2018年黄陂一中分配生素质测试数学试卷及答案 精品 精品
- 格式:doc
- 大小:641.69 KB
- 文档页数:13
黄陂区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题1.函数y=x+xlnx的单调递增区间是()A.(0,e﹣2)B.(e﹣2,+∞)C.(﹣∞,e﹣2)D.(e﹣2,+∞)2.方程x=所表示的曲线是()A.双曲线B.椭圆C.双曲线的一部分D.椭圆的一部分3.已知函数(5)2()e22()2xf x xf x xf x x+>⎧⎪=-≤≤⎨⎪-<-⎩,则(2016)f-=()A.2e B.e C.1 D.1 e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.4.函数是()A.最小正周期为2π的奇函数B.最小正周期为π的奇函数C.最小正周期为2π的偶函数D.最小正周期为π的偶函数5.沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为()A.B.C.D.6.利用计算机在区间(0,1)上产生随机数a,则不等式ln(3a﹣1)<0成立的概率是()A.B.C.D.7.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m∥l,m⊥α,则l⊥α;②若m∥l,m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则l∥m.其中正确命题的个数是()A .1B .2C .3D .48. 已知命题p :∀x ∈R ,32x+1>0,有命题q :0<x <2是log 2x <1的充分不必要条件,则下列命题为真命题的是( )A .¬pB .p ∧qC .p ∧¬qD .¬p ∨q9. 在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)+(cos 2θ)(θ∈R ),则(+)•的最小值是( ) A .1 B .﹣1 C .﹣2 D .010.已知,,那么夹角的余弦值( )A .B .C .﹣2D .﹣11.已知a ,b 是实数,则“a 2b >ab 2”是“<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件12.已知i z 311-=,i z +=32,其中i 是虚数单位,则21z z 的虚部为( ) A .1- B .54 C .i - D .i 54 【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.二、填空题13.在△ABC 中,若角A 为锐角,且=(2,3),=(3,m ),则实数m 的取值范围是 .14.已知各项都不相等的等差数列{}n a ,满足223n n a a =-,且26121a a a =∙,则数列12n n S -⎧⎫⎨⎬⎩⎭项中 的最大值为_________.15.已知||2=a ,||1=b ,2-a 与13b 的夹角为3π,则|2|+=a b .16.已知面积为的△ABC 中,∠A=若点D 为BC 边上的一点,且满足=,则当AD 取最小时,BD 的长为 .17.如果实数,x y 满足等式()2223x y -+=,那么yx的最大值是 . 18.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .三、解答题19.等差数列{a n }的前n 项和为S n .a 3=2,S 8=22. (1)求{a n }的通项公式;(2)设b n =,求数列{b n }的前n 项和T n .20.在平面直角坐标系xOy 中,点B 与点A (﹣1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于﹣.(Ⅰ)求动点P 的轨迹方程;(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M ,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.21.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题: (1)求出频率分布表中①、②、③、④、⑤的值;(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S 合计22.已知函数(a≠0)是奇函数,并且函数f(x)的图象经过点(1,3),(1)求实数a,b的值;(2)求函数f(x)的值域.23.已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C的方程;(Ⅱ)如图,若斜率为k(k≠0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且∠RF1F2=∠PF1Q,求证:直线l过定点,并求出斜率k的取值范围.24.已知f(x)=x2﹣(a+b)x+3a.(1)若不等式f(x)≤0的解集为[1,3],求实数a,b的值;(2)若b=3,求不等式f(x)>0的解集.黄陂区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】B【解析】解:函数的定义域为(0,+∞)求导函数可得f ′(x )=lnx+2,令f ′(x )>0,可得x >e ﹣2,∴函数f (x )的单调增区间是(e ﹣2,+∞)故选B .2. 【答案】C【解析】解:x=两边平方,可变为3y 2﹣x 2=1(x ≥0),表示的曲线为双曲线的一部分;故选C .【点评】本题主要考查了曲线与方程.解题的过程中注意x 的范围,注意数形结合的思想.3. 【答案】B【解析】(2016)(2016)(54031)(1)f f f f e -==⨯+==,故选B . 4. 【答案】B【解析】解:因为==cos (2x+)=﹣sin2x .所以函数的周期为: =π. 因为f (﹣x )=﹣sin (﹣2x )=sin2x=﹣f (x ),所以函数是奇函数.故选B .【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力.5. 【答案】A 【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D 不正确; 中间的棱在侧视图中表现为一条对角线,故C 不正确; 而对角线的方向应该从左上到右下,故B 不正确故A 选项正确. 故选:A .【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键.6.【答案】C【解析】解:由ln(3a﹣1)<0得<a<,则用计算机在区间(0,1)上产生随机数a,不等式ln(3a﹣1)<0成立的概率是P=,故选:C.7.【答案】B【解析】解:∵①若m∥l,m⊥α,则由直线与平面垂直的判定定理,得l⊥α,故①正确;②若m∥l,m∥α,则l∥α或l⊂α,故②错误;③如图,在正方体ABCD﹣A1B1C1D1中,平面ABB1A1∩平面ABCD=AB,平面ABB1A1∩平面BCC1B1=BB1,平面ABCD∩平面BCC1B1=BC,由AB、BC、BB1两两相交,得:若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n不成立,故③是假命题;④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则由α∩γ=n知,n⊂α且n⊂γ,由n⊂α及n∥β,α∩β=m,得n∥m,同理n∥l,故m∥l,故命题④正确.故选:B.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.8.【答案】C【解析】解:∵命题p:∀x∈R,32x+1>0,∴命题p为真,由log2x<1,解得:0<x<2,∴0<x<2是log2x<1的充分必要条件,∴命题q为假,故选:C.【点评】本题考查了充分必要条件,考查了对数,指数函数的性质,是一道基础题.9.【答案】C【解析】解:∵=(sin2θ)+(cos2θ)(θ∈R),且sin2θ+cos2θ=1,∴=(1﹣cos2θ)+(cos2θ)=+cos2θ•(﹣),即﹣=cos2θ•(﹣),可得=cos2θ•,又∵cos2θ∈[0,1],∴P在线段OC上,由于AB边上的中线CO=2,因此(+)•=2•,设||=t,t∈[0,2],可得(+)•=﹣2t(2﹣t)=2t2﹣4t=2(t﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C.【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.10.【答案】A【解析】解:∵,,∴=,||=,=﹣1×1+3×(﹣1)=﹣4,∴cos<>===﹣,故选:A.【点评】本题考查了向量的夹角公式,属于基础题.11.【答案】C【解析】解:由a2b>ab2得ab(a﹣b)>0,若a﹣b>0,即a>b,则ab>0,则<成立,若a﹣b<0,即a<b,则ab<0,则a<0,b>0,则<成立,若<则,即ab(a﹣b)>0,即a2b>ab2成立,即“a2b>ab2”是“<”的充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.12.【答案】B【解析】由复数的除法运算法则得,i i i i i i i i z z 54531086)3)(3()3)(31(33121+=+=-+-+=++=,所以21z z 的虚部为54.二、填空题13.【答案】 .【解析】解:由于角A 为锐角,∴且不共线,∴6+3m >0且2m ≠9,解得m >﹣2且m .∴实数m 的取值范围是.故答案为:.【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题.14.【答案】 【解析】考点:1.等差数列的通项公式;2.等差数列的前项和.【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及1,,,,n n a a d n S 五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公式在解题中起到变量代换作用,而1,a d 是等差数列的两个基本量,用它们表示已知和未知是常用方法. 15.【答案】2【解析】解析:本题考查向量夹角与向量数量积的应用.a 与b 的夹角为23π,1⋅=-a b ,∴|2|+=a b 2=.16.【答案】 .【解析】解:AD 取最小时即AD ⊥BC 时,根据题意建立如图的平面直角坐标系,根据题意,设A (0,y ),C (﹣2x ,0),B (x ,0)(其中x >0),则=(﹣2x ,﹣y ),=(x ,﹣y ),∵△ABC 的面积为,∴⇒=18,∵=cos =9, ∴﹣2x 2+y 2=9,∵AD ⊥BC ,∴S=••=⇒xy=3,由得:x=,故答案为:.【点评】本题考查了三角形的面积公式、利用平面向量来解三角形的知识.17.【解析】考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方的最值转化为直线与圆相切是解答的关键,属于中档试题.法,本题的解答中把yx18.【答案】a≤0或a≥3.【解析】解:∵A={x|x≤1或x≥3},B={x|a≤x≤a+1},且A∩B=B,∴B⊆A,则有a+1≤1或a≥3,解得:a≤0或a≥3,故答案为:a≤0或a≥3.三、解答题19.【答案】【解析】解:(1)设等差数列{a n}的公差为d,∵a3=2,S8=22.∴,解得,∴{a n}的通项公式为a n=1+(n﹣1)=.(2)∵b n ===﹣,∴T n =2+…+=2=.20.【答案】【解析】解:(Ⅰ)因为点B 与A (﹣1,1)关于原点O 对称,所以点B 得坐标为(1,﹣1). 设点P 的坐标为(x ,y )化简得x 2+3y 2=4(x ≠±1).故动点P 轨迹方程为x 2+3y 2=4(x ≠±1)(Ⅱ)解:若存在点P 使得△PAB 与△PMN 的面积相等,设点P 的坐标为(x 0,y 0)则. 因为sin ∠APB=sin ∠MPN ,所以所以=即(3﹣x 0)2=|x 02﹣1|,解得因为x 02+3y 02=4,所以故存在点P 使得△PAB 与△PMN 的面积相等,此时点P 的坐标为. 【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.21.【答案】【解析】解:(1)由分布表可得频数为50,故①的数值为50×0.1=5,②中的值为=0.40,③中的值为50×0.2=10,④中的值为50﹣(5+20+10)=15,⑤中的值为=0.30;(2)不低于85的概率P=×0.20+0.30=0.40,∴获奖的人数大约为800×0.40=320;(3)该程序的功能是求平均数,S=65×0.10+75×0.40+85×0.20+95×0.30=82,∴800名学生的平均分为82分22.【答案】【解析】解:(1)∵函数是奇函数,则f(﹣x)=﹣f(x)∴,∵a≠0,∴﹣x+b=﹣x﹣b,∴b=0(3分)又函数f(x)的图象经过点(1,3),∴f(1)=3,∴,∵b=0,∴a=2(6分)(2)由(1)知(7分)当x>0时,,当且仅当,即时取等号(10分)当x<0时,,∴当且仅当,即时取等号(13分)综上可知函数f(x)的值域为(12分)【点评】本题主要考查函数的奇偶性和单调性的应用,转化函数研究性质是问题的关键.23.【答案】【解析】(Ⅰ)解:椭圆的左,右焦点分别为F1(﹣c,0),F2(c,0),椭圆的离心率为,即有=,即a=c,b==c,以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,直线y=x+与圆相切,则有=1=b,即有a=,则椭圆C的方程为+y2=1;(Ⅱ)证明:设Q(x1,y1),R(x2,y2),F1(﹣1,0),由∠RF1F2=∠PF1Q,可得直线QF1和RF1关于x轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,①设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t2﹣2=0,判别式△=16k2t2﹣4(1+2k2)(2t2﹣2)>0,即为t2﹣2k2<1②x1+x2=,x1x2=,③y1=kx1+t,y2=kx2+t,代入①可得,(k+t)(x1+x2)+2t+2kx1x2=0,将③代入,化简可得t=2k,则直线l的方程为y=kx+2k,即y=k(x+2).即有直线l恒过定点(﹣2,0).将t=2k代入②,可得2k2<1,解得﹣<k<0或0<k<.则直线l的斜率k的取值范围是(﹣,0)∪(0,).【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题.24.【答案】【解析】解:(1)∵函数f(x)=x2﹣(a+b)x+3a,当不等式f(x)≤0的解集为[1,3]时,方程x2﹣(a+b)x+3a=0的两根为1和3,由根与系数的关系得,解得a=1,b=3;(2)当b=3时,不等式f(x)>0可化为x2﹣(a+3)x+3a>0,即(x﹣a)(x﹣3)>0;∴当a>3时,原不等式的解集为:{x|x<3或x>a};当a<3时,原不等式的解集为:{x|x<a或x>3};当a=3时,原不等式的解集为:{x|x≠3,x∈R}.【点评】本题考查了含有字母系数的一元二次不等式的解法和应用问题,是基础题目.。
