,大小由固定端点到铅笔尖的细线的长度决定.1.从以上圆的形成过程,总结概念:在一个平面内,线段OA绕它固定的一个端点O 旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.2.小组讨论下面的两个问题:问题1:圆上各点到定点(圆心O)的距离有什么规律?问题2:到定点的距离等于定长的点又有什么特点?3.小组代表发言,教师点评总结,形成新概念.(1)圆上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.因此,我们可以得到圆的新概念:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.(一个图形看成是满足条件的点的集合,必须符合两点:在图形上的每个点,都满足这个条件;满足这个条件的每个点,都在这个图形上.) 活动3学以致用,巩固概念1.教材第81页练习第1题.2.教材第80页例1.多媒体展示例1,引导学生分析要证明四个点在同一圆上,实际是要证明到定点的距离等于定长,即四个点到O的距离相等.活动4自学教材,辨析概念1.自学教材第80页例1后面的内容,判断下列问题正确与否:(1)直径是弦,弦是直径;半圆是弧,弧是半圆.(2)圆上任意两点间的线段叫做弧.(3)在同圆中,半径相等,直径是半径的2倍.(4)长度相等的两条弧是等弧.(教师强调:长度相等的弧不一定是等弧,等弧必须是在同圆或等圆中的弧.)(5)大于半圆的弧是劣弧,小于半圆的弧是优弧.2.指出图中所有的弦和弧.活动5达标检测,反馈新知教材第81页练习第2,3题.活动6课堂小结,作业布置课堂小结1.圆、弦、弧、等圆、等弧的概念.要特别注意“直径和弦”“弧和半圆”以及“同圆、等圆”这些概念的区别和联系.等圆和等弧的概念是建立在“能够完全重合”这一前提条件下的,它将作为今后判断两圆或两弧相等的依据.2.证明几点在同一圆上的方法.3.集合思想.作业布置1.以定点O为圆心,作半径等于2厘米的圆.2.如图,在Rt△ABC和Rt△ABD中,∠C=90°,∠D=90°,点O是AB的中点.求证:A,B,C,D四个点在以点O为圆心的同一圆上.答案:1.略;2.证明OA=OB=OC=OD即可.24.1.2垂直于弦的直径理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.重点垂径定理及其运用.难点探索并证明垂径定理及利用垂径定理解决一些实际问题.一、复习引入①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.②连接圆上任意两点的线段叫做弦,如图线段AC ,AB ; ③经过圆心的弦叫做直径,如图线段AB ;④圆上任意两点间的部分叫做圆弧,简称弧,以A ,C 为端点的弧记作“AC ︵”,读作“圆弧AC”或“弧AC ”.大于半圆的弧(如图所示ABC ︵)叫做优弧,小于半圆的弧(如图所示AC ︵或BC ︵)叫做劣弧.⑤圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. ⑥圆是轴对称图形,其对称轴是任意一条过圆心的直线. 二、探索新知(学生活动)请同学按要求完成下题:如图,AB 是⊙O 的一条弦,作直径CD ,使CD⊥AB,垂足为M.(1)如图是轴对称图形吗?如果是,其对称轴是什么? (2)你能发现图中有哪些等量关系?说一说你理由. (老师点评)(1)是轴对称图形,其对称轴是CD.(2)AM =BM ,AC ︵=BC ︵,AD ︵=BD ︵,即直径CD 平分弦AB ,并且平分AB ︵及ADB ︵. 这样,我们就得到下面的定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧. 下面我们用逻辑思维给它证明一下:已知:直径CD 、弦AB ,且CD⊥AB 垂足为M. 求证:AM =BM ,AC ︵=BC ︵,AD ︵=BD ︵.分析:要证AM =BM ,只要证AM ,BM 构成的两个三角形全等.因此,只要连接OA ,OB 或AC ,BC 即可.证明:如图,连接OA ,OB ,则OA =OB , 在Rt △OAM 和Rt △OBM 中, ∴Rt △OAM ≌Rt △OBM , ∴AM =BM ,∴点A 和点B 关于CD 对称,∵⊙O 关于直径CD 对称,∴当圆沿着直线CD 对折时,点A 与点B 重合,AC ︵与BC ︵重合,AD ︵与BD ︵重合. ∴AC ︵=BC ︵,AD ︵=BD ︵.进一步,我们还可以得到结论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (本题的证明作为课后练习)例1 有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB =60 m ,水面到拱顶距离CD =18 m ,当洪水泛滥时,水面宽MN =32 m 时是否需要采取紧急措施?请说明理由.分析:要求当洪水到来时,水面宽MN =32 m 是否需要采取紧急措施,只要求出DE 的长,因此只要求半径R ,然后运用几何代数解求R.解:不需要采取紧急措施,设OA =R ,在Rt △AOC 中,AC =30,CD =18, R 2=302+(R -18)2, R 2=900+R 2-36R +324, 解得R =34(m ),连接OM ,设DE =x ,在Rt △MOE 中,ME =16, 342=162+(34-x)2, 162+342-68x +x 2=342,x 2-68x +256=0, 解得x 1=4,x 2=64(不合题意,舍去), ∴DE =4,∴不需采取紧急措施.三、课堂小结(学生归纳,老师点评) 垂径定理及其推论以及它们的应用. 四、作业布置1.垂径定理推论的证明.2.教材第89,90页 习题第8,9,10题.24.1.3 弧、弦、圆心角1.理解圆心角的概念和圆的旋转不变性,会辨析圆心角.2.掌握在同圆或等圆中,圆心角与其所对的弦、弧之间的关系,并能应用此关系进行相关的证明和计算.重点圆心角、弦、弧之间的相等关系及其理解应用. 难点从圆的旋转不变性出发,发现并论证圆心角、弦、弧之间的相等关系.活动1动手操作,得出性质及概念1.在两张透明纸片上,分别作半径相等的⊙O和⊙O′.2.将⊙O绕圆心旋转任意角度后会出现什么情况?圆是中心对称图形吗?3.在⊙O中画出两条不在同一条直线上的半径,构成一个角,这个角叫什么角?学生先说,教师补充完善圆心角的概念.如图,∠AOB的顶点在圆心,像这样的角叫做圆心角.4.判断图中的角是否是圆心角,说明理由.活动2继续操作,探索定理及推论1.