湖北省武汉市黄陂区2018-2019学年八年级(下)期末数学试卷一、选择题(每小题3分,共30分)本题共10个小题,每小题均给出A、B、C、D四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,答在试题卷上无效.1.(3分)二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2D.x≤22.(3分)下列计算正确的是()A.=±2 B.C.2﹣=2 D.3.(3分)如图,数轴上点A对应的数为2,AB⊥OA于A,且AB=1,以OB为半径画圆,交数轴于点C,则OC的长为()A.3B.C.D.4.(3分)为参加中学生篮球运动会,某校篮球队准备购买10双运动鞋,各种尺码统计如下表,则这10双运动鞋的尺码的众数和中位数分别为()尺码(厘米)25 25.5 26 26.5 27购买量(双) 1 2 3 2 2A.25.5,25.5 B.25.5,26 C.26,25.5 D.26,265.(3分)已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定6.(3分)菱形的两条对角线长分别为9cm与4cm,则此菱形的面积为()cm2.A.12 B.18 C.20 D.367.(3分)匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化而变化,变化规律为一折线,下列图象(草图)正确的是()A.B.C.D.8.(3分)某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.939.(3分)如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是()A.(﹣8,0)B.(0,8)C.(0,8)D.(0,16)10.(3分)如图,正方形ABCD的边长为2,点E、F分别为边AD、BC上的点,EF=,点G、H分别为AB、CD边上的点,连接GH,若线段GH与EF的夹角为45°,则GH的长为()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)计算:=_________.12.(3分)若3,a,4,5的众数是4,则这组数据的平均数是_________.13.(3分)平行四边形的一个内角平分线将该平行四边形的一边分为3cm和4cm两部分,则该平行四边形的周长为_________.14.(3分)已知点A(﹣3,a),B(1,b)都在一次函数y=kx+2的图象上,则a与b的数量关系为_________.15.(3分)在一次越野赛跑中,当小明跑了1600m时,小刚跑了1450m,此后两人分别调整速度,并以各自新的速度匀速跑,又过100s时小刚追上小明,200s时小刚到达终点,300s时小明到达终点.他们赛跑使用时间t(s)及所跑距离如图s(m),这次越野赛的赛跑全程为_________m?16.(3分)在平面直角坐标系中,直线y=kx+x+1过一定点A,坐标系中有点B(2,0)和点C,要使以A、O、B、C为顶点的四边形为平行四边形,则点C的坐标为_________.三、解答题(共9小题,共72分)17.(6分)化简:.18.(6分)在平面直角坐标系中,直线y=kx﹣2经过点A(﹣2,0),求不等式4kx+3≤0的解集.19.(6分)已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交CD、AB于E、F,求证:AE=CF.20.(7分)点P(x,y)在直线x+y=8上,且x>0,y>0,点A的坐标为(6,0),设△OP A 的面积为S.(1)求S与x的函数关系式,并直接写出x的取值范围;(2)当S=12时,求点P的坐标.21.(7分)某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.(1)将图补充完整;(2)本次共抽取员工_________人,每人所创年利润的众数是_________,平均数是_________;(3)若每人创造年利润10万元及(含10万元)以上位优秀员工,在公司1200员工中有多少可以评为优秀员工?22.(8分)如图,在▱ABCD中,E是AD上一点,连接BE,F为BE中点,且AF=BF,(1)求证:四边形ABCD为矩形;(2)过点F作FG⊥BE,垂足为F,交BC于点G,若BE=BC,S△BFG=5,CD=4,求CG.23.(10分)某欢乐谷为回馈广大谷迷,在暑假期间推出学生个人门票优惠价,各票价如下:票价种类(A)学生夜场票(B)学生日通票(C)节假日通票单价(元)80 120 150某慈善单位欲购买三种类型的票共100张奖励品学兼优的留守学生,其中购买的B种票数是A种票数的3倍还多7张,C种票y张.(1)直接写出x与y之间的函数关系式;(2)设购票总费用为元,求(元)与x(张)之间的函数关系式;(3)为方便学生游玩,计划购买的学生夜场票不低于20张,且每种票至少购买5张,则有几种购票方案?并指出哪种方案费用最少.24.(10分)四边形ABCD为矩形,G是BC上的任意一点,DE⊥AG于点E.(1)如图1,若AB=BC,BF∥DE,且交AG于点F,求证:AF﹣BF=EF;(2)如图2,在(1)条件下,AG=BG,求;(3)如图3,连EC,若CG=CD,DE=2,GE=1,则CE=_________(直接写出结果)25.(12分)在平面直角坐标系中,已知点A(a,0),C(0,b)满足(a+1)2+=0(1)直接写出:a=_________,b=_________;(2)点B为x轴正半轴上一点,如图1,BE⊥AC于点E,交y轴于点D,连接OE,若OE 平分∠AEB,求直线BE的解析式;(3)在(2)条件下,点M为直线BE上一动点,连OM,将线段OM逆时针旋转90°,如图2,点O的对应点为N,当点M的运动轨迹是一条直线l,请你求出这条直线l的解析式.参考答案与试题解析一、选择题(每小题3分,共30分)本题共10个小题,每小题均给出A、B、C、D四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,答在试题卷上无效.1.(3分)二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2D.x≤2考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x﹣2≥0,解得x≥2.故选C.点评:本题考查的知识点为:二次根式的被开方数是非负数.2.(3分)下列计算正确的是()A.=±2 B.C.2﹣=2 D.考点:二次根式的混合运算.专题:计算题.分析:根据算术平方根的定义对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C、D进行判断.解答:解:A、原式=2,所以A选项错误;B、原式==,所以B选项正确;C、原式=,所以C选项错误;D、与不能合并,所以D选项错误.故选B.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.3.(3分)如图,数轴上点A对应的数为2,AB⊥OA于A,且AB=1,以OB为半径画圆,交数轴于点C,则OC的长为()A.3B.C.D.考点:实数与数轴;勾股定理.分析:先在直角△OAB中,根据勾股定理求出OB,再根据同圆的半径相等即可求解.解答:解:∵在直角△OAB中,∠OAB=90°,∴OB===,∴OC=OB=.故选D.点评:本题考查了实数与数轴,勾股定理等知识点的应用,关键是求出OB长,题目比较好,难度适中.4.(3分)为参加中学生篮球运动会,某校篮球队准备购买10双运动鞋,各种尺码统计如下表,则这10双运动鞋的尺码的众数和中位数分别为()尺码(厘米)25 25.5 26 26.5 27购买量(双) 1 2 3 2 2A.25.5,25.5 B.25.5,26 C.26,25.5 D.26,26考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:在这一组数据中26是出现次数最多的,故众数是26;处于这组数据中间位置的数是26、26,那么由中位数的定义可知,这组数据的中位数是(26+26)÷2=26;故选D.点评:本题为统计题,考查众数与中位数的意义,解题的关键是准确认识表格.5.(3分)已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定考点:一次函数图象上点的坐标特征.分析:分别把各点代入一次函数y=﹣1.5x+3,求出y1,y2,y3的值,再比较出其大小即可.解答:解:∵点(﹣3,y1)、(﹣1,y2)、(2,y3)在一次函数y=﹣1.5x+3的图象上,∴y1=﹣1.5×(﹣3)+3=7.5;y2=﹣1.5×(﹣1)+3=1.5;y3=﹣1.5×2+3=0,∵7.5>1.5>0,∴y1>y2>y3.故选A.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.(3分)菱形的两条对角线长分别为9cm与4cm,则此菱形的面积为()cm2.A.12 B.18 C.20 D.36考点:菱形的性质.分析:已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解答:解:根据对角线的长可以求得菱形的面积,根据S=ab=×4cm×9cm=18cm2,故选:B.点评:本题考查了根据对角线计算菱形的面积的方法,根据菱形对角线求得菱形的面积是解题的关键,难度一般.7.(3分)匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化而变化,变化规律为一折线,下列图象(草图)正确的是()A.B.C.D.考点:函数的图象.分析:由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.解答:解:最下面的容器较最粗,第二个容器较粗,那么每个阶段的函数图象水面高度h随时间t的增大而增长缓陡,用时较短,故选C.点评:本题考查了函数的图象,解决本题的关键是根据三个容器的高度相同,粗细不同得到用时的不同.8.(3分)某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.93考点:加权平均数.分析:根据加权平均数的计算公式列出算式,再进行计算即可.解答:解:根据题意得:95×20%+90×30%+88×50%=90(分).即小彤这学期的体育成绩为90分.故选B.点评:此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.9.(3分)如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是()A.(﹣8,0)B.(0,8)C.(0,8)D.(0,16)考点:规律型:点的坐标.分析:根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,所以可求出从A到A3的后变化的坐标,再求出A1、A2、A3、A4、A5,得出A8即可.解答:解:根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,∵从A到A3经过了3次变化,∵45°×3=135°,1×()3=2.∴点A3所在的正方形的边长为2,点A3位置在第四象限.∴点A3的坐标是(2,﹣2);可得出:A1点坐标为(1,1),A2点坐标为(0,2),A3点坐标为(2,﹣2),A4点坐标为(0,﹣4),A5点坐标为(﹣4,﹣4),A6(﹣8,0),A7(﹣8,8),A8(0,16),故选:D.点评:本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,此题难度较大.10.(3分)如图,正方形ABCD的边长为2,点E、F分别为边AD、BC上的点,EF=,点G、H分别为AB、CD边上的点,连接GH,若线段GH与EF的夹角为45°,则GH的长为()A.B.C.D.考点:正方形的性质.分析:过点B作BK∥EF交AD于K,作BM∥GH交CD于M,可得∠KBM=45°,作∠MBN=45°交DC的延长线于N,求出∠ABK=∠CBN,然后利用“角边角”证明△ABK和△CBN全等,根据全等三角形对应边相等可得BN=BK,AK=CN,利用勾股定理列式求出AK,过点M作MP⊥BN于P,可得△BMP是等腰直角三角形,设GH=BM=x,表示出MP,然后利用∠N的正切值列出方程求解即可.解答:解:如图,过点B作BK∥EF交AD于K,作BM∥GH交CD于M,则BK=EF=,BM=GH,∵线段GH与EF的夹角为45°,∴∠KBM=45°,∴∠ABK+∠CBM=90°﹣45°=45°,作∠MBN=45°交DC的延长线于N,则∠CBN+∠CBM=45°,∴∠ABK=∠CBN,在△ABK和△CBN中,,∴△ABK≌△CBN(ASA),∴BN=BK,AK=CN,在Rt△ABK中,AK===1,过点M作MP⊥BN于P,∵∠MBN=45°,∴△BMP是等腰直角三角形,设GH=BM=x,则BP=MP=BM=x,∵tan∠N==,∴=,解得x=,所以GH=.故选B.点评:本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,熟记各性质并作辅助线构造出全等三角形和等腰直角三角形是解题的关键.二、填空题(每小题3分,共18分)11.(3分)计算:=5.考点:二次根式的加减法.专题:计算题.分析:先将二次根式化为最简,然后合并同类二次根式可得出答案.解答:解:原式=2+3=5.故答案为:5.点评:本题考查二次根式的加减法,比较简单,注意先将二次根式化为最简.12.(3分)若3,a,4,5的众数是4,则这组数据的平均数是4.考点:算术平均数;众数.分析:先根据众数的定义求出a的值,再根据平均数的定义列出算式,再进行计算即可.解答:解:∵3,a,4,5的众数是4,∴a=4,∴这组数据的平均数是(3+4+4+5)÷4=4;故答案为:4.点评:此题考查了众数和算术平均数,关键是根据众数的定义求出a的值,用到的知识点是众数的定义、平均数的计算公式.13.(3分)平行四边形的一个内角平分线将该平行四边形的一边分为3cm和4cm两部分,则该平行四边形的周长为20cm或22cm.考点:平行四边形的性质.分析:根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,可以求解.解答:解:∵ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当BE=3cm,CE=4cm,AB=3cm,则周长为20cm;②当BE=4cm时,CE=3cm,AB=4cm,则周长为22cm.故答案为:20cm或22cm.点评:本题考查了平行四边形的性质,结合了等腰三角形的判定.注意有两种情况,要进行分类讨论.14.(3分)已知点A(﹣3,a),B(1,b)都在一次函数y=kx+2的图象上,则a与b的数量关系为a=8﹣3b.考点:一次函数图象上点的坐标特征.分析:分别把点A(﹣3,a),B(1,b)代入一次函数y=kx+2,再用加减消元法消去k即可得出结论.解答:解:∵点A(﹣3,a),B(1,b)都在一次函数y=kx+2的图象上,∴,①+②×3得,a+3b=8,即a=8﹣3b.故答案为:a=8﹣3b.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.(3分)在一次越野赛跑中,当小明跑了1600m时,小刚跑了1450m,此后两人分别调整速度,并以各自新的速度匀速跑,又过100s时小刚追上小明,200s时小刚到达终点,300s 时小明到达终点.他们赛跑使用时间t(s)及所跑距离如图s(m),这次越野赛的赛跑全程为2050m?考点:一次函数的应用;二元一次方程组的应用.分析:设小明、小刚新的速度分别是xm/s、ym/s,然后根据100s后两人相遇和两人到达终点的路程列出关于x、y的二元一次方程组,求解后再根据小明所跑的路程等于越野赛的全程列式计算即可得解.解答:解:设小明、小刚新的速度分别是xm/s、ym/s,由题意得,由①得,y=x+1.5③,由②得,4y﹣3=6x④,③代入④得,4x+6﹣3=6x,解得x=1.5,故这次越野赛的赛跑全程=1600+300×1.5=1600+450=2050m.故答案为:2050.点评:本题考查了二元一次方程组的应用,读懂题目信息,仔细观察图形确定出追击问题的两个等量关系,然后列出方程组是解题的关键.16.(3分)在平面直角坐标系中,直线y=kx+x+1过一定点A,坐标系中有点B(2,0)和点C,要使以A、O、B、C为顶点的四边形为平行四边形,则点C的坐标为(﹣2,1),(2,﹣1)或(2,1).考点:平行四边形的判定;一次函数图象上点的坐标特征.分析:首先求得A的坐标,根据平行四边形的对角线互相平分,分OA是对角线,OB是对角线、OC是对角线三种情况讨论,利用中点公式即可求解.解答:解:A的坐标是(0,1),当OA是对角线时,对角线的中点是(0,),则BC的中点是(0,),设C的坐标是(x,y),的(2+x)=0,且(0+y)=,解得:x=﹣2,y=1,则C的坐标是(﹣2,1);同理,当OB是对角线时,C的坐标是(2,﹣1);当OC是对角线时,此时AB是对角线,C的坐标是(2,1).故答案是:(﹣2,1),(2,﹣1)或(2,1).点评:本题考查了平行四边形的性质:对角线互相平分,以及中点公式,正确进行讨论是关键.三、解答题(共9小题,共72分)17.(6分)化简:.考点:二次根式的加减法.分析:先把各根式化为最简二次根式,再合并同类项即可.解答:解:原式=2+3﹣2=3.点评:本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.18.(6分)在平面直角坐标系中,直线y=kx﹣2经过点A(﹣2,0),求不等式4kx+3≤0的解集.考点:一次函数与一元一次不等式.分析:首先将已知点的坐标代入到直线y=kx﹣2中求得k值,然后代入不等式即可求得x的取值范围.解答:解:∵将点A(﹣2,0)代入直线y=kx﹣2,得:﹣2k﹣2=0,即k=﹣1,∴﹣4x+3≤0,解得x≥.点评:本题考查了一次函数与一元一次不等式:先画出函数图象,然后观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.19.(6分)已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交CD、AB于E、F,求证:AE=CF.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:利用平行四边形的性质得出∠DAE=∠BCF,AD=BC,∠D=∠B,进而结合平行线的性质和全等三角形的判定方法得出答案.解答:证明:∵▱ABCD,∴AD=BC,∠D=∠B,∠DAB=∠DCB,又AE平分∠BAD,CF平分∠BCD,∴∠DAE=∠BCF,在△DAE和△BCF中,,∴△DAE≌△BCF(ASA),∴AE=CF.点评:此题主要考查了平行四边形的性质以及全等三角形的判定等知识,得出∠DAE=∠BCF是解题关键.20.(7分)点P(x,y)在直线x+y=8上,且x>0,y>0,点A的坐标为(6,0),设△OP A 的面积为S.(1)求S与x的函数关系式,并直接写出x的取值范围;(2)当S=12时,求点P的坐标.考点:一次函数图象上点的坐标特征.分析:(1)根据题意画出图形,根据三角形的面积公式即可得出结论;(2)把S=12代入(1)中的关系式即可.解答:解:(1)如图所示:∵点P(x,y)在直线x+y=8上,∴y=8﹣x,∵点A的坐标为(6,0),∴S=3(8﹣x)=24﹣3x,(0<x<8);(2)当24﹣3x=12时,x=4,即P的坐标为(4,4)点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.21.(7分)某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.(1)将图补充完整;(2)本次共抽取员工50人,每人所创年利润的众数是8万元,平均数是8.12万元;(3)若每人创造年利润10万元及(含10万元)以上位优秀员工,在公司1200员工中有多少可以评为优秀员工?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)求出3万元的员工的百分比,5万元的员工人数及8万元的员工人数,再据数据制图.(2)利用3万元的员工除以它的百分比就是抽取员工总数,利用定义求出众数及平均数.(3)优秀员工=公司员工×10万元及(含10万元)以上优秀员工的百分比.解答:解:(1)3万元的员工的百分比为:1﹣36%﹣20%﹣12%﹣24%=8%,抽取员工总数为:4÷8%=50(人)5万元的员工人数为:50×24%=12(人)8万元的员工人数为:50×36%=18(人)(2)抽取员工总数为:4÷8%=50(人)每人所创年利润的众数是8万元,平均数是:(3×4+5×12+8×18+10×10+15×6)=8.12万元故答案为:50,8万元,8.12万元.(3)1200×=384(人)答:在公司1200员工中有384人可以评为优秀员工.点评:此题考查了条形统计图,扇形统计图,以及加权平均数的计算公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)如图,在▱ABCD中,E是AD上一点,连接BE,F为BE中点,且AF=BF,(1)求证:四边形ABCD为矩形;(2)过点F作FG⊥BE,垂足为F,交BC于点G,若BE=BC,S△BFG=5,CD=4,求CG.考点:矩形的判定与性质;勾股定理;平行四边形的性质.分析:(1)求出∠BAE=90°,根据矩形的判定推出即可;(2)求出△BGE面积,根据三角形面积公式求出BG,得出EG长度,根据勾股定理求出GH,求出BE,得出BC长度,即可求出答案.解答:(1)证明:∵F为BE中点,AF=BF,∴AF=BF=EF,∴∠BAF=∠ABF,∠F AE=∠AEF,在△ABE中,∠BAF+∠ABF+∠F AE+∠AEF=180°,∴∠BAF+∠F AE=90°,又四边形ABCD为平行四边形,∴四边形ABCD为矩形;(2)解:连接EG,过点E作EH⊥BC,垂足为H,∵F为BE的中点,FG⊥BE,∴BG=GE,∵S△BFG=5,CD=4,∴S△BGE=10=BG•EH,∴BG=GE=5,在Rt△EGH中,GH==3,在Rt△BEH中,BE==4=BC,∴CG=BC﹣BG=4﹣5.点评:本题考查了矩形的判定,勾股定理,三角形的面积,线段垂直平分线性质等知识点的应用,主要考查学生综合运用性质进行推理的能力,题目比较好,有一定的难度.23.(10分)某欢乐谷为回馈广大谷迷,在暑假期间推出学生个人门票优惠价,各票价如下:票价种类(A)学生夜场票(B)学生日通票(C)节假日通票单价(元)80 120 150某慈善单位欲购买三种类型的票共100张奖励品学兼优的留守学生,其中购买的B种票数是A种票数的3倍还多7张,C种票y张.(1)直接写出x与y之间的函数关系式;(2)设购票总费用为元,求(元)与x(张)之间的函数关系式;(3)为方便学生游玩,计划购买的学生夜场票不低于20张,且每种票至少购买5张,则有几种购票方案?并指出哪种方案费用最少.考点:一次函数的应用;一元一次不等式组的应用.专题:计算题.分析:(1)根据总票数为100得到x+3x+7+y=100,然后用x表示y即可;(2)利用表中数据把三种票的费用加起来得到w=80x+120(3x+7)+150(93﹣4x),然后整理即可;(3)根据题意得到,再解不等式组且确定不等式组的整数解为20、21、22,于是得到共有3种购票方案,然后根据一次函数的性质求w的最小值.解答:解:(1)x+3x+7+y=100,所以y=93﹣4x;(2)w=80x+120(3x+7)+150(93﹣4x)=﹣160x+14790;(3)依题意得,解得20≤x≤22,因为整数x为20、21、22,所以共有3种购票方案(A、20,B、67,C、13;A、21,B、70,C、9;A、22,B、73,C、5);而w=﹣160x+14790,因为k=﹣160<0,所以y随x的增大而减小,所以当x=22时,y最小=22×(﹣160)+14790=11270,即当A种票为22张,B种票73张,C种票为5张时费用最少,最少费用为11270元.点评:本题考查了一次函数的运用:从一次函数图象上获取实际问题中的量;对于分段函数在不同区间有不同对应方式的函数,特别注意自变量取值范围的划分,既要科学合理,又要符合实际.也考查了一元一次不等式的应用和一次函数的性质.24.(10分)四边形ABCD为矩形,G是BC上的任意一点,DE⊥AG于点E.(1)如图1,若AB=BC,BF∥DE,且交AG于点F,求证:AF﹣BF=EF;(2)如图2,在(1)条件下,AG=BG,求;(3)如图3,连EC,若CG=CD,DE=2,GE=1,则CE=(直接写出结果)考点:四边形综合题.分析:(1)利用△AED≌△BF A求得AE=BF,再利用线段关系求出AF﹣BF=EF.(2)延长AG与DC交于点F,设BG=t先求出AB,再利用△ABG≌△FCG及直角三角形斜边上的中点,求出;(3)连接DG,作EM⊥BC于M点,利用直角三角形求出DG,CD的长,再利用ABG∽△DEA,求出AD,再运用△EMG∽△DEA求出EM和MG,再运用勾股定理即可求出CE的长.解答:(1)证明:∵四边形ABCD为矩形,AB=BC,∴四边形ABCD为正方形,∴AD=AB,∠BAD=90°,又DE⊥AG,BF∥DE,∴∠AED=∠AFB=90°,∵∠BAF+∠DAE=90°,∠BAE+∠ABF=90°,∴∠DAE=∠ABF,在△AED和△BF A中,∴△AED≌△BF A(AAS),∴AE=BF,∴AF﹣BF=EF,(2)如图2,延长AG与DC交于点F,∵AG=BG,设BG=t,则AG=t,在Rt△ABG中,AB==2t,∴G为BC的中点,在△ABG和△FCG中,∴△ABG≌△FCG(AAS),∴AB=FC=CD,又∵DE⊥AG,在Rt△DEF中,C为斜边DF的中点,∴EC=CD=CF,∴==(3)如图3,连接DG,作EM⊥BC于M点,∵DE⊥AG,DE=2,GE=1,∴在RT△DEG中,DG===,∵CG=CD,∴在RT△DCG中,∠CDG=∠CGD=45°,∴CD=CG==,∵∠BAG+∠GAD=90°,∠EDA+∠GAD=90°,∴∠BAG=∠EDA,∵∠ABG=∠DEA=90°,∴△ABG∽△DEA,∴=,设AD=x,则AE==,AG=+1,∴=,解得x1=,x2=﹣2(舍去)∴AE==,又∵∠BAG=∠MEG,∴∠EDA=∠MEG,∴△EMG∽△DEA∴==,即==解得EM=,MG=,∴CM=CG+MG=+=,∴CE===.故答案为:.点评:本题主要考查了四边形综合题,解题的关键是正确作出辅助线,运用三角形相似求出线段的长度.此题难度较大,考查了学生计算能力.解题是一定要细心.25.(12分)在平面直角坐标系中,已知点A(a,0),C(0,b)满足(a+1)2+=0(1)直接写出:a=﹣1,b=﹣3;(2)点B为x轴正半轴上一点,如图1,BE⊥AC于点E,交y轴于点D,连接OE,若OE平分∠AEB,求直线BE的解析式;(3)在(2)条件下,点M为直线BE上一动点,连OM,将线段OM逆时针旋转90°,如图2,点O的对应点为N,当点M的运动轨迹是一条直线l,请你求出这条直线l的解析式.考点:一次函数综合题.分析:(1)根据非负数是性质来求a、b的值;(2)如图1,过点O作OF⊥OE,交BE于F.构建全等三角形:△EOC≌△FOB(ASA),△AOC≌△DOB(ASA),易求D(0,﹣1),B(3,0).利用待定系数法求得直线BE 的解析式y=x﹣1;(3)如图2,过点M作MG⊥x轴,垂足为G,过点N作NH⊥GH,垂足为H.构建全等三角形:△GOM≌△HMN,故OG=MH,GM=NH.设M(m,m﹣1),则H(m,﹣m﹣1),N(m﹣1,﹣m﹣1),由此求得点N的横纵坐标间的函数关系.解答:解:(1)依题意得a+1=0,b+3=0,解得a=﹣1,b=﹣3.故答案是:﹣1;﹣3;(2)如图1,过点O作OF⊥OE,交BE于F.∵BE⊥AC,OE平分∠AEB,∴△EOF为等腰直角三角形.∵在△EOC与△FOB中,,∴△EOC≌△FOB(ASA),∴OB=OC.∴在△AOC与△DOB中,,∴△AOC≌△DOB(ASA),∴OA=OD,∵A(﹣1,0),B(0,﹣3),∴D(0,﹣1),B(3,0)∴直线BD,即直线BE的解析式y=x﹣1;(3)依题意,△NOM为等腰Rt△,如图2,过点M作MG⊥x轴,垂足为G,过点N作NH⊥GH,垂足为H,∵△NOM为等腰Rt△,则易证△GOM≌△HMN,∴OG=MH,GM=NH,由(2)知直线BD的解析式y=x﹣1,设M(m,m﹣1),则H(m,﹣m﹣1),∴N(m﹣1,﹣m﹣1),令m﹣1=x,﹣m﹣1=y,消去参数m得,y=﹣x﹣即直线l的解析式为y=﹣x﹣.(说明:此题用取特殊点计算的方法求解析式也行)点评:本题考查了一次函数综合题型.熟练掌握等腰直角三角形的性质、全等三角形的判定与性质以及旋转的性质.。
黄陂区一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( ) A .M=P B .P ⊊M C .M ⊊P D .M ∪P=R2. 设函数()()21,141x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量的取值范围为( )A .(][],20,10-∞-B .(][],20,1-∞-C .(][],21,10-∞-D .[][]2,01,10-3. 若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假4. 已知函数()2111x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( ) A .1 B .1- C .2 D .2- 5. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )A. B .18 C. D.6. △ABC 的内角A ,B ,C所对的边分别为,,,已知a =b =6A π∠=,则B ∠=( )111]A .4π B .4π或34π C .3π或23π D .3π7. 已知三次函数f (x )=ax 3+bx 2+cx+d的图象如图所示,则=( )A .﹣1B .2C .﹣5D .﹣38. 已知2->a ,若圆1O :01582222=---++a ay x y x ,圆2O :04422222=--+-++a a ay ax y x 恒有公共点,则a 的取值范围为( ).A .),3[]1,2(+∞--B .),3()1,35(+∞--C .),3[]1,35[+∞-- D .),3()1,2(+∞-- 9. 若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为( ) A .﹣2 B .±2 C .0 D .210.设D 为△ABC 所在平面内一点,,则( )A .B .C .D .11.圆锥的高扩大到原来的 倍,底面半径缩短到原来的12,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的1612.二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( ) A .20 B .24C .30D .36二、填空题13.在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线A 1B 与AC 所成的角是 °.14.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .1310 B .3 C .4 D .2110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.15.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2;⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.16.已知tan 23πα⎛⎫+= ⎪⎝⎭,则42sin cos 335cos sin 66ππααππαα⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ .17.在数列中,则实数a= ,b= .三、解答题18.如图,已知椭圆C :+y 2=1,点B 坐标为(0,﹣1),过点B 的直线与椭圆C 另外一个交点为A ,且线段AB 的中点E 在直线y=x 上 (Ⅰ)求直线AB 的方程(Ⅱ)若点P 为椭圆C 上异于A ,B 的任意一点,直线AP ,BP 分别交直线y=x 于点M ,N ,证明:OM •ON 为定值.19.(本题12分)已知数列{}n x 的首项13x =,通项2nn x p nq =+(*n N ∈,p ,为常数),且145x x x ,,成等差数列,求:(1)p q ,的值;(2)数列{}n x 前项和n S 的公式.20.已知数列{}n a 的前项和公式为2230n S n n =-. (1)求数列{}n a 的通项公式n a ; (2)求n S 的最小值及对应的值.21.已知p :,q :x 2﹣(a 2+1)x+a 2<0,若p 是q 的必要不充分条件,求实数a 的取值范围.22.(本题满分12分)在长方体1111D C B A ABCD -中,a AD AA ==1,E 是棱CD 上的一点,P 是棱1AA 上的一点.(1)求证:⊥1AD 平面D B A 11; (2)求证:11AD E B ⊥;(3)若E 是棱CD 的中点,P 是棱1AA 的中点,求证://DP 平面AE B 1.23.(本题满分15分)如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥;(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为3π时,求λ的值.【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.24.(本小题满分12分)已知椭圆C A 、B 分别为左、右顶点, 2F 为其右焦点,P 是椭圆C 上异于A 、B 的 动点,且PA PB 的最小值为-2. (1)求椭圆C 的标准方程;(2)若过左焦点1F 的直线交椭圆C 于M N 、两点,求22F M F N 的取值范围.黄陂区一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】B【解析】解:P={x|x=3},M={x|x >1}; ∴P ⊊M . 故选B .2. 