在⊙O′中,作与圆心角∠AOB相等的圆心角∠A′O′B′,连接AB,A′B′,将两张纸片叠在一起,使⊙O与⊙O′重合,固定圆心,将其中一个圆旋转某个角度,使得OA与O′A′重合,在操作的过程中,你能发现哪些等量关系,理由是什么?请与小组同学交流.2.学生会出现多对等量关系,教师给予鼓励,然后,老师小结:在等圆中相等的圆心角所对的弧相等,所对的弦也相等.3.在同一个圆中,相等的圆心角所对的弧相等吗?所对的弦相等吗?4.综合2,3,我们可以得到关于圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.请用符号语言把定理表示出来.5.分析定理:去掉“在同圆或等圆中”这个条件,行吗?6.定理拓展:教师引导学生类比定理,独立用类似的方法进行探究:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,所对的弦也分别相等吗?(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,所对的弧也分别相等吗?综上所述,在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.活动3学以致用,巩固定理1.教材第84页例3.多媒体展示例3,引导学生分析要证明三个圆心角相等,可转化为证明所对的弧或弦相等.鼓励学生用多种方法解决本题,培养学生解决问题的意识和能力,感悟转化与化归的数学思想.活动4达标检测,反馈新知教材第85页练习第1,2题.活动5课堂小结,作业布置课堂小结1.圆心角概念及圆的旋转不变性和对称性.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,以及其应用.3.数学思想方法:类比的数学方法,转化与化归的数学思想. 作业布置1.如果两个圆心角相等,那么( ) A .这两个圆心角所对的弦相等 B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等D .以上说法都不对2.如图,AB 和DE 是⊙O 的直径,弦AC∥DE,若弦BE =3,求弦CE 的长.3.如图,在⊙O 中,C ,D 是直径AB 上两点,且AC =BD ,MC ⊥AB ,ND ⊥AB ,M ,N 在⊙O 上.(1)求证:AM ︵=BN ︵;(2)若C ,D 分别为OA ,OB 中点,则AM ︵=MN ︵=BN ︵成立吗?答案:1.D ;2.3;3.(1)连接OM ,ON ,证明△MCO≌△NDO,得出∠MOA=∠NOB,得出AM ︵=BN ︵;(2)成立.24.1.4圆周角(2课时)第1课时圆周角的概念和圆周角定理1.理解圆周角的概念,会识别圆周角.2.掌握圆周角定理,并会用此定理进行简单的论证和计算.重点圆周角的概念和圆周角定理.难点用分类讨论的思想证明圆周角定理,尤其是分类标准的确定.活动1复习类比,引入概念1.用几何画板显示圆心角.2.教师将圆心角的顶点进行移动,如图1.(1)当角的顶点在圆心时,我们知道这样的角叫圆心角,如∠AOB.(2)当角的顶点运动到圆周时,如∠ACB这样的角叫什么角呢?学生会马上猜出:圆周角.教师给予鼓励,引出课题.3.总结圆周角概念.(1)鼓励学生尝试自己给圆周角下定义.估计学生能类比圆心角给圆周角下定义,顶点在圆周上的角叫圆周角,可能对角的两边没有要求.(2)教师提问:是不是顶点在圆周上的角就是圆周角呢?带着问题,教师出示下图.学生通过观察,会发现形成圆周角必须具备两个条件:①顶点在圆周上;②角的两边都与圆相交.最后让学生再给圆周角下一个准确的定义:顶点在圆周上,两边都与圆相交的角叫圆周角.(3)比较概念:圆心角定义中为什么没有提到“两边都与圆相交”呢?学生讨论后得出:凡是顶点在圆心的角,两边一定与圆相交,而顶点在圆周上的角则不然,因此,学习圆周角的概念,一定要注意角的两边“都与圆相交”这一条件.活动2观察猜想,寻找规律1.教师出示同一条弧所对圆周角为90°,圆心角为180°和同一条弧所对圆周角为45°,圆心角为90°的特殊情况的图形.提出问题:在这两个图形中,对着同一条弧的圆周角和圆心角,它们之间有什么数量关系.由于情况特殊,学生观察、测量后,容易得出:对着同一条弧的圆周角是圆心角的一半.2.教师提出:在一般情况下,对着同一条弧的圆周角还是圆心角的一半吗?通过上面的特例,学生猜想,得出命题:一条弧所对的圆周角等于它所对的圆心角的一半.活动3动手画图,证明定理1.猜想是否正确,还有待证明.教师引导学生结合命题,画出图形,写出已知、求证.2.先分小组交流画出的图形,议一议:所画图形是否相同?所画图形是否合理?3.利用实物投影在全班交流,得到三种情况.若三种位置关系未出现全,教师利用电脑演示同一条弧所对圆周角的顶点在圆周上运动的过程,得出同一条弧所对的圆心角和圆周角之间可能出现的不同位置关系,得到圆心角的顶点在圆周角的一边上、内部、外部三种情况.4.引导学生选一种最特殊、最容易证明的“圆心角的顶点在圆周角的一边上”进行证明,写出证明过程,教师点评.5.引导学生通过添加辅助线,把“圆心角的顶点在圆周角的内部、外部”转化成“圆心角的顶点在圆周角的一边上”的情形,进行证明,若学生不能构造过圆周角和圆心角顶点的直径,教师给予提示.然后小组交流讨论,上台展示证明过程,教师点评证明过程.6.将“命题”改为“定理”,即“圆周角定理”.活动4达标检测,反馈新知1.教材第88页练习第1题.2.如图,∠BAC和∠BOC分别是⊙O中的弧BC所对的圆周角和圆心角,若∠BAC=60°,那么∠BOC=________.3.如图,AB,AC为⊙O的两条弦,延长CA到D,使AD=AB,如果∠ADB=30°,那么∠BOC=________.答案:1.略;2.120°;3.120°.活动5课堂小结,作业布置课堂小结1.圆周角概念及定理.2.类比从一般到特殊的数学方法及分类讨论、转化与化归的数学思想.作业布置教材第88页练习第4题,教材第89页习题第5题.第2课时圆周角定理推论和圆内接多边形1.能推导和理解圆周角定理的两个推论,并能利用这两个推论解决相关的计算和证明. 2.知道圆内接多边形和多边形外接圆的概念,明确不是所有多边形都有外接圆. 3.能证明圆内接四边形的性质,并能应用这个性质解决简单的计算和证明等问题.重点圆周角定理的两个推论和圆内接四边形的性质的运用. 难点圆内接四边形性质定理的准确、灵活应用以及如何添加辅助线.活动1 温习旧知1.圆周角定理的内容是什么?2.如图,若BC ︵的度数为100°,则∠BOC=________,∠A =________.3.如图,四边形ABCD 中,∠B 与∠1互补,AD 的延长线与DC 所夹的∠2=60°,则∠1=________,∠B =________.4.