【答案】A 【解析】考点:分段函数的应用.【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键. 3. 【答案】B【解析】解:若命题“p 或q ”为真,则p 真或q 真,若“非p ”为真,则p 为假,∴p 假q 真, 故选:B .【点评】本题考查了复合命题的真假的判断,是一道基础题.4. 【答案】A 【解析】试题分析:由已知得()2112x f x x x -==-,则()21'f x x=,所以()'11f =. 考点:1、复合函数;2、导数的几何意义. 5. 【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:3×22+3×()+=,故选:D .6. 【答案】B 【解析】试题分析:由正弦定理可得()sin 0,,24sin6B B B ππ=∴=∈∴= 或34π,故选B.考点:1、正弦定理的应用;2、特殊角的三角函数. 7. 【答案】C【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,即2,﹣1是f ′(x )=0的两个根,∵f (x )=ax 3+bx 2+cx+d , ∴f ′(x )=3ax 2+2bx+c , 由f ′(x )=3ax 2+2bx+c=0,得2+(﹣1)==1,﹣1×2==﹣2,即c=﹣6a ,2b=﹣3a ,即f ′(x )=3ax 2+2bx+c=3ax 2﹣3ax ﹣6a=3a (x ﹣2)(x+1),则===﹣5,故选:C【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.8. 【答案】C【解析】由已知,圆1O 的标准方程为222(1)()(4)x y a a ++-=+,圆2O 的标准方程为222()()(2)x a y a a ++-=+,∵2->a ,要使两圆恒有公共点,则122||26O O a ≤≤+,即 62|1|2+≤-≤a a ,解得3≥a 或135-≤≤-a ,故答案选C9. 【答案】C【解析】解:∵复数(2+ai )2=4﹣a 2+4ai 是实数,∴4a=0, 解得a=0. 故选:C .【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.10.【答案】A 【解析】解:由已知得到如图由===;故选:A .【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.11.【答案】A 【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为2113V r h π=,将圆锥的高扩大到原来的倍,底面半径缩短到原来的12,则体积为222111(2)326V r h r h ππ=⨯=,所以122V V =,故选A.考点:圆锥的体积公式.1 12.【答案】A【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r •x 12﹣3r ,令12﹣3r=3,求得r=3,故展开式中含x 3项的系数为•(﹣1)3=﹣20,而所有系数和为0,不含x 3项的系数之和为20,故选:A .【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.二、填空题13.【答案】60°°.【解析】解:连结BC1、A1C1,∵在正方体ABCD﹣A1B1C1D1中,A1A平行且等于C1C,∴四边形AA1C1C为平行四边形,可得A1C1∥AC,因此∠BA1C1(或其补角)是异面直线A1B与AC所成的角,设正方体的棱长为a,则△AB1C中A1B=BC1=C1A1=a,1∴△A1B1C是等边三角形,可得∠BA1C1=60°,即异面直线A1B与AC所成的角等于60°.故答案为:60°.【点评】本题在正方体中求异面直线所成角和直线与平面所成角的大小,着重考查了正方体的性质、空间角的定义及其求法等知识,属于中档题.14.【答案】D【解析】15.【答案】②③④【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误;对于②:(x﹣1)sinα﹣(y﹣2)cosα=1,(α∈[0,2π)),可以认为是圆(x ﹣1)2+(y ﹣2)2=1的切线系,故②正确;对于③:存在定圆C ,使得任意l ∈L ,都有直线l 与圆C 相交,如圆C :(x ﹣1)2+(y ﹣2)2=100,故③正确;对于④:任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2,作图知④正确; 对于⑤:任意意l 1∈L ,必存在两条l 2∈L ,使得l 1⊥l 2,画图知⑤错误. 故答案为:②③④.【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.16.【答案】3- 【解析】考点:三角恒等变换.1111]【方法点晴】本题主要考查三角恒等变换,涉及转化化归思想和换元思想,考查逻辑推理能力、化归能力,具有一定的综合性,属于较难题型. 首先利用换元思想设3πθα=+,从而将已知条件化简为tan 2θ=.从而将所求式子转化为()()sin cos cos sin 22πθπθππθθ++-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭,进而化为sin cos sin cos θθθθ+--,然后分子分母同除以cos θ将弦化切得tan 13tan 1θθ+-=--. 1111]17.【答案】a=,b=.【解析】解:由5,10,17,a ﹣b ,37知,a ﹣b=26,由3,8,a+b,24,35知,a+b=15,解得,a=,b=;故答案为:,.【点评】本题考查了数列的性质的判断与归纳法的应用.三、解答题18.【答案】【解析】(Ⅰ)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),∵点A在椭圆C上,∴,整理得:6t2+4t=0,解得t=﹣或t=0(舍去),∴E(﹣,﹣),A(﹣,﹣),∴直线AB的方程为:x+2y+2=0;(Ⅱ)证明:设P(x0,y0),则,直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:x M=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:x N=,∴OM•ON=|x M||x N|=2•||•||=||=||=||=.【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题.19.【答案】(1)1,1==q p ;(2)2)1(221++-=-n n S n n .考点:等差,等比数列通项公式,数列求和.20.【答案】(1)432n a n =-;(2)当7n =或时,n S 最小,且最小值为78112S S =-. 【解析】试题分析:(1)根据数列的项n a 和数列的和n S 之间的关系,即可求解数列{}n a 的通项公式n a ;(2)由(1)中的通项公式,可得1270a a a <<<<,80a =,当9n ≥时,0n a >,即可得出结论.1试题解析:(1)∵2230n S n n =-, ∴当1n =时,1128a S ==-.当2n ≥时,221(230)[2(1)30(1)]432n n n a S S n n n n n -=-=-----=-. ∴432n a n =-,n N +∈. (2)∵432n a n =-,∴1270a a a <<<,80a =,当9n ≥时,0n a >.∴当7n =或8时,n S 最小,且最小值为78112S S =-. 考点:等差数列的通项公式及其应用. 21.【答案】【解析】解:由p :⇒﹣1≤x <2,方程x 2﹣(a 2+1)x+a 2=0的两个根为x=1或x=a 2,若|a|>1,则q :1<x <a 2,此时应满足a 2≤2,解得1<|a|≤,当|a|=1,q :x ∈∅,满足条件, 当|a|<1,则q :a 2<x <1,此时应满足|a|<1,综上﹣.【点评】本题主要考查复合命题的应用,以及充分条件和必要条件的应用,结合一元二次不等式的解法是解决本题的关键.22.【答案】【解析】【命题意图】本题综合考查了线面垂直、线线垂直、线面平行等位置关系的证明,对空间想象能力及逻辑推理有较高要求,对于证明中辅助线的运用是一个难点,本题属于中等难度.23.【答案】(1)详见解析;(2)3λ=.【解析】(1)由于2AB =,AM BM ==,则AM BM ⊥,又∵平面⊥ADM 平面ABCM ,平面 ADM 平面ABCM =AM ,⊂BM 平面ABCM , ∴⊥BM 平面ADM ,…………3分又∵⊂AD 平面ADM ,∴有BM AD ⊥;……………6分24.【答案】(1)22142x y +=;(2)22[2,7)F M F N ∈-. 【解析】试题解析:(1)根据题意知2c a =,即2212c a =,∴22212a b a -=,则222a b =, 设(,)P x y ,∵(,)(,)PA PB a x y a x y =-----,2222222221()222a x x a y x a x a =-+=-+-=-,∵a x a -≤≤,∴当0x =时,2min ()22a PA PB =-=-, ∴24a =,则22b =.∴椭圆C 的方程为22142x y +=.1111]设11(,)M x y ,22(,)N x y ,则212212x x k +=-+,21224(1)12k x x k -=+,∵211(2,)F M x y =-,222()F N x y =,∴222121212)2(F M F N x x x x k x x =+++2221212(1))22k x x x x k =+++++ 22222224(1)42(1)2(1)221212k k k k k k k --=++-++++ 29712k =-+.∵2121k +≥,∴210112k<≤+. ∴297[2,7)12k -∈-+. 综上知,22[2,7)F M F N ∈-.考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.。
湖北省武汉市黄陂区2018-2019学年八年级下学期期末考试数学试题一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.)A. -3B. 3C. 6D. 9【答案】B【解析】【分析】 根据算数平方根的意义解答即可.【详解】∵32=9,故选:B .【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.正数a 有一个正的算术平方根, 0的算术平方根是0,负数没有算术平方根.2.以下列各组数为边长,能构成直角三角形的是( )A. 2B. 2,2,3C. D. 4,5,6 【答案】C【解析】【分析】欲判断能否构成直角三角形,只需验证两小边的平方和是否等于最长边的平方.【详解】解:A 、∵12+)2≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误; B 、∵22+22≠32,∴此组数据不能作为直角三角形的三边长,故本选项错误;C 、∵12+)2=2,∴此组数据能作为直角三角形的三边长,故本选项正确; D 、∵42+52≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误.故选:C .【点睛】此题主要考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理:已知三角形ABC 的三边满足a 2+b 2=c 2,则三角形ABC 是直角三角形.3.将直线2y x =沿y 轴向下平移1个单位长度后得到的直线解析式为( )A. 21y x =-B. 21y x =+C. 1y x =+D. 1y x =-【答案】A【解析】【分析】直接根据“左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知:把直线y=2x 沿y 轴向下平移1个单位长度后,其直线解析式为y=2x-1. 故选:A .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.4.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( )A. 中位数B. 众数C. 平均数D. 方差 【答案】A【解析】【分析】由于比赛取前3名进入决赛,共有5名选手参加,故应根据中位数的意义分析.【详解】解:因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入决赛了,故选:A .【点睛】考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.电视塔越高,从塔顶发射出的电磁波传播得越远,从而能收看到电视节目的区域就越广.电视塔高h (单位:km )与电视节目信号的传播半径r (单位:km )之间存在近似关系2r Rh =,其中R 是地球半径.如果两个电视塔的高分别是1h km ,2h km ,那么它们的传播半径之比是1222Rh Rh ,则式子1222Rh Rh 化简为( )A. 12h hB. 1212h hC. 121h hD. 122h h 【答案】D【解析】【分析】乘以分母的有理化因式即可完成化简.【详解】解:112122222222==222Rh Rh Rh h h Rh Rh Rh ⋅⋅. 故选D. 【点睛】本题考查了二次根式的应用,了解二次根式的有理化因式是解答本题的关键,难度不大.6.如图是自动测温仪记录的图象,它反映了武汉的冬季某天气温T 随时间t 的变化而变化的情况,下列说法错误的是( )A. 这一天凌晨4时气温最低B. 这一天14时气温最高C. 从4时至14时气温呈上升状态(即气温随时间增长而上升)D. 这一天气温呈先上升后下降的趋势【答案】D【解析】【分析】根据气温变化图,分析变化趋势和具体数值,即可求出答案.【详解】解:A.这一天凌晨4时气温最低为-3℃,故本选项正确;B.这一天14时气温最高为8℃,故本选项正确;C.从4时至14时气温呈上升状态,故本选项正确;D.这一天气温呈先下降,再上升,最后下降的趋势,故本选项错误;故选:D.【点睛】本题考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.7.如图,用一根绳子检查一个书架的侧边是否和上、下底都垂直,只需要用绳子分别测量比较书架的两条对AC BD就可以判断,其数学依据是()角线,A. 三个角都是直角的四边形是矩形B. 对角线互相平分的四边形是平行四边形C. 对角线相等的平行四边形是矩形D. 对角线互相垂直平分的四边形是菱形【答案】C【解析】【分析】根据矩形的判定定理:对角线相等的平行四边形是矩形即可判定.【详解】解:这种做法的依据是对角线相等的平行四边形为矩形,故选:C .【点睛】本题主要考查对矩形的性质和判定的理解和掌握,能熟练地运用矩形的性质解决实际问题是解此题的关键.8.甲、乙、丙三人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.61S =甲,20.35S =乙.2 1.13S =丙,在本次射击测试中,成绩最稳定的是( )A. 甲B. 乙C. 丙D. 无法确定【答案】B【解析】【分析】 根据方差的定义,方差越小数据越稳定.【详解】解:∵S 甲2=0.61,S 乙2=0.35,S 丙2=1.13,∴S 丙2>S 甲2>S 乙2,∴在本次射击测试中,成绩最稳定的是乙;故选:B .【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.如图,在矩形ABCD 中,6AB =,4=AD ,点,M N 同时从点A 出发,分别沿A B C --及A D C --方向匀速运动,速度均为每秒1个单位长度,当一个点到达终点时另一个点也停止运动,连接MN .设运动时间为t 秒,MN 的长为d ,则下列图象能大致反映d 与t 的函数关系的是( )A. B.C. D.【答案】A【解析】【分析】分三种情况讨论即可求解.【详解】解:当点A AD上,点M在AB上,则2t,(0≤t≤4);当点A在CD上,点M在AB上,则2,(4<t≤6);当点A在CD上,点M在BC上,则2(10-t)22(6<t≤10);故选:A.【点睛】本题考查了动点问题的函数图象,根据点P的位置的不同,分三段讨论求解是解题的关键.沿BE折叠,点A的对应点10.如图,正方形ABCD的边长为2,点E为AD的中点,连接BE,将ABE为F.连接CF,则CF的长为()A. 2B. 25C. 322D. 210【答案】D【解析】【分析】连接AF交BE于点O,过点F作MN⊥AB,由勾股定理可求BE的长,由三角形面积公式可求AO的长,由折叠的性质可得AO=OH= 25,AB=BF=2,由勾股定理可求BN,FN的长,由矩形的性质可求FM,MC的长,由勾股定理可求CF的长.【详解】解:如图,连接AF交BE于点O,过点F作MN⊥AB,∵AB∥CD,MN⊥AB,∴MN⊥CD,∵AB=2=AD,点E是AD中点,∴AE=1,∴225AB AE+=∵S△ABE=12×AB×AE=12×BE×AO,∴2×5∴,∵将△ABE沿BE折叠,点A的对应点为F,∴,AB=BF=2,∴,∵AF2-AN2=FN2,BF2-BN2=FN2,∴AF2-AN2=BF2-BN2,∴165-(2-BN)2=4-BN2,∴BN=6 5 ,∴FN=8 5 ,∵MN⊥AB,MN⊥CD,∠DCB=90°, ∴四边形MNBC是矩形,∴BN=MC=65,BC=MN=2,∴MF=2 5 ,∴5=.故选:D.【点睛】本题考查了正方形的性质,矩形的判定,勾股定理,利用勾股定理列出等式求线段的长是本题的关键.二、填空题(共6小题,每小题3分,共18分,将答案填在答题纸上)11..【解析】【分析】根据二次根式的运算法则,先算36⨯,再对8进行化简,再进行运算即可.【详解】368⨯-=188-=3222-=2【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.12.在一列数2,3,3,5,7中,他们的平均数为__________.【答案】4【解析】【分析】直接利用算术平均数的定义列式计算可得.【详解】解:这组数据的平均数为233575++++=4, 故答案为:4.【点睛】本题主要考查算术平均数,解题的关键是掌握算术平均数的定义.13.某地出租车行驶里程x (km )与所需费用y (元)的关系如图.若某乘客一次乘坐出租车里程12km ,则该乘客需支付车费__________元.【答案】20【解析】【分析】根据函数图象,设y 与x 的函数关系式为y=kx+b ,运用待定系数法即可得到函数解析式,再将x=12代入解析式就可以求出y 的值.【详解】解:由图象知,y 与x 的函数关系为一次函数,并且经过点(2,5)、(4,8),设该一次函数的解析式为y=kx+b,则有:5=284k bk b+⎧⎨=+⎩,解得:3 22kb⎧=⎪⎨⎪=⎩,∴y=32x+2.将x=12代入一次函数解析式,故出租车费为20元.故答案为:20.【点睛】此题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.14.如图,在菱形ABCD中,点E为AB上一点,DE AD=,连接EC.若36ADE∠=o,则BCE∠的度数为__________o.【答案】18【解析】【分析】由菱形的性质可得AD=CD,∠A=∠BCD,CD∥AB,由等腰三角形的性质可得∠DAE=∠DEA=72°,∠DCE=54°,即可求解.【详解】解:∵四边形ABCD是菱形,∴AD=CD,∠A=∠BCD,CD∥AB,∵DE=AD,∠ADE=36°,∴∠DAE=∠DEA=72°,∵CD ∥AB,∴∠CDE=∠DEA=72°,且DE=DC=DA ,∴∠DCE=54°, ∵∠DCB=∠DAE=72°, ∴∠BCE=∠DCB-∠DCE=18°. 故答案为:18.【点睛】本题考查了菱形的性质,等腰三角形的性质,熟练运用菱形的性质是本题的关键.15.已知一次函数y kx b =+(k 0<)经过点(1,0)-,则不等式(3)0k x b -+<的解集为__________.【答案】2x >【解析】【分析】先把(-1,0)代入y=kx+b 得b=k ,则k (x-3)+b <0化为k (x-3)+k <0,然后解关于x 的不等式即可.【详解】解:把(-1,0)代入y=kx+b 得-k+b=0,解b=k ,则k (x-3)+b <0化为k (x-3)+k <0,而k <0,所以x-3+1>0,解得x >2.故答案为x >2.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.16.如图,矩形ABCD 全等于矩形BEFG ,点C 在BG 上.连接DF ,点H 为DF 的中点.若10AB =,6BC =,则CH 的长为__________.【答案】2【解析】【分析】延长CH交FG的延长线于点N,由条件可以得出△CDH≌△NFH,就可以得出CH=NH,CD=NF,求出NG的长,根据勾股定理求出CN的长,从而可求出CH的长.【详解】解:延长CH交FG的延长线于点N,∵FG∥CD,∴∠CDH=∠NFH.∵点H为DF的中点,∴DH=FH.在△CDH和△NFH中,∵∠CDH=∠NFH,DH=FH,∠CHD=∠NHF,∴△CDH≌△NFH,∴CH=NH,CD=NF=10,∴NG=4,∴22+=4442∴2.故答案为:2.【点睛】本题考查了矩形的性质的运用,菱形的性质的运用,全等三角形的判定及性质的运用,等腰直角三角形的性质的运用,特殊角的三角函数值的运用.解答时证明三角形全等是解答本题的关键.三、解答题:共8小题,72分.解答应写出文字说明、证明过程或演算步骤.17.计算:(11123483(2)14632【答案】(1)53;(2)2【解析】【分析】(1)先化简,再合并同类二次根式即可;(2)按照二次根式的运算法则自左依次计算即可.【详解】(1)原式23343=53=(2)原式4323=2=;【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.如图,点,E F 分别是Y ABCD 对角线AC 上两点,AF CE =.求证:DEC BFA ∠=∠.【答案】见解析【解析】【分析】用SAS 证明△BAF ≌△DCE 即可说明∠DEC=∠BFA .【详解】证明::∵四边形ABCD 为平行四边形,∴,//AB CD AB CD =,∴BAC DCA ∠=∠,又CE AF =,∴BAF ∆≌DCE ∆,∴DEC BFA ∠=∠.【点睛】本题主要考查了平行四边形的性质、全等三角形的判定和性质,解决这类问题一般是四边形转化为三角形处理.19.为了了解某公司员工的年收入情况,随机抽查了公司部分员工年收入情况并绘制如图所示统计图.(1)请按图中数据补全条形图;(2)由图可知员工年收入的中位数是 ,众数是 ;(3)估计该公司员工人均年收入约为多少元?【答案】(1) 见解析;(2)15,15;(3)人均年收入为15.1万元.【解析】【分析】(1)从两个统计图中得到C组15万元的有20人,占调查人数的40%,可求出调查人数,进而得到D组人数,补全条形统计图,(2)根据中位数、众数的意义和求法分别求出即可,排序后求出第25、26位的两个数的平均数即为中位数,出现次数最多的数是众数,(3)利用平均数的计算公式进行计算.【详解】解:(1)20÷40%=50人,50-3-11-20-2=14人,补全条形统计图如图所示:(2)员工年收入在15万元出现次数最多是20次,因此众数是15万,调查50人的收入从小到大排列后处在第25、26位的数据都是15万,因此中位数是15万,(3)5310111520201425250⨯+⨯+⨯+⨯+⨯=15.1万元,答:该公司员工人均年收入约为15.1万元.【点睛】本题考查条形统计图、扇形统计图的制作方法、平均数、中位数、众数的意义,理解统计图中各个数据之间的关系是解决问题的关键.20.如图,在77⨯的正方形网格中,横、纵坐标均为整数的点叫格点.己知(1,1)A-,(0,4)B,C均在格点上.(1)请建立平面直角坐标系,并直接写出C点坐标;(2)直接写出的AC长为;(3)在图中仅用无刻度的直尺找出AC的中点O:第一步:找一个格点D;第二步:连接BD ,交AC 于点O ,O 即为AC 的中点;请按步骤完成作图,并写出D 点的坐标.【答案】(1)图见解析, (4,2)C ;(2)26;(3)图见解析,(3,1)D -【解析】【分析】(1)根据(1,1)A -,(0,4)B 建立如图平面直角坐标系即可; (2)利用勾股定理即可解决问题;(3)构造平行四边形即可解决问题.【详解】解:(1)∵(1,1)A -,(0,4)B ∴建立如图平面直角坐标系,∴(4,2)C ;(2)2251+26;(3)如图,∵10,AD=BC=25∴四边形ABCD 是平行四边形,∴点D 即为所求,D (3,-1).【点睛】本题考查作图-复杂作图,平面直角坐标系,平行四边形都是性质和判定等知识,了解题的关键是灵活运用所学知识解决问题,属于中考常考题型21.在平面直角坐标系中,直线33y x =+分别交x 轴,y 轴于点,A B .(1)当03y <≤,自变量x 的取值范围是 (直接写出结果);(2)点2(,)3C n -在直线33y x =+上.①直接写出n 的值为 ; ②过C 点作CD AB ⊥交x 轴于点D ,求直线CD 的解析式.【答案】(1)10x -<≤;(2)①1;② 1739y x =-+ 【解析】【分析】(1)先利用直线y=3x+3确定A 、B 的解析式,然后利用一次函数的性质求解;(2))①把C (-23,n )代入y=3x+3可求出n 的值; ②利用两直线垂直,一次项系数互为负倒数可设直线CD 的解析式为y=-13x+b ,然后把C (-23,1)代入求出b 即可.【详解】解:(1)当y=0时,3x+3=0,解得x=-1,则A (-1,0),当x=0时,y=3x+3=3,则B (0,3),当0<y≤3,自变量x 的取值范围是-1≤x <0;(2)①把C (-23,n )代入y=3x+3得3×(-23)+3=n ,解得n=1; ②∵AB ⊥CD ,∴设直线CD 的解析式为y=-13x+b , 把C (-23,1)代入得-13×(-23)+b=1,解得b=79, ∴直线CD 的解析式为y=-13x+79.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数的性质.22.已知A 城有肥料200吨,B 城有肥料300吨.现将这些肥料全部运往C ,D 两乡. C 乡需要的肥料比D 乡少20吨.从A 城运往C ,D 两乡的费用分别为每吨20元和25元;从B 城运往C ,D 两乡的费用分别为每吨15元和24元.(1)求C ,D 两乡各需肥料多少吨?(2)设从B 城运往C 乡的肥料为x 吨,全部肥料运往C ,D 两乡的总运费为w 元,求w 与x 之间的函数关系式,并直接写出自变量x 的取值范围;(3)因近期持续暴雨天气,为安全起见,从B 城到C 乡需要绕道运输,实际运费每吨增加了a 元(0a >),其它路线运费不变.此时全部肥料运往C ,D 两乡所需最少费用为10520元,则a 的值为__ (直接写出结果).【答案】(1)240 吨,260 吨;(2)40240x ≤≤;(3)a=2【解析】【分析】(1)设C 乡需肥料m 吨,根据题意列方程得答案;(2)根据:运费=运输吨数×运输费用,得一次函数解析式;(3)利用一次函数的性质列方程解答即可.【详解】(1)设C 乡需要肥料m 吨,列方程得220200300m +=+解得 240,24020260m =+=,即,C D 两乡分别需肥料 240 吨,260 吨;(2)20(240)25(40)1524(300)411000y x x x x x =-+-++-=-+,取值范围为:40240x ≤≤;(3)根据题意得,(-4+a )x+11000=10520,由(2)可知k=-4<0,w 随x 的增大而减小,所以x=240时,w 有最小值,所以(-4+a )×240+11000=10520, 解得a=2.【点睛】本题考查一次函数的应用,属于一般的应用题,解答本题的关键是根据题意得出y 与x 的函数关系式,另外同学们要掌握运用函数的增减性来判断函数的最值问题.23.如图,在矩形ABCD 中,AD nAB =,,E F 分别在AB ,BC 上.(1)若1n =,AF DE ⊥.①如图1,求证:AE BF =;②如图2,点G 为CB 延长线上一点,DE 的延长线交AG 于H ,若AH AD =,求证:AE BG AG +=; (2)如图3,若E 为AB 的中点,ADE EDF ∠=∠.则CF BF的值为 (结果用含n 的式子表示) 【答案】(1)①见解析;②见解析;(2)241n -【解析】【分析】(1)①由“ASA”可证△ADE ≌△BAF 可得AE=BF ;②过点A 作AF ⊥HD 交BC 于点F ,由等腰三角形的性质和平行线的性质可得∠HAF=∠AFG=∠DAF ,可得AG=FG ,即可得结论;(2)过点E 作EH ⊥DF 于H ,连接EF ,由角平分线的性质可得AE=EH=BE ,由“HL”可证Rt △BEF ≌Rt △HEF ,可得BF=FH,由勾股定理可求解.【详解】证明(1)①∵四边形ABCD是矩形,AD=AB, ∴四边形ABCD是正方形,∴AD=AB,∠DAB=90°=∠ABC,∴∠DAF+∠BAF=90°,∵AF⊥DE,∴∠DAF+∠ADE=90°,∴∠ADE=∠BAF,且AD=AB,∠DAE=∠ABF=90°,∴△ADE≌△BAF(ASA),∴AE=BF;②如图,过点A作AF⊥HD交BC于点F,由(1)可知AE=BF,∵AH=AD,AF⊥HD,∴∠HAF=∠DAF.∵AD∥BC,∴∠DAF=∠AFG,∴∠HAF=∠AFG,∴AG=GF,∴AG=GB+BF=GB+AE;(3)如图,过点E作EH⊥DF于H,连接EF,∵E 为AB 的中点,∴AE=BE=12AB , ∵∠ADE=∠EDF ,EA ⊥AD ,EH ⊥DF ,∴AE=EH ,AD=DH=nAB ,∴BE=EH ,EF=EF ,∴Rt △BEF ≌Rt △HEF (HL ),∴BF=FH ,设BF=x=FH ,则FC=BC-BF=nAB-x ,∵DF 2=FC 2+CD 2,∴(nAB+x )2=(nAB-x )2+AB 2,∴x=4AB n=BF , ∴FC=2414n n-AB , ∴CF BF=4n 2-1. 【点睛】本题是四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.24.在平面直角坐标系中,点(3,0),(0,4)A B -.(1)直接写出直线AB 的解析式;(2)如图1,过点B 的直线y kx b =+交x 轴于点C ,若45ABC ∠=o ,求k 的值;(3)如图2,点M 从A 出发以每秒1个单位的速度沿AB 方向运动,同时点N 从O 出发以每秒0.6个单位的速度沿OA 方向运动,运动时间为t 秒(05t <<),过点N 作//ND AB 交y 轴于点D ,连接MD ,是否存在满足条件的t,使四边形AMDN为菱形,判断并说明理由.【答案】(1)443y x=+;(2)7k=-或17k=-;(3)存在,158t=【解析】【分析】(1)利用待定系数法可求直线AB解析式;(2)分两种情况讨论,利用全等三角形的性质可求解;(3)先求点D坐标,由勾股定理可得DN=AM=t,可证四边形AMDN是平行四边形,即当AM=AN时,四边形AMDN为菱形,列式可求t的值.【详解】(1)设直线AB解析式为:y=mx+n,根据题意可得:0=34m nn-+⎧⎨=⎩,∴434mn⎧=⎪⎨⎪=⎩,∴直线AB解析式为443y x=+;(2)若点C在直线AB右侧,如图1,过点A作AD⊥AB,交BC的延长线于点D,过点D作DE⊥AC于E,∵∠ABC=45°,AD⊥AB,∴∠ADB=∠ABC=45°,∴AD=AB,∵∠BAO+∠DAC=90°,且∠BAO+∠ABO=90°,∴∠ABO=∠DAC,AB=AD,∠AOB=∠AED=90,∴△ABO≌△DAE(AAS),∴AO=DE=3,BO=AE=4,∴OE=1,∴点D(1,-3),∵直线y=kx+b过点D(1,-3),B(0,4).∴34k bb-=+⎧⎨=⎩,∴k=-7,若点C在点A右侧时,如图2,同理可得17k=-,综上所述:k=-7或17 k=-.(3)设直线DN的解析式为:y=43x+n,且过点N(-0.6t,0),∴0=-0.8t+n,∴n=0.8t,∴点D坐标(0,0.8t),且过点N(-0.6t,0),∴OD=0.8t,ON=0.6t,∴22ON OD+,∴DN=AM=1,且DN∥AM,∴四边形AMDN为平行四边形,当AN=AM时,四边形AMDN为菱形,∵AN=AM,∴t=3-0.6t,∴t=158,∴当t=158时,四边形AMDN为菱形.【点睛】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,菱形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.。
黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C. 32D. 232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.23(第5题图)6.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________.8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________.11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