判断正误:(1)圆心角的度数等于它所对的弧的度数;( )(2)圆周角的度数等于它所对的弧的度数的一半.( ) 答案:1.略;2.100°,50°;3.120°,60°;4.略 活动2 探索圆周角定理的“推论” 1.请同学们在练习本上画一个⊙O.想一想,以A ,C 为端点的弧所对的圆周角有多少个?试着画几个.然后教师引导学生:观察下图,∠ABC ,∠ADC ,∠AEC 的大小关系如何?为什么?让学生得出结论后,教师继续追问:如果把这个结论中的“同弧”改为“等弧”,结论正确吗?2.教师引导学生观察下图,BC 是⊙O 的直径.请问:BC 所对的圆周角∠BAC 是锐角、直角还是钝角?让学生交流、讨论,得出结论:∠BAC 是直角.教师追问理由.3.如图,若圆周角∠BAC=90°,那么它所对的弦BC经过圆心吗?为什么?由此能得出什么结论?4.师生共同解决教材第87页例4.活动3探索圆内接四边形的性质1.教师给学生介绍以下基本概念:圆内接多边形与多边形的外接圆;圆内接四边形与四边形的外接圆.2.要求学生画一画,想一想:在⊙O上任作它的一个内接四边形ABCD,∠A是圆周角吗?∠B,∠C,∠D呢?进一步思考,圆内接四边形的四个角之间有什么关系?3.先打开几何画板,验证学生的猜想,然后再引导学生证明,最后得出结论:圆内接四边形对角互补.4.课件展示练习:(1)如图,四边形ABCD内接于⊙O,则∠A+∠C=________,∠B+∠ADC=________;若∠B=80°,则∠ADC=________,∠CDE=________;(2)如图,四边形ABCD内接于⊙O,∠AOC=100°,则∠D=________,∠B=________;(3)四边形ABCD内接于⊙O,∠A∶∠C=1∶3,则∠A=________;(4)如图,梯形ABCD内接于⊙O,AD∥BC,∠B=75°,则∠C=________.(5)想一想对于圆的任意内接四边形都有这样的关系吗?答案:(1)180°,180°,100°,80°;(2)130°,50°;(3)45°;(4)75°;(5)都有.活动4巩固练习1.教材第88页练习第5题.2.圆的内接梯形一定是________梯形.3.若ABCD为圆内接四边形,则下列哪个选项可能成立( )A.∠A∶∠B∶∠C∶∠D=1∶2∶3∶4B.∠A∶∠B∶∠C∶∠D=2∶1∶3∶4C.∠A∶∠B∶∠C∶∠D=3∶2∶1∶4D.∠A∶∠B∶∠C∶∠D=4∶3∶2∶1答案:1.略;2.等腰;3.B.活动5课堂小结与作业布置课堂小结本节课我们学习了圆周角定理的两个推论和圆内接四边形的重要性质,要求同学们理解圆内接四边形和四边形的外接圆的概念,理解圆内接四边形的性质定理;并初步应用性质定理进行有关问题的证明和计算.作业布置教材第89~91页习题第5,6,13,14,17题.24.2点和圆、直线和圆的位置关系24.2.1点和圆的位置关系1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r及其运用.2.理解不在同一直线上的三个点确定一个圆并掌握它的运用.3.了解三角形的外接圆和三角形外心的概念.4.了解反证法的证明思想.复习圆的两种定理和形成过程,并经历探究一个点、两个点、三个点能作圆的结论及作图方法,给出不在同一直线上的三个点确定一个圆的结论.接着从这三点到圆心的距离逐渐引入点P到圆心距离与点和圆位置关系的结论,并运用它们解决一些实际问题.重点点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆及它们的运用.难点讲授反证法的证明思路.一、复习引入(学生活动)请同学们口答下面的问题.1.圆的两种定义是什么?2.你能至少举例两个说明圆是如何形成的?3.圆形成后圆上这些点到圆心的距离如何?4.如果在圆外有一点呢?圆内呢?请你画图想一想.(老师点评)(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 所形成的图形叫做圆;圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r 的点组成的图形.(2)圆规:一个定点,一个定长画圆.(3)都等于半径.(4)经过画图可知,圆外的点到圆心的距离大于半径;圆内的点到圆心的距离小于半径.二、探索新知由上面的画图以及所学知识,我们可知:设⊙O的半径为r,点P到圆心的距离为OP=d,则有:点P在圆外⇒d>r;点P在圆上⇒d=r;点P在圆内⇒d<r;反过来,也十分明显,如果d>r⇒点P在圆外;如果d=r⇒点P在圆上;如果d<r⇒点P在圆内.因此,我们可以得到:设⊙O的半径为r,点P到圆的距离为d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.这个结论的出现,对于我们今后解题、判定点P是否在圆外、圆上、圆内提供了依据.下面,我们接着研究确定圆的条件:(学生活动)经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢?请同学们按下面要求作圆.(1)作圆,使该圆经过已知点A,你能作出几个这样的圆?(2)作圆,使该圆经过已知点A,B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?(3)作圆,使该圆经过已知点A,B,C三点(其中A,B,C三点不在同一直线上),你是如何做的?你能作出几个这样的圆?(老师在黑板上演示)(1)无数多个圆,如图(1)所示.(2)连接A,B,作AB的垂直平分线,则垂直平分线上的点到A,B的距离都相等,都满足条件,作出无数个.其圆心分布在AB的中垂线上,与线段AB互相垂直,如图(2)所示.(3)作法:①连接AB,BC;②分别作线段AB,BC的中垂线DE和FG,DE与FG相交于点O;③以O为圆心,以OA为半径作圆,⊙O就是所要求作的圆,如图(3)所示.在上面的作图过程中,因为直线DE与FG只有一个交点O,并且点O到A,B,C三个点的距离相等(中垂线上的任一点到两端点的距离相等),所以经过A,B,C三点可以作一个圆,并且只能作一个圆.即不在同一直线上的三个点确定一个圆.也就是,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心.下面我们来证明:经过同一条直线上的三个点不能作出一个圆.证明:如图,假设过同一直线l上的A,B,C三点可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线l1,又在线段BC的垂直平分线l2,即点P为l1与l2交点,而l1⊥l,l2⊥l,这与我们以前所学的“过一点有且只有一条直线与已知直线垂直”矛盾.