初中数学试卷2014年黄陂一中“分配生”考试数 学 试 卷注意事项:1.本卷共6页,考试时间120分钟,满分150分。
2.本卷制作有答题卡。
请在答题卡指定位置填写毕业学校、姓名、粘贴条形码。
3.请将答案全部填写到答题卡规定区域,答案填写在试题纸或草稿纸上一律无效。
一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是( )A .222()a b a b -=-B .236()a a -=-C .224x x x +=D .326326a a a ⋅=2.设1x ,2x 是一元二次方程2210x x +-=的两个根,则12(1)(1)x x ++的值为( )A .2-B .2C .1-D .13.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特色三角形”,其中α称为“特色角”.如果一个“特色三角形”的“特色角”为110︒,那么这个“特色三角形”的最小内角的度数为( )A .10︒B .15︒C .20︒D .25︒4.从2、3、4、5这四个数中,任取两个数p 、q (p q ≠)构成函数2y px =-和y x q =+,并使这两个函数图象的交点在直线2x =的右侧,则这样的有序数对(,)p q 共有( )A .5对B .6对C .7对D .8对5.一个质地均匀的正方体骰子的六个面分别刻有1到6的点数,将骰子抛掷两次,掷第一次,将朝上一面的点数记为x ,掷第二次,将朝上一面的点数记为y ,则点(,)x y 落在直线5y x =-+上的概率为( )6.函数||(4cos30)2y x x x ︒=-+的图象与x 轴交点的个数为 ( )A .0B .2C .3D .4 7.如图1,P 为平行四边形ABCD 边AD 上一点,E ,F 分别是PB ,PC 的中点,记PEF △,PDC △,PAB △的面积分别为S ,1S ,2S ,若2S =,则12S S +=( )A .4B .8C .6D .128.如图2,已知矩形纸片ABCD ,3AB =,9AD =,将其折叠使点D 与点B 重合,得折痕EF ,则EF的长为( )A .3B .23 C.10 D .31029.如图3,扇形DOE 的半径为3,边长为3的菱形OABC 的顶点A ,C ,B 分别在OD ,OE ,»DE上,若把扇形DOE 围成一个圆锥,则此圆锥的高为( )A .22B .23C .352 D .37210.已知(2,3)P -是反比例函数y x =图象上的点,Q 是双曲线在第四象限这一分支上的动点,过点Q 作直线,使其与双曲线k y x =只有一个公共点,且与x 轴、y 轴分别交于点C 、D ,另一直线362y x =+与x 轴、y 轴分别交于点A 、B ,则四边形ABCD 面积的最小值为 ( )A .36B .38C .46D .48二、填空题:(本大题共6小题,每小题4分,共24分.)11.已知12x y =⎧⎨=⎩是关于x 、y 的二元一次方程236ax by ax by -=⎧⎨+=⎩的解,则a b += .12.已知直角三角形两边x ,y 的长满足22|9|10250x y y -+-+=,则第三边的长为 . 13.已知22(2013)(2013)2013x x y y +-+-=,则20142014x yx y+=+ .图1 图2 图314.如图4,在平面直角坐标系中,Rt OAB△的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为1(,0)2,点P为斜边OB上的一动点,则PA PC+的最小值为.15.如图5,在Rt ABC△中,CD、CE分别是斜边AB上的高、中线,且BC a=,AC b=(b a>),若1tan3DCE∠=,则ab=.16.如图6,线段1AC n=+(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN 及正方形BCEF,连结AM、ME、EA得到AME△.当1AB=时,AME△的面积记为1S;当2AB=时,AME△的面积记为2S;当3AB=时,AME△的面积记为3S,…;当AB n=时,AME△的面积记为nS.当2n≥时,1n nS S--=.三、解答题:(本大题共8小题,共96分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知一次函数1y x b=+(b为常数)的图象与反比例函数2kyx=(k为常数,且0k≠)的图象相交于点(3,1)P.(1)求这两个函数的解析式;(2)当3x>时,试判断1y与2y的大小,并说明理由.18.(10分)某市教育局为了了解七年级学生第一学期参加社会实践活动的天数,随机抽查本市部分七年级学生的第一学期参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如下图7所示).图7图4 图5 图6请你根据图中提供的信息,回答下列问题:(1)a =%,并写出该扇形所对圆心角的度数为 ,补全条形图; (2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该市共有七年级学生20000人,请你估计“活动时间不少于5天”的大约有多少人.19.(10分)如图8,梯形ABCD 中,AD BC ∥,:1:3AD BC =,对角线AC 与BD 相交于点O ,AE BC ⊥,垂足为E ,AE 恰好过BD 的中点F ,且30FBE ︒∠=.(1)求证:AOF △是等边三角形;(2)若BF 和OF 是关于x 的方程2(2)0x k x k --+=的两根,试求k 的值和梯形ABCD 的面积.20.(12分)如图9,四边形ABCD 内接于O e ,BD 是O e 的直径,AE CD ⊥于点E ,DA 平分BDE ∠. (1)求证:AE 是O e 的切线;(2)如果4AB =,2AE =,求O e 的半径.21.(12分)某商场销售甲、乙两种品牌的智能手机,这两部手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.(毛利润=甲 乙进价(元/部) 4000 2500售价(元/部) 4300 3000图8图9(售价-进价)⨯销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调查,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.22.(14分)ABC △中,AB AC =,点D 为BC 边的中点,点F 是AB 边上一点,点E 在线段DF 的延长线上,BAE BDF ∠=∠,点D 在线段DF 上,ABE DBM ∠=∠.(1)如图10,当45ABC ︒∠=时,求证:2AE MD=;(2)如图11,当60ABC ︒∠=时,线段AE 、MD 之间的数量关系为 ;(3)在(2)的条件下,延长BM 到点P ,使MP BM =,连结CP ,若7AB =,27AE =,求tan ACP ∠的值.23.(14分)如图12,梯形ABCD 中,90C ︒∠=,动点E 、F 同时从点B 出发,点E 沿折线BA AD DC --运动到点C 时停止运动,点F 沿BC 运动到点C 时停止运动,它们运动时的速度都是1/cm s ,设E 、F 出发t s 时,EBF △的面积为y 2cm .已知y 与t 的函数图象如图13所示,其中曲线OM 为抛物线的一部分,MN 、NP 为线段.请根据图中的信息,解答下列问题:图12图13图10图11(1)梯形上底的长AD = cm ,梯形ABCD 的面积= 2cm ;(2)当点E 在BA 、DC 上运动时,分别求出y 与t 的函数关系式(注明自变量的取值范围); (3)当t 为何值时,EBF △与梯形ABCD 的面积之比为1:2.24.(14分)已知,在Rt OAB △中,90OAB ︒∠=,30BOA ︒∠=,2AB =,若以O 为坐标原点,OA 所在直线为x 轴,建立如图14所示的平面直角坐标系,点B 在第一象限内,将Rt OAB △沿OB 折叠后,点A 落在第一象限内的点C 处. (1)求点C 的坐标;(2)若一条抛物线经过点O 、C 、A 三点,求此抛物线的解析式;(3)设(2)中抛物线的对称轴与OB 交于点D ,线段OB 与抛物线交于点E ,点P 为线段OE 上一动点(点P 不与点O 、点E 重合),过P 作y 轴的平行线,交抛物线于点M ,问:在对称轴的两侧是否存在这样的点P ,使得PD CM =?若存在,求出此时点P 的坐标;若不存在,请说明理由.图14。
黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C.32 D.232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.236.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________. 8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________. 11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
2018年5月黄陂区部分学校联考八年级数学试题一、选择题(共10题,每小题3分,共30分) 1. 在函数3-=x y 中,自变量x 的取位范围是( )A. 3<xB. 3>xC. 3≥xD. 3≤x 2. 下列计算正确的是( ) A .312=+B .6223=⨯C .532=+D .228=÷3.下面那个点不在函数y =-2x +3的图象上( )A .(-5, 13)B .(0.5,2)C .(3,0)D .(1,1) 4.直线y =2x -1不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 5.正方形具有而矩形不一定具有的性质是( )A .四个角都是直角B .对角线互相平分C .对角线相等D .对角线互相垂直 6.己知点(-4,y 1)(2,y 2)都在直线y =-3x +2上,则y 1、y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .不能比较7.如图,矩形ABCD 中,对角线AC ,BD 交于O 点,若∠AOB =60°,AC =8,则AB 的长为( )A .4 B. C .3 D .58.如图,平行四边形ABCD 中,E 是BC 边上的一点,且AB=AE ,若AE 平分∠DAB ,∠EAC=20°,则∠AED 的度数为( )A 、70°B 、75° C 、80° D 、85°第7题 第8题9.某居民小区的俯视图如图所示,点A 处为小区的大门,小方块处是建筑物,圆饼处是花坛,A D CBO扇形处是休闲广场,空白处是道路。
从小区大门口向东或向南走到休闲广场,走法共有( )A. 7种B. 8种C. 9种D. 10第9题图第10题图 10.如图所示图象(折线ABCDE )描述了轮船在海上沿笔直路线行驶过程中,轮船离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①轮船共行驶了120千米;②轮船在行驶途中停留了0.5小时;③轮船在整个过程中的平均速度为1603千米/时;④轮船自出发后3小时至4.5小时之间行驶的速度在逐渐减少,其中正确的说法共有() A .1个 B .2个 C .3个 D .4 个 一、填空题:(共6题,每小题3分,共18分)11. 已知函数12-+=m x y 是正比例函数,则m =____12.如图,菱形ABCD 的周长为20cm ,且∠ABC=60º,则花坛的面积为 2。
湖北省武汉市黄陂区2013-2014 学年八年级(下)期末数学试卷一、选择题(每题 3 分,共 30 分)本题共10 个小题,每题均给出A、 B、 C、 D 四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,答在试题卷上无效 .1.( 3 分)二次根式存心义的条件是()A.x> 2B.x< 2C.x≥2D. x≤22.( 3 分)以下计算正确的选项是()A.=±2B.C.2﹣=2D.3.( 3 分)如图,数轴上点 A 对应的数为2, AB⊥ OA 于 A,且 AB=1,以 OB 为半径画圆,交数轴于点C,则 OC 的长为()A.3B.C.D.4.( 3 分)为参加中学生篮球运动会,某校篮球队准备购置10 双运动鞋,各样尺码统计如下表,则这 10 双运动鞋的尺码的众数和中位数分别为()尺码(厘米)25 26 27购置量(双) 1 2 3 2 2A.,B., 26C.26,D. 26, 265.( 3 分)已知在一次函数y=﹣1.5x+3 的图象上,有三点(﹣3,y1)、(﹣ 1,y2)、( 2,y3),则 y1,y2, y3的大小关系为()A.y1> y2> y3 B.y1> y3> y2 C.y2> y1>y3 D.没法确立6.( 3 分)菱形的两条对角线长分别为9cm 与 4cm,则此菱形的面积为() cm2.A.12 B.18 C.20 D. 367.( 3 分)匀速地向如图的容器内灌水,最后把容器注满,在灌水过程中,水面的高度h 随时间 t 的变化而变化,变化规律为一折线,以下图象(草图)正确的选项是()A.B.C.D.8.( 3 分)某中学规定学生的学期体育成绩满分为100 分,此中课外体育占20%,期中考试成绩占 30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90, 88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D. 939.( 3 分)如图,点 O( 0, 0), A( 0, 1)是正方形OAA1B 的两个极点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,,依此规律,则点A8的坐标是()A.(﹣ 8, 0)B.( 0, 8)C.( 0, 8)D.( 0, 16)10.( 3 分)如图,正方形ABCD 的边长为2,点 E、 F 分别为边 AD 、BC 上的点, EF=,点 G、H 分别为 AB 、CD 边上的点,连结GH,若线段 GH 与 EF 的夹角为45°,则 GH 的长为()A.B.C.D.二、填空题(每题 3 分,共 18 分)11.(3 分)计算:= _________.12.( 3 分)若 3, a, 4, 5 的众数是4,则这组数据的均匀数是_________.13.( 3 分)平行四边形的一个内角均分线将该平行四边形的一边分为3cm 和 4cm 两部分,则该平行四边形的周长为_________.14.( 3 分)已知点 A(﹣ 3,a), B( 1,b)都在一次函数y=kx+2 的图象上,则a与 b 的数量关系为_________.15.( 3 分)在一次越野赛跑中,当小明跑了1600m 时,小刚跑了1450m,今后两人分别调整速度,并以各自新的速度匀速跑,又过100s时小刚追上小明,200s 时小刚抵达终点,300s 时小明抵达终点.他们赛跑使用时间t( s)及所跑距离如图s(m),此次越野赛的赛跑全程为_________ m?16.( 3 分)在平面直角坐标系中,直线y=kx+x+1 过必定点A,坐标系中有点B( 2,0)和点 C,要使以 A、O、B、C 为极点的四边形为平行四边形,则点C的坐标为_________.17.( 6 分)化简:.18.( 6 分)在平面直角坐标系中,直线y=kx﹣ 2 经过点 A(﹣ 2, 0),求不等式4kx+3≤0的解集.19.( 6 分)已知 ?ABCD 中, AE 均分∠ BAD, CF 均分∠ BCD ,分别交 CD、 AB 于 E、 F,求证: AE=CF.20.( 7 分)点 P( x,y)在直线 x+y=8 上,且 x> 0,y> 0,点 A 的坐标为( 6,0),设△ OPA 的面积为S.(1)求 S与 x 的函数关系式,并直接写出x 的取值范围;(2)当 S=12 时,求点P 的坐标.21.( 7 分)某企业为了认识职工每人所创年收益状况,企业从各部抽取部分职工对每年所创年收益状况进行统计,并绘制如图1,图 2 统计图.(1)将图增补完好;(2)本次共抽取职工_________人,每人所创年收益的众数是_________,均匀数是_________;(3)若每人创建年收益10 万元及(含10 万元)以上位优异职工,在企业1200职工中有多少能够评为优异职工?22.( 8 分)如图,在 ?ABCD 中, E 是 AD 上一点,连结BE ,F 为 BE 中点,且AF=BF,(1)求证:四边形 ABCD 为矩形;(2)过点 F 作 FG ⊥BE,垂足为 F,交 BC 于点 G,若 BE=BC, S△BFG=5 , CD=4 ,求 CG.23.(10 分)某欢喜谷为回馈广大谷迷,在暑期时期推出学生个人门票优惠价,各票价以下:票价种类( A)学生夜场票(B)学诞辰通票(C)节假日通票单价(元)80120150某慈善单位欲购置三种种类的票共100 张奖赏德才兼备的留守学生,此中购置的 B 种票数是 A 种票数的 3 倍还多 7 张, C 种票 y张.(1)直接写出 x 与 y 之间的函数关系式;(2)设购票总花费为元,求(元)与x(张)之间的函数关系式;(3)为方便学生游乐,计划购置的学生夜场票不低于20 张,且每种票起码购置 5 张,则有几种购票方案?并指出哪一种方案花费最少.(1)如图 1,若 AB=BC, BF∥ DE ,且交 AG 于点 F,求证: AF﹣ BF=EF;(2)如图 2,在( 1)条件下, AG=BG,求;(3)如图 3,连 EC,若 CG=CD , DE=2, GE=1 ,则 CE = _________ (直接写出结果)25.( 12 分)在平面直角坐标系中,已知点A(a, 0),C( 0, b)知足( a+1 )2+=0(1)直接写出:a= _________,b=_________;(2)点 B 为 x 轴正半轴上一点,如图1,BE⊥ AC 于点 E,交 y 轴于点 D,连结 OE,若 OE 均分∠ AEB,求直线BE 的分析式;(3)在( 2)条件下,点M 为直线 BE 上一动点,连OM ,将线段OM 逆时针旋转90°,如图 2,点 O 的对应点为N,当点 M 的运动轨迹是一条直线l,请你求出这条直线l 的分析式.参照答案与试题分析一、选择题(每题 3 分,共 30 分)本题共10 个小题,每题均给出A、 B、 C、 D 四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,答在试题卷上无效 .1.( 3 分)二次根式存心义的条件是()A.x> 2B.x< 2C.x≥2D. x≤2考点:二次根式存心义的条件.剖析:依据被开方数大于等于0 列式计算即可得解.解答:解:由题意得,x﹣ 2≥0,解得 x≥2.应选 C.评论:本题考察的知识点为:二次根式的被开方数是非负数.2.( 3 分)以下计算正确的选项是()A.=±2B.C.2﹣=2D.考点:二次根式的混淆运算.专题:计算题.剖析:依据算术平方根的定义对 A 进行判断;依据二次根式的乘法法例对 B 进行判断;依据二次根式的加减法对C、 D 进行判断.解答:解: A、原式 =2 ,因此 A 选项错误;B、原式 = = ,因此 B 选项正确;C、原式 = ,因此 C 选项错误;D、与不可以归并,因此 D 选项错误.应选 B.评论:本题考察了二次根式的混淆运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,而后归并同类二次根式.3.( 3 分)如图,数轴上点 A 对应的数为2, AB⊥ OA 于 A,且 AB=1,以 OB 为半径画圆,交数轴于点C,则 OC 的长为()A.3B.C.D.考点:实数与数轴;勾股定理.剖析:先在直角△ OAB中,依据勾股定理求出OB,再依据同圆的半径相等即可求解.解答:解:∵在直角△OAB 中,∠ OAB=90°,∴OB===,∴OC=OB=.应选 D.评论:本题考察了实数与数轴,勾股定理等知识点的应用,重点是求出 OB 长,题目比较好,难度适中.4.( 3 分)为参加中学生篮球运动会,某校篮球队准备购置10 双运动鞋,各样尺码统计如下表,则这 10 双运动鞋的尺码的众数和中位数分别为()尺码(厘米)25 26 27购置量(双) 1 2 3 2 2A.,B., 26C.26,D. 26, 26考点:众数;中位数.剖析:找中位数要把数据按从小到大的次序摆列,位于最中间的一个数(或两个数的均匀数)为中位数;众数是一组数据中出现次数最多的数据,注意众数能够不只一个.解答:解:在这一组数据中26 是出现次数最多的,故众数是26;处于这组数据中间地点的数是26、26,那么由中位数的定义可知,这组数据的中位数是( 26+26 )÷2=26 ;应选 D.评论:本题为统计题,考察众数与中位数的意义,解题的重点是正确认识表格.5.( 3 分)已知在一次函数y=﹣1.5x+3 的图象上,有三点(﹣3,y1)、(﹣ 1,y2)、( 2,y3),则 y1,y2, y3的大小关系为()A.y1> y2> y3 B.y1> y3> y2 C.y2> y1>y3 D.没法确立考点:一次函数图象上点的坐标特色.剖析:分别把各点代入一次函数y=﹣ 1.5x+3 ,求出 y1, y2, y3的值,再比较出其大小即可.解答:解:∵点(﹣3,y1)、(﹣1,y2)、(2,y3)在一次函数y=﹣ 1.5x+3 的图象上,∴y1=﹣1.5 ×(﹣ 3) +3=7.5 ; y2=﹣ 1.5 ×(﹣ 1) +3=1.5 ; y3=﹣ 1.5×2+3=0 ,∵>>0,∴y1> y2> y3.应选 A.评论:本题考察的是一次函数图象上点的坐标特色,熟知一次函数图象上各点的坐标必定合适此函数的分析式是解答本题的重点.6.( 3 分)菱形的两条对角线长分别为9cm 与 4cm,则此菱形的面积为() cm2.A.12 B.18 C.20 D. 36考点:菱形的性质.剖析:已知对角线的长度,依据菱形的面积计算公式即可计算菱形的面积.解答:解:依据对角线的长能够求得菱形的面积,依据 S= ab=×4cm×9cm=18cm2,应选: B.评论:本题考察了依据对角线计算菱形的面积的方法,依据菱形对角线求得菱形的面积是解题的重点,难度一般.7.( 3 分)匀速地向如图的容器内灌水,最后把容器注满,在灌水过程中,水面的高度h 随时间 t 的变化而变化,变化规律为一折线,以下图象(草图)正确的选项是()A.B.C.D.考点:函数的图象.剖析:因为三个容器的高度同样,粗细不一样,那么水面高度h 随时间 t 变化而分三个阶段.解答:解:最下边的容器较最粗,第二个容器较粗,那么每个阶段的函数图象水面高度h 随时间 t 的增大而增加缓陡,用时较短,应选 C.评论:本题考察了函数的图象,解决本题的重点是依据三个容器的高度同样,粗细不一样获得用时的不一样.8.( 3 分)某中学规定学生的学期体育成绩满分为100 分,此中课外体育占20%,期中考试成绩占 30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90, 88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D. 93考点:加权均匀数.剖析:依据加权均匀数的计算公式列出算式,再进行计算即可.解答:解:依据题意得:95×20%+90×30%+88×50%=90 (分).即小彤这学期的体育成绩为90 分.应选 B.评论:本题考察了加权均匀数,掌握加权均匀数的计算公式是本题的重点,是一道常考题.9.( 3 分)如图,点 O( 0, 0), A( 0, 1)是正方形OAA1B 的两个极点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,,依此规律,则点A8的坐标是()A.(﹣ 8, 0)B.( 0, 8)C.( 0, 8)D.( 0, 16)考点:规律型:点的坐标.剖析:依据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,因此可求出从 A 到 A3的后变化的坐标,再求出A1、A2、 A3、 A4、A5,得出 A8即可.解答:解:依据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,∵从 A 到 A3经过了 3 次变化,∵45°×3=135°, 1×()3=2 .∴点 A3所在的正方形的边长为2,点A3地点在第四象限.∴点 A3的坐标是( 2,﹣ 2);可得出: A1点坐标为( 1,1),A2点坐标为( 0, 2),A3点坐标为( 2,﹣ 2),A4点坐标为( 0,﹣ 4), A5点坐标为(﹣4,﹣ 4),A6(﹣ 8, 0), A7(﹣ 8, 8), A8(0, 16),应选: D.评论:本题主要考察正方形的性质和坐标与图形的性质的知识点,解答本题的重点是由点坐标的规律发现每经过8 次作图后,点的坐标符号与第一次坐标符号同样,每次正方形的边长变成本来的倍,本题难度较大.10.( 3 分)如图,正方形ABCD 的边长为2,点 E、 F 分别为边 AD 、BC 上的点, EF=,点 G、H 分别为 AB 、CD 边上的点,连结GH,若线段 GH 与 EF 的夹角为45°,则 GH 的长为()A.B.C.D.考点:正方形的性质.剖析:过点B作BK∥ EF交AD于K,作BM∥ GH交CD于M,可得∠ KBM =45°,作∠ MBN=45°交 DC 的延伸线于N,求出∠ ABK =∠ CBN,而后利用“角边角”证明△ ABK 和△ CBN全等,依据全等三角形对应边相等可得BN=BK,AK =CN,利用勾股定理列式求出AK ,过点 M 作 MP⊥BN 于 P,可得△ BMP 是等腰直角三角形,设GH=BM=x,表示出MP,而后利用∠ N 的正切值列出方程求解即可.解答:解:如图,过点 B 作 BK∥ EF 交 AD 于 K,作 BM∥GH 交 CD 于 M,则 BK=EF=,BM=GH,∵线段 GH 与 EF 的夹角为45°,∴∠ KBM =45°,∴∠ ABK +∠ CBM=90°﹣ 45°=45°,作∠ MBN=45°交 DC 的延伸线于N,则∠ CBN+∠CBM =45°,∴∠ ABK =∠ CBN,在△ ABK 和△ CBN 中,,∴△ ABK ≌△ CBN( ASA),∴BN =BK ,AK =CN,在 Rt△ ABK 中, AK===1 ,过点 M 作 MP⊥BN 于 P,∵∠ MBN=45°,∴△ BMP 是等腰直角三角形,设 GH=BM =x,则 BP=MP =BM =x,∵tan ∠N= =,∴=,解得 x=,因此 GH=.应选 B.评论:本题考察了正方形的性质,全等三角形的判断与性质,等腰直角三角形的性质,锐角三角函数的定义,熟记各性质并作协助线结构出全等三角形和等腰直角三角形是解题的重点.二、填空题(每题 3 分,共18 分)11.(3 分)计算:= 5.考点:二次根式的加减法.专题:计算题.剖析:先将二次根式化为最简,而后归并同类二次根式可得出答案.解答:解:原式=2+3=5.故答案为: 5.评论:本题考察二次根式的加减法,比较简单,注意先将二次根式化为最简.12.( 3 分)若 3, a, 4, 5 的众数是4,则这组数据的均匀数是4.考点:算术均匀数;众数.剖析:先依据众数的定义求出 a 的值,再依据均匀数的定义列出算式,再进行计算即可.解答:解:∵ 3,a,4,5的众数是4,∴a=4,∴这组数据的均匀数是(3+4+4+5 )÷4=4;故答案为: 4.评论:本题考察了众数和算术均匀数,重点是依据众数的定义求出 a 的值,用到的知识点是众数的定义、均匀数的计算公式.13.( 3 分)平行四边形的一个内角均分线将该平行四边形的一边分为3cm 和 4cm 两部分,则该平行四边形的周长为20cm 或 22cm.考点:平行四边形的性质.剖析:依据题意画出图形,由平行四边形得出对边平行,又由角均分线能够得出△ABE 为等腰三角形,能够求解.解答:解:∵ ABCD为平行四边形,∴AD ∥BC,∴∠ DAE =∠AEB,∵AE 为角均分线,∴∠ DAE =∠BAE,∴∠ AEB=∠ BAE,∴AB =BE,∴①当 BE=3 cm, CE=4cm, AB=3cm,则周长为20cm;②当 BE=4 cm 时, CE=3cm, AB=4cm,则周长为22cm.故答案为: 20cm 或 22cm.评论:本题考察了平行四边形的性质,联合了等腰三角形的判断.注意有两种状况,要进行分类议论.14.( 3 分)已知点 A(﹣ 3,a), B( 1,b)都在一次函数y=kx+2 的图象上,则a与 b 的数量关系为a=8﹣ 3b.考点:一次函数图象上点的坐标特色.剖析:分别把点A(﹣ 3,a),B(1,b)代入一次函数y=kx+2 ,再用加减消元法消去k 即可得出结论.解答:解:∵点A(﹣ 3,a), B( 1, b)都在一次函数y=kx+2 的图象上,∴,①+② ×3 得, a+3b=8 ,即 a=8﹣3b.故答案为: a=8﹣ 3b.评论:本题考察的是一次函数图象上点的坐标特色,熟知一次函数图象上各点的坐标必定合适此函数的分析式是解答本题的重点.15.( 3 分)在一次越野赛跑中,当小明跑了1600m 时,小刚跑了1450m,今后两人分别调整速度,并以各自新的速度匀速跑,又过100s时小刚追上小明,200s 时小刚抵达终点, 300s 时小明抵达终点.他们赛跑使用时间t(s)及所跑距离如图s( m),此次越野赛的赛跑全程为2050 m?考点:一次函数的应用;二元一次方程组的应用.剖析:设小明、小刚新的速度分别是xm/s、 ym/s,而后依据100s 后两人相遇和两人抵达终点的行程列出对于 x、y 的二元一次方程组,求解后再依据小明所跑的行程等于越野赛的全程列式计算即可得解.解答:解:设小明、小刚新的速度分别是xm/s、 ym/s,由题意得,由①得,③,由②得, 4y﹣ 3=6x④,③代入④得, 4x+6﹣ 3=6x,解得,故此次越野赛的赛跑全程=1600+300×1.5=1600+450=2050 m.故答案为: 2050.评论:本题考察了二元一次方程组的应用,读懂题目信息,认真察看图形确立出追击问题的两个等量关系,而后列出方程组是解题的重点.16.( 3 分)在平面直角坐标系中,直线y=kx+x+1 过必定点 A,坐标系中有点B( 2,0)和点 C,要使以 A、 O、 B、 C 为极点的四边形为平行四边形,则点 C 的坐标为(﹣ 2,1),(2,﹣ 1)或( 2, 1).考点:平行四边形的判断;一次函数图象上点的坐标特色.剖析:第一求得 A 的坐标,依据平行四边形的对角线相互均分,分OA 是对角线, OB 是对角线、 OC 是对角线三种状况议论,利用中点公式即可求解.解答:解: A 的坐标是( 0, 1),当 OA 是对角线时,对角线的中点是(0,),则 BC 的中点是( 0,),设 C 的坐标是( x, y),的( 2+x) =0,且(0+ y) = ,解得: x=﹣ 2, y=1,则 C 的坐标是(﹣ 2, 1);同理,当 OB 是对角线时, C 的坐标是( 2,﹣ 1);当 OC 是对角线时,此时 AB 是对角线, C 的坐标是( 2, 1).故答案是:(﹣ 2, 1),( 2,﹣ 1)或( 2, 1).评论:本题考察了平行四边形的性质:对角线相互均分,以及中点公式,正确进行议论是重点.三、解答题(共9 小题,共72 分)17.( 6 分)化简:.考点:二次根式的加减法.剖析:先把各根式化为最简二次根式,再归并同类项即可.解答:解:原式 =2 +3 ﹣ 2=3 .评论:本题考察的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数同样的二次根式进行归并,归并方法为系数相加减,根式不变是解答本题的重点.18.( 6 分)在平面直角坐标系中,直线y=kx﹣ 2 经过点 A(﹣ 2, 0),求不等式4kx+3≤0的解集.考点:一次函数与一元一次不等式.剖析:第一将已知点的坐标代入到直线y=kx﹣ 2 中求得 k 值,而后辈入不等式即可求得x 的取值范围.解答:解:∵将点A(﹣ 2, 0)代入直线y=kx﹣ 2,得:﹣ 2k﹣ 2=0,即 k=﹣ 1,∴﹣4x+3≤0,解得x≥ .评论:本题考察了一次函数与一元一次不等式:先画出函数图象,而后察看函数图象,比较函数图象的高低(即比较函数值的大小),确立对应的自变量的取值范围.也考察了数形联合的思想.19.( 6 分)已知 ?ABCD 中, AE 均分∠ BAD, CF 均分∠ BCD ,分别交 CD、 AB 于 E、 F,求证: AE=CF.考点:平行四边形的性质;全等三角形的判断与性质.专题:证明题.剖析:利用平行四边形的性质得出∠DAE =∠ BCF , AD=BC,∠ D=∠ B,从而联合平行线的性质和全等三角形的判断方法得出答案.解答:证明:∵ ?ABCD,∴ AD=BC,∠ D=∠ B,∠ DAB =∠DCB,又 AE 均分∠ BAD, CF 均分∠ BCD ,∴∠ DAE =∠BCF ,在△ DAE 和△ BCF 中,,∴△ DAE ≌△ BCF ( ASA),∴AE =CF.评论:本题主要考察了平行四边形的性质以及全等三角形的判断等知识,得出∠DAE =∠ BCF 是解题重点.20.( 7 分)点 P( x,y)在直线 x+y=8 上,且 x> 0,y> 0,点 A 的坐标为( 6,0),设△OPA 的面积为 S.(1)求 S与 x 的函数关系式,并直接写出x 的取值范围;(2)当 S=12 时,求点 P 的坐标.考点:一次函数图象上点的坐标特色.