所以,过同一直线上的三点不能作圆.上面的证明方法与我们前面所学的证明方法思路不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设过同一直线上的三点可以作一个圆),由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到命题成立.这种证明方法叫做反证法.在某些情景下,反证法是很有效的证明方法.例1 某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.分析:圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心.作法:(1)在残缺的圆盘上任取三点连接成两条线段; (2)作两线段的中垂线,相交于一点O. 则O 就为所求的圆心.图略. 三、巩固练习教材第95页 练习1,2,3. 四、课堂小结(学生总结,老师点评) 本节课应掌握:1.点和圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离为d ,则 ⎩⎪⎨⎪⎧点P 在圆外⇔d >r ;点P 在圆上⇔d =r ;点P 在圆内⇔d <r.2.不在同一直线上的三个点确定一个圆. 3.三角形外接圆和三角形外心的概念. 4.反证法的证明思想. 5.以上内容的应用. 五、作业布置教材第101,102页 习题1,7,8.24.2.2 直线和圆的位置关系(3课时) 第1课时 直线和圆的三种位置关系(1)了解直线和圆的位置关系的有关概念.(2)理解设⊙O 的半径为r ,直线l 到圆心O 的距离为d ,则有:直线l 和⊙O 相交⇔d<r ;直线l 和⊙O 相切⇔d =r ;直线l 和⊙O 相离⇔d>r.重点理解直线和圆的三种位置关系. 难点由上节课点和圆的位置关系迁移并运动直线导出直线和圆的位置关系的三个对应等价.一、复习引入(老师口问,学生口答,老师并在黑板上板书)同学们,我们前一节课已经学到点和圆的位置关系.设⊙O 的半径为r ,点P 到圆心的距离OP =d.则有:点P在圆外⇔d>r,如图(a)所示;点P在圆上⇔d=r,如图(b)所示;点P在圆内⇔d<r,如图(c)所示.二、探索新知前面我们讲了点和圆有这样的位置关系,如果这个点P改为直线l呢?它是否和圆还有这三种的关系呢?(学生活动)固定一个圆,把三角尺的边缘移动,如果把这个边缘看成一条直线,那么这条直线和圆有几种位置关系?(老师口问,学生口答)直线和圆有三种位置关系:相交、相切和相离.(老师板书)如图所示:如图(a),直线l和圆有两个公共点,这时我们就说这条直线和圆相交,这条直线叫做圆的割线.如图(b),直线l和圆有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点.如图(c),直线l和圆没有公共点,这时我们说这条直线和圆相离.我们知道,点到直线l的距离是这点向直线作垂线,这点到垂足D的距离,按照这个定义,作出圆心O到l的距离的三种情况.(学生分组活动):设⊙O的半径为r,圆心到直线l的距离为d,请模仿点和圆的位置关系,总结出什么结论?老师点评:直线l和⊙O相交⇔d<r,如图(a)所示;直线l和⊙O相切⇔d=r,如图(b)所示;直线l和⊙O相离⇔d>r,如图(c)所示.例1 如图,已知Rt△ABC的斜边AB=8 cm,AC=4 cm.(1)以点C为圆心作圆,当半径为多长时,直线AB与⊙C相切?(2)以点C为圆心,分别以2 cm和4 cm为半径作两个圆,这两个圆与直线AB分别有怎样的位置关系?解:(1)如图,过C作CD⊥AB,垂足为D.在Rt △ABC 中, BC =82-42=4 3. ∴CD =43×48=23,因此,当半径为2 3 cm 时,AB 与⊙C 相切.(2)由(1)可知,圆心C 到直线AB 的距离d =2 3 cm ,所以 当r =2时,d>r ,⊙C 与直线AB 相离; 当r =4时,d<r ,⊙C 与直线AB 相交. 三、巩固练习教材第96页 练习 四、课堂小结(学生归纳,总结发言,老师点评) 本节课应掌握:1.直线和圆相交(割线)、直线和圆相切(切线、切点)、直线和圆相离等概念. 2.设⊙O 的半径为r ,直线l 到圆心O 的距离为d 则有: 直线l 和⊙O 相交⇔d<r ; 直线l 和⊙O 相切⇔d =r ; 直线l 和⊙O 相离⇔d>r. 五、作业布置教材第101页 习题第2题.。
教学设计:新2024秋季九年级人教版数学上册第二十四章圆《复习题24》教学目标(核心素养)1.知识与技能:通过复习,学生能够巩固圆的基本概念、性质以及点与圆、直线与圆的位置关系等知识点,提高综合运用能力。
2.数学思维:培养学生归纳总结、类比推理等数学思维能力,以及解决复杂问题的能力。
3.问题解决:能够熟练运用圆的相关知识解决实际问题,包括计算、证明和作图等。
4.情感态度:激发学生对数学学习的兴趣,培养耐心细致的学习态度和良好的复习习惯。
教学重点•复习巩固圆的基本概念、性质及点与圆、直线与圆的位置关系。
•提升学生综合运用圆的知识解决问题的能力。
教学难点•复杂图形的分析与圆相关知识的综合应用。
•培养学生灵活应对各种题型,快速准确解题的能力。
教学资源•九年级人教版数学上册教材。
•《复习题24》相关练习题及解析。
•多媒体课件(包含复习要点梳理、例题解析、练习题展示等)。
•实物教具:圆规、直尺、纸板圆等(用于作图演示)。
教学方法•讲授法:梳理复习要点,强调重难点。
•讨论法:组织学生讨论解题思路和方法,促进学生间的交流与合作。
•练习法:通过大量练习巩固复习内容,提高解题能力。
•归纳法:引导学生归纳总结复习过程中的知识点和解题方法。
教学过程导入新课•情境导入:创设一个与圆相关的实际问题情境(如车轮的设计、靶心与飞镖等),引导学生思考这些问题中涉及的圆的知识点,自然过渡到复习课的主题。
•目标明确:简要介绍本节课的复习目标和要求,让学生明确学习方向。
新课教学(复习课)1.复习要点梳理•利用多媒体展示圆的基本概念、性质(如半径、直径、圆心角、圆周角等)及点与圆、直线与圆的位置关系。
•强调这些知识点之间的联系和区别,帮助学生构建完整的知识体系。
2.例题解析•选择几道具有代表性的例题(涵盖不同难度和题型),详细讲解解题步骤和思路。
•引导学生分析题目中的已知条件,运用圆的相关知识逐步推导出答案。
•强调解题过程中的关键点和易错点,帮助学生避免常见错误。
3、复习检测
①扇形的半径为3cm,圆心角为120°,则扇形的面
新疆中考)如图,在矩形
DBC=30°.若将BD绕点B
延长线上的点E处,点D经过的路径为
A D
B
(2)讨论前,提出探究要求:
①如何将不规则图形通过转化变成规则图形?都有哪些方法?
②探究四有几种方法求△AOC的面积?
(2)讨论交流
(3)学生点评、质疑
①第4组学生点评探究一
【探究一】和差法求阴影部分面积
F E
C A B D
③老师出示跟踪练习一
如图,已知矩形ABCD中,AB=1cm,BC=2cm
以点B为圆心,BC为半径作圆弧交AD与点
交BA的延长线于点E,求扇形BCE被矩形所截
组学生点评探究二
【探究二】重叠法求阴影部分面积
正方形的边长为2,分别以两个对角顶点为圆心、为半径画弧,
则图中阴影部分的面积为
弦
组点评探究四 【探究四】割补法求阴影部分面积
(2013•新疆中考)如图,已知⊙O 的半径为的直径,AC 为⊙O 的弦,B 为CD 的切线;
D A B C D B O C
板书设计课题:扇形与阴影部分面积探究一。
切线的性质和判定复习课教案教学目标:1.进一步理解切线的性质和判定,会利用它们进行有关的计算和证明;2.领会解决与切线有关的问题时常用辅助线的添加方法;3.强化与其它几何知识综合起来解决问题的意识,增强分析、探究、解决问题的能力. 重点:利用切线的性质和判定进行有关的计算和证明 难点:教学过程: 一、知识准备切线的性质:1. ;2. ;3. .切线的判定:1. ;2. ;3. .二、热身训练1. 如图,CD 切⊙O 于B ,CO 的延长线交⊙O 于A ,若∠C =36º,求∠ABD 的度数.2. 如图,PA 切⊙O 于A ,PBC 过圆心是⊙O 的割线,PA =4,PB =2,求⊙O 的半径.3. 已知:如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,CD 交AB 的延长线于D ,∠DCB =∠CAB .求证:CD 为⊙O 的切线.4. 如图,在直角三角形ABC 中,∠ABC =90º,∠A=30º,D 是AB 的中点,以B 为圆心、BD 为半径作圆.求证:AC 是圆的切线.三、典型例题例1.如图,AB 为⊙O 的直径,射线0P ⊥AB 于O.点C 为OP 上任意一点,直线AC 交⊙O 于D ,过D 作⊙O 的切线交OP 于P,直线BD 交OP 于R.求证:PC=PR.例2.如图,以Rt△ABC 的一条直角边AB 为直径作⊙O ,与AC 交于点F ,在AB 的延长线上取一点E ,联结EF 与BC 交于点D ,且使得DF=CD. (1)求证:FE 是⊙O 的切线;(2)如果∠A=30º,∠BCE=45º +1,求AF 的长.四、练习1.如图,AB 是半⊙O 的直径,弦AC 与AB 成30°的角,CD AC =.(1)求证:CD 是半⊙O 的切线;(2)若2=OA ,求AC 的长.2.如图,AB是⊙O的直径,AC是弦,点D是BC的中点,DP AC,垂足为点P. (1)求证:PD是⊙O的切线.五、总结拓展1.已知切线时,通常作,根据的性质,可以得到,进而可以构造 .2.在证明切线时:(1)若,则需,证;(2)若,则需,证 .3.在利用切线的性质和判定进行计算或证明时,还要注意运用哪些重要的定理或基本图形?课后反思:本节课制定了恰当的教学目标、重点、难点,精心选配了例题和练习题,精心设计了教学过程。
第七章《圆》总复习(1)圆的基本概念与性质【课标要求】:1.理解圆的定义和圆的有关概念;2.理解圆心角、弧、弦、弦心距之间的关系,并能运用它们之间的关系解决有关问题;3.掌握垂径定理及其应用【复习目标】:1.知道圆、弧、弦、圆心角、圆周角等基本概念;认识圆的对称性;了解圆锥的侧面展开图是扇形。
2.能用垂径定理,圆心角、弧、弦之间关系定理,圆周角定理及推论,等进行简单的运算和推理;会通过作图的方法理解确定圆的条件。
3.会用折叠、旋转、圆的对称性及分类讨论的思想方法探索图形的有关性质,能将有关弦长、半径的实际计算问题转化成解直角三角形问题解决。
(1)圆的定义 :①在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点所形成的图形叫做圆;②到定点的距离等于定长的点的集合叫做圆; (2)弦:连结圆上___________的线段叫做弦. (3)直径:___________的弦叫做直径. (4)弧:圆上任意两点间的部分叫做___________. (5)优弧:___________叫做优弧. (6)劣弧:___________叫做劣弧.(7)等弧:在同圆或等圆中,___________的弧叫做等弧. (8) 弦心距: 叫弦心距。
三、圆的基本性质 (1)圆的对称性:①圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.圆有无数条对称轴. ②圆是中心对称图形,旋转不变性.(2)同圆或等圆中圆心角、弧、弦之间的关系: (1)在同圆或等圆中,如果圆心角相等,那么它所对的弧 相等,所对的弦相等.(2)在圆中,如果弧相等,那么它所对的圆心角相等,(3)在一个圆中,如果弦相等,那么它所对的弧相等,所对的圆心角相等.如下图 ∵ ∠COD =∠AOB∴B A CD = AB=CD(3)圆周角:①定义:顶点在圆周上,两边和圆相交的角,叫做圆周角.②性质:(1)在同一个圆中,同弧所对的圆周角等于它所对的圆心角的一半.(如图1) (2)在同圆或等圆中,同弧或等弧所对的所有的圆周角相等.相等的圆周角所对的弧相等.(如图2)(3)性质 3:半圆或直径所对的圆周角都相等,都等于900(直角). (4)性质4: 900的圆周角所对的弦是圆的直径.(如图3)(图1) (图2) (图3)12BAC BOC ∠=∠ ∵∠ADB 与∠AEB 、∠ACB 是同弧所对的圆周角∴∠ADB=∠AEB =∠ACB ∵AB 是⊙O 的直径 ∴ ∠ACB=900 4、例题讲解作圆的直径与找90度的圆周角也是圆里常用的辅助线1. 在⊙O中,弦AB所对的圆心角∠AOB=100°,则弦AB所对的圆周角为____________.(05年上海)2.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O与点F.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类, 请你判断△ABC属于哪一类三角形,并说明理由.(05宜昌)5、垂径定理及推论(1)垂径定理垂直于弦的直径___________,并且___________.(2)推论平分弦(不是直径)的直线___________,并且__________.弦的垂直平分线_______________________________________________. 平分弦所对的一条弧的直径,__________________________________.如图,∵CD是圆O的直径,CD⊥AB∴AP=BP,AD BD=,AC BC=6、例题讲解3、如图,已知⊙O的半径OA长为5,弦AB的长8,OC⊥AB于C,则OC的长为_______.4、如图,圆O的弦AB=8 ㎝,DC=2㎝,直径CE⊥AB于D,求半径OC的长。
第24章《圆的复习》教学设计一、内容和内容解析1.内容对本章内容进行梳理总结建立知识体系,综合应用本章知识解决问题.2.内容解析圆是继三角形、四边形等基本图形后的又一个重要内容,在生活中有着广泛的应用.圆是平面几何中最基本的图形之一,在几何中有着重要的地位.在本章内容的学习过程中,需要学生通过观察、测量、实验、归纳、对比、类比等方法发现图形的性质.同时,还要注意体会通过“推理”获得数学结论的方法,培养言之有据的习惯和有条理地思考、表达的能力.本课的教学重点:复习与圆有关的知识,建立本章知识结构.二、目标和目标解析1.目标(1)复习本章的重点内容,整理本章知识,形成知识体系,体会利用圆的知识综合解决问题的思路和方法.(2)进一步发展推理能力,能够具备有条理地思考和表达的能力.2.目标解析达成目标(1)的标志是:通过复习本章的主要内容,理解圆的有关知识,体会用圆的知识解决问题的思路和方法等.并能结合知识体系的构建过程,研究几何问题的一般思路和方法.达成目标(2)的标志是:学生能够在较复杂的问题情境中应用本章所学的图形的性质和判定方法进行推理,解决问题.三、教学问题诊断分析学生在前面具体内容的学习中已经接触过应用本章所学习的知识进行推理,这就要学生在复习课中既要对所学的知识能够重新回忆出来,又要在原有的基础上进行知识的建构,建立起不同知识之间的内在联系,从而建立起本章的知识结构,形成知识体系.本节课教学难点:本章知识点间的内在联系,知识体系的建构.四、教学过程设计1.知识梳理问题1 同学们我们整理一下本章所学的主要知识,请大家说一说能发现它们之间的联系吗?师生活动:教师组织学生说出本章的知识结构图,然后展示部分学生画的知识结构图,并请这些学生简要说明自己所画知识结构图.最后,教师出示课本上的知识结构图.设计意图:教师展示本章的知识结构图,主要是让他们自己能够主动建构本章的知识结构,形成知识体系,这有利于提高学生对本章知识的整体把握.然后,教师出示本章知识结构,主要是帮助学生形成正确的、全面的知识结构.通过这样方式,突破本节课的难点.二、主要定理:问题2 在圆的这一章我们学了一些定理,下面我们一起回顾一下:1、在同圆或等圆中,相等的圆心角,等弧,等弦之间的关系是什么?2、垂径定理的主要内容是什么?推论?注意什么?2、圆周角定理内容是什么?3、点和圆有怎样的位置关系?直线和圆呢?圆和圆呢?怎样判断这些位置关系呢?4、圆的切线有什么性质?如何判断一条直线是圆的切线?.师生活动:教师出示问题,引导学生回顾本章所学的内容,梳理本章知识.学生先独立思考这些问题,然后,教师与其他学生一起交流,设计意图:通过4个问题,让学生对本章的知识点做一个梳理,为下一步建立本章的知识结构体系做好铺垫.三、基本运用:典型例题(2017年牡丹江中考)问题1、如图,在⊙O中,弧AC=弧CB,CD ⊥OA于D,CE ⊥OB于E,求证:AD=BE证明:∵AC=BC,∴∠AOC= ∠BOC.∵CD⊥OA,CE⊥OB,∴∠CDO= ∠CEO=90°∵CO=CO∴△COD≌△COE∴DO=EO∵AO=BO∴AD=BE师生活动:学生独立完成,教师请学生上台讲解自己的解题思路和做法,其他同学补充.教师强调解题格式,展示学生中书写规范的.最后教师引导学生总结本题所用数学知识和思想方法.设计意图:通过本题,学生要会详细的证明过程.例:如图所示,OB为⊙O的半径,弦CD⊥OB于点E,且与AB相较于点F,点C是弧AB的中点,求证:CF=BF证明:∵CD ⊥OB,OB为⊙O的半径∴BD=BC∵C为弧AB的中点,∴弧AC=弧∴AC=BD∴ ∠ABC= ∠BCD;∴CF=BF变式:.已知,如图,AB是⊙O的直径,C为AE 的中点,CD⊥AB于D,交AE于F。
回顾与思考(2)教学目标(一)教学知识点1.了解点与圆,直线与圆以及圆和圆的位置关系.2.了解切线的概念,切线的性质及判定.3.会过圆上一点画圆的切线.(二)能力训练要求1.通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.2.通过探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式,发展学生的探索能力.3.通过画圆的切线,训练学生的作图能力.4.通过全章内容的归纳总结,训练学生各方面的能力.(三)情感与价值观要求1.通过探索有关公式,让学生懂得数学活动充满探索与创造,感受数学的严谨性以及数学结论的确定性.2.经历观察、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.教学重点1.探索并了解点与圆、直线与圆、圆与圆的位置关系.2.探索切线的性质;能判断一条直线是否为圆的切线;会过圆上一点画圆的切线.教学难点探索各种位置关系及切线的性质.教学方法学生自己交流总结法.教具准备投影片五张:第一张:(记作A)第二张:(记作B)第三张:(记作C)第四张:(记作D)第五张:(记作E)教学过程Ⅰ.回顾本章内容[师]上节课我们对本章的所有知识进行了回顾,并讨论了这些知识间的关系,绘制了本章知识结构图,还对一部分内容进行了回顾,本节课继续进行有关知识的巩固.Ⅱ.具体内容巩固一、确定圆的条件[师]作圆的问题实质上就是圆心和半径的问题,确定了圆心和半径,圆就随之确定.我们在探索这一问题时,与作直线类比,研究了经过一个点、两个点、三个点可以作几个圆,圆心的分布和半径的大小有什么特点.下面请大家自己总结.[生]经过一个点可以作无数个圆.因为以这个点以外的任意一点为圆心,以这两点所连的线段为半径就可以作一个圆.由于圆心是任意的,因此这样的圆有无数个.经过两点也可以作无数个圆.设这两点为A、B,经过A、B两点的圆,其圆心到A、B两点的距离一定相等,所以圆心应在线段AB的垂直平分线上,在AB的垂直平分线上任意取一点为圆心,这一点到A或B 的距离为半径都可以作一个经过A、B两点的圆.因此这样的圆也有无数个.经过在同一直线上的三点不能作圆.经过不在同一直线上的三点只能作一个圆.要作一个圆经过A、B、C三点,就要确定一个点作为圆心,使它到三点A、B、C的距离相等,到A、B两点距离相等的点在线段AB 的垂直平分线上,到B、C两点距离相等的点应在线段B、C的垂直平分线上,那么同时满足到A、B、C三点距离相等的点应既在AB的垂直平分线上,又在BC的垂直平分线上,既两条直线的交点,因为交点只有一个,即确定了圆心.这个交点到A点的距离为半径,所以这样的圆只能作出一个.[师]经过不在同一条直线上的四个点A、B、C、D能确定一个圆吗?[生]不一定,过不在同一条直线上的三点,我们可以确定一个圆,如果另外一个点到圆心的距离等于半径,则说明四个点在同一个圆上,如果另外一个点到圆心的距离不等于半径,说明四个点不在同一个圆上.例题讲解(投影片A)矩形的四个顶点在以对角线的交点为圆心的同一个圆上吗?为什么?[师]请大家互相交流.[生]解:如图,矩形ABCD的对角线AC和BD相交于点O.∵四边形ABCD为矩形,∴OA=OC=OB=OD.∴A、B、C、D四点到定点O的距离都等于矩形对角线的一半.∴A、B、C、D四点在以O为圆心,OA为半径的圆上.二、三种位置关系[师]我们在本章学习了三种位置关系,即点和圆的位置关系;直线和圆的位置关系;圆和圆的位置关系.下面我们逐一来回顾.1.点和圆的位置关系[生]点和圆的位置关系有三种,即点在圆外;点在圆上;点在圆内.判断一个点是在圆的什么部位,就是看这一点与圆心的距离和半径的大小关系,如果这个距离大于半径,说明这个点在圆外;如果这个距离等于半径,说明这个点在圆上;如果这个距离小于半径,说明这个点在圆内.[师]总结得不错,下面看具体的例子.(投影片B)1.⊙O的半径r=5cm,圆心O到直线l的距离d=OD=3 m.在直线l上有P、Q、R 三点,且有PD=4cm,QD>4cm,RD<4cm,P、Q、R三点对于⊙O的位置各是怎样的?2.菱形各边的中点在同一个圆上吗?分析:要判断某些点是否在圆上,只要看这些点到圆心的距离是否等于半径.[生]1.解:如图(1),在Rt△OPD中,∵OD =3,PD =4,∴OP =222234OD PD +-+=5=r .所以点P 在圆上.同理可知OR =22OD DR +<5,OQ =22OD DQ +>5.所以点R 在圆内,点Q 在圆外.2.如图(2),菱形ABCD 中,对角线AC 和BD 相交于点O ,E 、F 、G 、H 分别是各边的中点.因为菱形的对角线互相垂直,所以△AOB 、△BOC 、△COD 、△DOA 都是直角三角形,又由于E 、F 、G 、H 分别是各直角三角形斜边上的中点,所以OE 、OF 、OG 、OH 分别是各直角三角形斜边上的中线,因此有OE =12AB ,OF =12BC ,OG =12CD ,OH =12AD ,而AB =BC =CD =DA .所以OE =OF =OG =OH .即各中点E 、F 、G 、H 到对角线的交点O 的距离相等,所以菱形各边的中点在同一个圆上.2.直线和圆的位置关系[生]直线和圆的位置关系也有三种,即相离、相切、相交,当直线和圆有两个公共点时,此时直线与圆相交;当直线和圆有且只有一个公共点时,此时直线和圆相切;当直线和圆没有公共点时,此时直线和圆相离.[师]总结得不错,判断一条直线和圆的位置关系有哪些方法呢?[生]有两种方法,一种就是从公共点的个数来判断,上面已知讨论过了,另一种是比较圆心到直线的距离d 与半径的大小.当d <r 时,直线和圆相交;当d =r 时,直线和圆相切;当d >r 时,直线和圆相离.[师]很好,下面我们做一个练习.(投影片C)如图,点A的坐标是(-4,3),以点A为圆心,4为半径作圆,则⊙A与x轴、y轴、原点有怎样的位置关系?分析:因为x轴、y轴是直线,所以要判断⊙A与x轴、y轴的位置关系,即是判断直线与圆的位置关系,根据条件需用圆心A到直线的距离d与半径r比较.O是点,⊙A与原点即是求点和圆的位置关系,通过求OA与r作比较即可.[生]解:∵A点的坐标是(-4,3),∴A点到x轴、y轴的距离分别是3和4.又因为⊙A的半径为4,∴A点到x轴的距离小于半径,到y轴的距离等于半径.∴⊙A与x轴、y轴的位置关系分别为相交、相切.由勾股定理可求出OA的距离等于5,因为OA>4,所以点O在圆外.[师]上面我们讨论了直线和圆的三种位置关系,下面我们要对相切这种位置关系进行深层次的研究,即切线的性质和判定.[生]切线的性质是:圆的切线垂直于过切点的直径.切线的判定是:经过直径的一端,并且垂直于这条直径的直线是圆的切线.[师]下面我们看它们的应用.(投影片D)1.如图(1),在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于点E,求AD的长.2.如图(2),AB是⊙O的直径,C是⊙O上的一点,∠CAE=∠B,你认为AE与⊙O相切吗?为什么?分析:1.由⊙O与AC相切可知OE⊥AC,又∠C=90°,所以△AOE∽△ABC,则对应边成比例,OA OEBA BC=.求出半径和OA后,由OA-OD=AD,就求出了AD.2.根据切线的判定,要求AE与⊙O相切,需求∠BAE=90°,由AB为⊙O的直径得∠ACB=90°,则∠BAC+∠B=90°,所以∠CAE+∠BAC=90°,即∠BAE=90°.[师]请大家按照我们刚才的分析写出步骤.[生]1.解:∵∠C=90°,AC=12,BC=9,∴由勾股定理得AB=15.∵⊙O切AC于点E,连接OE,∴OE⊥AC.∴OE∥BC.∴△OAE∽△BAC.∴OA OEAB BC=,即AB OE OEAB BC-=.∴15159OE OE-=.∴OE=458∴AD=AB-2OD=AB-2OE=15-458×2=154.2.解:∵AB是⊙O的直径,∴∠ACB=90°.∴∠CAB+∠B=90°.∴∠CAE=∠B,∴∠CAB+∠CAE=90°,即BA⊥AE.∵BA为⊙O的直径,∴AE与⊙O相切.3.圆和圆的位置关系[师]还是请大家先总结内容,再进行练习.[生]圆和圆的位置关系有三大类,即相离、相切、相交,其中相离包括外离和内含,相切包括外切和内切,因此也可以说圆和圆的位置关系有五种,即外离、外切、相交、内切、内含.[师]那么应根据什么条件来判断它们之间的关系呢?[生]判断圆和圆的位置关系;是根据公共点的个数以及一个圆上的点在另一个圆的内部还是外部来判断.当两个圆没有公共点时有两种情况,即外离和内含两种位置关系.当每个圆上的点都在另一个圆的外部时是外离;当其中一个圆上的点都在另一个圆的内部时是内含.当两个圆有唯一公共点时,有外切和内切两种位置关系,当除公共点外,每个圆上的点都在另一个圆的外部时是外切;当除公共点外,其中一个圆上的点都在另一个圆的内部时是内切.两个圆有两个公共点时,一个圆上的点有的在另一个圆的内部,有的在另一个圆的外部时是相交.两圆相交只要有两个公共点就可判定它们的位置关系是相交.[师]只有这一种判定方法吗?[生]还有用圆心距d和两圆的半径R、r之间的关系能判断外切和内切两种位置关系,当d=R+r时是外切,当d=R-r(R>r)时是内切.[师]下面我们还可以用d与R,r的关系来讨论出另外三种两圆的位置关系,大家分别画出外离、内含和相交这三种位置关系.探索它们之间的关系,它们的关系可能是存在相等关系,也有可能是存在不等关系.(让学生探索)大家得出结论了吗?是不是这样的.当d>R+r时,两圆外离;当R-r<d<R+r时,两圆相交;当d<R-r(R>r)时,两圆内含.(投影片E)设⊙O1和⊙O2的半径分别为R、r,圆心距为d,在下列情况下,⊙O1和⊙O2的位置关系怎样?①R=6cm,r=3cm,d=4cm;②R=6cm,r=3cm,d=0;③R=3cm,r=7cm,d=4cm;④R=1cm,r=6cm,d=7cm;⑤R=6cm,r=3cm,d=10cm;⑥R=5cm,r=3cm,d=3cm;⑦R=3cm,r=5cm,d=1cm.[生](1)∵R-r=3cm<4cm<R+r=9cm,∴⊙O1与⊙O2的位置关系是相交;(2)∵d<R-r,∴两圆的位置关系是内含;(3)∵d=r-R,∴两圆的位置关系是内切;(4)∵d=R+r,∴两圆的位置关系是外切;(5)∵d>R+r,∴两圆的位置关系是外离;(6)∵R-r<d<R+r,∴两圆的位置关系是相交;(7)∵d<r-R,∴两圆的位置关系是内含.三、有关外接圆和内切圆的定义及画法[生]过不在同一条直线上的三个点可以确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心叫三角形的外心,它是三角形三边垂直平分线的交点.因为画圆的关键是确定圆心和半径,所以作三角形的外接圆时,只要找三边垂直平分线的交点,这就是圆心,以这点到三角形任一顶点间的距离为半径就可作出三角形的外接圆.和三角形三边都相切的圆;叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫三角形的内心.因此,作三角形的内切圆时,只要作两条角平分线就找到了圆心,以这点与任一边之间的距离为半径,就可作出三角形的内切圆.Ⅲ.课堂练习1.画三个半径分别为2cm、2.5cm、4cm的圆,使它他们两两外切.2.两个同心圆中,大圆的弦AB和AC分别和小圆相切于点D和E,则DE与BC的位置关系怎样?DE与BC之间有怎样的数量关系?(DE 12 BC)Ⅳ.课时小结本节课巩固了如何确定圆;点和圆、直线和圆、圆和圆之间的位置关系;如何作三角形的外接圆和内切圆.Ⅴ.课后作业复习题 B组Ⅵ.活动与探究如图,⊙O是Rt△ABC的内切圆,∠ACB=90°,AB=13,AC=12,求图中阴影部分的面积.分析:根据图形,阴影部分的面积等于三角形ABC的面积与⊙O的面积差,由勾股定理可求出直角边BC的长度,则能求出S△ABC,要求圆的面积,则需求⊙O的半径OD或OE、OF.连接OA、OB、OC,则把△ABC分成三个三角形,即△OAB,△OBC、△OCA,则有S△ABC=S△OAB+S △OBC+S△OCA,从中可求出半径.解:如图连接OA、OB、OC,则△ABC分成三个三角形,△OAB、△OBC、△OCA,OE、OF、OD分别是三角形各边上过切点的半径.∴S△OAB=12AB·OF,S△OBC=12BC·OD,S△OCA=12CA·OE.∵S△ABC=S△OAB+S△OBC+S△OCA,∴12AC·BC=12AB·OF+12BC·OD+12CA·OE.∵OD=OE=OF,∴AC·BC=(AB+BC+CA)·OD.在Rt△ABC中,AB=13,AC=12,由勾股定理得BC=5.∴12×5=(12+13+5)·OD.∴OD=2.∴S阴影=S△ABC-S⊙O=12×12×5-π·22=30-4π.板书设计回顾与思考一、确定圆的条件二、三种位置关系;1.点和圆的位置关系;2.直线和圆的位置关系.3.圆和圆的位置关系三、有关外接圆和内切圆的定义及画法四、课堂练习五、课时小结六、课后作业。