剖析:(1)依据题意画出图形,依据三角形的面积公式即可得出结论;(2)把 S=12 代入( 1)中的关系式即可.解答:解:( 1)以下图:∵点 P( x, y)在直线x+y=8 上,∴y=8﹣ x,∵点 A 的坐标为( 6, 0),∴S=3( 8﹣x) =24 ﹣ 3x,( 0< x<8);(2)当 24﹣ 3x=12 时, x=4 ,即 P 的坐标为( 4, 4)评论:本题考察的是一次函数图象上点的坐标特色,熟知一次函数图象上各点的坐标必定合适此函数的分析式是解答本题的重点.21.( 7 分)某企业为了认识职工每人所创年收益状况,企业从各部抽取部分职工对每年所创年收益状况进行统计,并绘制如图1,图 2 统计图.(1)将图增补完好;(2)本次共抽取职工50人,每人所创年收益的众数是8 万元,均匀数是8.12 万元;(3)若每人创建年收益10 万元及(含10 万元)以上位优异职工,在企业1200职工中有多少能够评为优异职工?考点:条形统计图;用样本预计整体;扇形统计图.剖析:(1)求出3万元的职工的百分比, 5 万元的职工人数及8 万元的职工人数,再据数据制图.(2)利用 3 万元的职工除以它的百分比就是抽取职工总数,利用定义求出众数及均匀数.(3)优异职工 =企业职工×10 万元及(含 10 万元)以上优异职工的百分比.解答:解:(1)3万元的职工的百分比为:1﹣ 36%﹣ 20%﹣ 12%﹣24%=8% ,抽取职工总数为:4÷8%=50 (人)5 万元的职工人数为:50×24%=12 (人)8 万元的职工人数为:50×36%=18 (人)(2)抽取职工总数为:4÷8%=50(人)每人所创年收益的众数是8 万元,均匀数是:( 3×4+5×12+8×18+10×10+15×6)=8.12 万元故答案为: 50, 8 万元, 8.12 万元.(3) 1200×=384(人)答:在企业1200 职工中有384 人能够评为优异职工.评论:本题考察了条形统计图,扇形统计图,以及加权均匀数的计算公式,读懂统计图,从不一样的统计图中获得必需的信息是解决问题的重点.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反应部分占整体的百分比大小.22.( 8 分)如图,在 ?ABCD 中, E 是 AD 上一点,连结BE ,F 为 BE 中点,且AF=BF,(1)求证:四边形 ABCD 为矩形;(2)过点 F 作 FG ⊥BE,垂足为 F,交 BC 于点 G,若 BE=BC, S△BFG=5 , CD=4 ,求 CG.考点:矩形的判断与性质;勾股定理;平行四边形的性质.剖析:(1)求出∠ BAE=90°,依据矩形的判断推出即可;(2)求出△ BGE 面积,依据三角形面积公式求出BG,得出 EG 长度,依据勾股定理求出 GH ,求出 BE,得出 BC 长度,即可求出答案.解答:(1)证明:∵ F 为 BE 中点, AF=BF,∴AF=BF =EF,∴∠ BAF=∠ ABF ,∠ FAE=∠AEF ,在△ ABE 中,∠ BAF+∠ ABF+∠ FAE+∠ AEF=180°,∴∠ BAF+∠FAE=90°,又四边形 ABCD 为平行四边形,∴四边形 ABCD 为矩形;(2)解:连结 EG,过点 E 作 EH ⊥ BC,垂足为 H ,∵F 为 BE 的中点, FG⊥ BE,∴BG=GE,∵S△BFG =5, CD =4,∴S△BGE=10= BG?EH,∴BG=GE=5,在 Rt△ EGH 中, GH ==3,在 Rt△ BEH 中, BE==4=BC,∴CG=BC﹣ BG=4﹣5.评论:本题考察了矩形的判断,勾股定理,三角形的面积,线段垂直均分线性质等知识点的应用,主要考察学生综合运用性质进行推理的能力,题目比较好,有必定的难度.23.(10 分)某欢喜谷为回馈广大谷迷,在暑期时期推出学生个人门票优惠价,各票价以下:票价种类( A)学生夜场票(B)学诞辰通票(C)节假日通票单价(元)80120150某慈善单位欲购置三种种类的票共100 张奖赏德才兼备的留守学生,此中购置的 B 种票数是 A 种票数的 3 倍还多 7 张, C 种票 y张.(1)直接写出 x 与 y 之间的函数关系式;(2)设购票总花费为元,求(元)与x(张)之间的函数关系式;(3)为方便学生游乐,计划购置的学生夜场票不低于20 张,且每种票起码购置 5 张,则有几种购票方案?并指出哪一种方案花费最少.考点:一次函数的应用;一元一次不等式组的应用.专题:计算题.剖析:(1)依据总票数为100 获得 x+3x+7+ y=100,而后用 x 表示 y 即可;(2)利用表中数据把三种票的花费加起来获得 w=80x+120( 3x+7)+150 ( 93﹣ 4x),而后整理即可;(3)依据题意获得,再解不等式组且确立不等式组的整数解为20、21、22,于是获得共有 3 种购票方案,而后依据一次函数的性质求w 的最小值.解答:解:(1)x+3 x+7+ y=100,因此 y=93 ﹣ 4x;(2) w=80x+120 ( 3x+7) +150( 93﹣ 4x)=﹣160x+14790 ;(3)依题意得,解得 20≤x≤22,因为整数x 为 20、 21、22,因此共有 3 种购票方案(A、 20,B、 67, C、 13; A、21, B、 70, C、 9; A、 22, B、73, C、 5);而 w=﹣ 160x+14790,因为 k=﹣ 160< 0,因此 y 随 x 的增大而减小,因此当 x=22 时, y 最小 =22×(﹣ 160) +14790=11270 ,即当 A 种票为 22 张,B 种票 73 张,C 种票为 5 张时花费最少,最少花费为 11270 元.评论:本题考察了一次函数的运用:从一次函数图象上获得实质问题中的量;对于分段函数在不一样区间有不一样对应方式的函数,特别注意自变量取值范围的区分,既要科学合理,又要切合实质.也考察了一元一次不等式的应用和一次函数的性质.24.( 10 分)四边形 ABCD 为矩形, G 是 BC 上的随意一点,DE⊥ AG 于点 E.(1)如图 1,若 AB=BC, BF∥ DE ,且交 AG 于点 F,求证: AF﹣ BF=EF;(2)如图 2,在( 1)条件下, AG=BG,求;(3)如图 3,连 EC,若 CG=CD , DE=2, GE=1 ,则 CE =(直接写出结果)考点:四边形综合题.剖析:(1)利用△ AED ≌△ BFA 求得 AE =BF,再利用线段关系求出AF ﹣BF =EF .(2)延伸 AG 与 DC 交于点 F ,设 BG=t 先求出 AB,再利用△ ABG≌△ FCG 及直角三角形斜边上的中点,求出;(3)连结 DG ,作 EM⊥ BC 于 M 点,利用直角三角形求出DG, CD 的长,再利用ABG∽△ DEA ,求出 AD ,再运用△ EMG ∽△ DEA 求出 EM 和 MG ,再运用勾股定理即可求出 CE 的长.解答:(1)证明:∵四边形ABCD 为矩形, AB=BC,∴四边形 ABCD 为正方形,∴AD =AB ,∠ BAD =90°,又DE⊥AG,BF∥DE,∴∠ AED =∠AFB=90°,∵∠ BAF+∠DAE =90°,∠ BAE+∠ABF=90°,∴∠ DAE =∠ABF,在△ AED 和△ BFA 中,∴△ AED ≌△ BFA( AAS),∴A E=BF ,∴A F﹣ BF=EF,(2)如图 2,延伸 AG 与 DC 交于点 F,∵AG= BG,设 BG=t,则 AG= t,在 Rt△ ABG 中, AB= =2t,∴G 为 BC 的中点,在△ ABG 和△ FCG 中,∴△ ABG≌△ FCG ( AAS),∴A B=FC =CD ,又∵ DE ⊥ AG,在 Rt△ DEF 中, C 为斜边 DF 的中点,∴EC =CD =CF ,∴ = =(3)如图 3,连结 DG,作 EM⊥ BC 于 M 点,∵DE ⊥ AG, DE =2,GE=1,∴在 RT△DEG 中, DG ===,∵CG=CD ,∴在 RT△DCG 中,∠ CDG =∠CGD =45°,∴CD =CG==,∵∠ BAG+∠GAD =90°,∠ EDA +∠GAD =90°,∴∠ BAG=∠EDA ,∵∠ ABG=∠DEA =90°,∴△ ABG∽△ DEA ,∴= ,设 AD =x,则 AE= = , AG= +1,∴= ,解得 x1= , x2=﹣ 2 (舍去)∴AE= = ,又∵∠ BAG=∠ MEG ,∴∠ EDA =∠ MEG ,∴△ EMG ∽△ DEA∴= =,即==解得 EM=,MG=,∴CM =CG+MG=+=,∴CE===.故答案为:.评论:本题主要考察了四边形综合题,解题的重点是正确作出协助线,运用三角形相像求出线段的长度.本题难度较大,考察了学生计算能力.解题是必定要仔细.25.( 12 分)在平面直角坐标系中,已知点A(a, 0),C( 0, b)知足( a+1 )2+=0(1)直接写出: a= ﹣ 1 ,b= ﹣ 3 ;(2)点 B 为 x 轴正半轴上一点,如图 1,BE⊥ AC 于点 E,交 y 轴于点 D,连结 OE,若 OE均分∠ AEB,求直线BE 的分析式;(3)在( 2)条件下,点M 为直线 BE 上一动点,连OM ,将线段OM 逆时针旋转90°,如图 2,点 O 的对应点为N,当点 M 的运动轨迹是一条直线l,请你求出这条直线 l 的分析式.考点:一次函数综合题.剖析:(1)依据非负数是性质来求a、 b 的值;(2)如图 1,过点 O 作 OF⊥OE ,交 BE 于 F .建立全等三角形:△ EOC≌△ FOB(ASA),△AOC ≌△ DOB(ASA),易求 D( 0,﹣ 1),B( 3,0).利用待定系数法求得直线 BE的分析式y=x﹣ 1;(3)如图 2,过点 M 作 MG⊥ x 轴,垂足为G,过点 N 作 NH ⊥GH ,垂足为 H.建立28全等三角形:△ GOM ≌△ HMN ,故 OG=MH ,GM =NH .设 M( m, m﹣ 1),则 H( m,﹣m﹣ 1),N(m﹣1,﹣m﹣1),由此求得点N 的横纵坐标间的函数关系.解答:解:(1)依题意得a+1=0 , b+3=0,解得a=﹣ 1,b=﹣ 3.故答案是:﹣ 1;﹣ 3;(2)如图 1,过点 O 作 OF ⊥OE,交 BE 于 F.∵BE ⊥AC ,OE 均分∠ AEB,∴△ EOF 为等腰直角三角形.∵在△ EOC 与△ FOB 中,,∴△ EOC≌△ FOB ( ASA),∴OB =OC.∴在△ AOC 与△ DOB 中,,∴△ AOC≌△ DOB (ASA),∴OA =OD,∵A(﹣ 1, 0), B( 0,﹣ 3),∴ D( 0,﹣ 1), B( 3, 0)∴直线 BD ,即直线 BE 的分析式y=x﹣ 1;(3)依题意,△NOM 为等腰 Rt△,如图 2,过点 M 作 MG ⊥x 轴,垂足为G,过点 N 作 NH⊥GH ,垂足为H,∵△ NOM 为等腰 Rt△,则易证△ GOM ≌△ HMN ,∴OG=MH ,GM=NH ,由( 2)知直线BD 的分析式y=x﹣ 1,设 M (m, m﹣ 1),则 H( m,﹣ m﹣ 1),∴N( m﹣ 1,﹣ m﹣ 1),令 m﹣ 1= x,﹣ m﹣ 1=y,消去参数 m 得, y=﹣ x﹣即直线 l 的分析式为y=﹣x﹣.(说明:本题用取特别点计算的方法求分析式也行)评论:本题考察了一次函数综合题型.娴熟掌握等腰直角三角形的性质、全等三角形的判断与性质以及旋转的性质.30。
黄陂区第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.如图,直三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=,则异面直线A1C 与B1C1所成的角为()A.30°B.45°C.60°D.90°2.设函数的集合,平面上点的集合,则在同一直角坐标系中,P中函数的图象恰好经过Q中两个点的函数的个数是A4B6C8D103.已知f(x)为定义在(0,+∞)上的可导函数,且f(x)>xf′(x)恒成立,则不等式x2f()﹣f(x)>0的解集为()A.(0,1) B.(1,2) C.(1,+∞)D.(2,+∞)4.(2014新课标I)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.5.已知向量=(1,2),=(x,﹣4),若∥,则x=()A.4 B.﹣4 C.2 D.﹣26.在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有()A.20种B.22种C.24种D.36种7.已知函数f(x)=lnx+2x﹣6,则它的零点所在的区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)8.在△ABC中,a,b,c分别是角A,B,C的对边,a=5,b=4,cosC=,则△ABC的面积是()A.16 B.6 C.4 D.89.某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为()A.π1492+B.π1482+C.π2492+D.π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.10.若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(﹣1,0)∪(2,+∞) C .(2,+∞)D .(﹣1,0) 11.满足条件{0,1}∪A={0,1}的所有集合A 的个数是( )A .1个B .2个C .3个D .4个12.已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .12二、填空题13.已知点M (x ,y)满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 . 14.已知关于 的不等式在上恒成立,则实数的取值范围是__________15.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111]16.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .17.如果椭圆+=1弦被点A (1,1)平分,那么这条弦所在的直线方程是 .18.函数f (x )=log(x 2﹣2x ﹣3)的单调递增区间为 .三、解答题19.(本题满分15分)若数列{}n x 满足:111n nd x x +-=(d 为常数, *n N ∈),则称{}n x 为调和数列,已知数列{}n a 为调和数列,且11a =,123451111115a a a a a ++++=. (1)求数列{}n a 的通项n a ;(2)数列2{}nna 的前n 项和为n S ,是否存在正整数n ,使得2015n S ≥?若存在,求出n 的取值集合;若不存在,请说明理由.【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.20.已知过点P (0,2)的直线l 与抛物线C :y 2=4x 交于A 、B 两点,O 为坐标原点. (1)若以AB 为直径的圆经过原点O ,求直线l 的方程;(2)若线段AB 的中垂线交x 轴于点Q ,求△POQ 面积的取值范围.21.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.22.在ABC ∆中已知2a b c =+,2sin sin sin A B C =,试判断ABC ∆的形状.23.已知,其中e 是自然常数,a ∈R(Ⅰ)讨论a=1时,函数f (x )的单调性、极值;(Ⅱ)求证:在(Ⅰ)的条件下,f (x )>g (x )+.24.(本小题满分10分)已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y θθ=⎧⎨=⎩,(α为参数),经过伸缩变换32x xy y'=⎧⎨'=⎩后得到曲线2C . (1)求曲线2C 的参数方程;(2)若点M 的在曲线2C 上运动,试求出M 到曲线C 的距离的最小值.黄陂区第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:因为几何体是棱柱,BC∥B1C1,则直线A1C与BC所成的角为就是异面直线A1C与B1C1所成的角.直三棱柱ABC﹣AB1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=,BA1=,1CA1=,三角形BCA1是正三角形,异面直线所成角为60°.故选:C.2.【答案】B【解析】本题考查了对数的计算、列举思想a=-时,不符;a=0时,y=log2x过点(,-1),(1,0),此时b=0,b=1符合;a=时,y=log2(x+)过点(0,-1),(,0),此时b=0,b=1符合;a=1时,y=log2(x+1)过点(-,-1),(0,0),(1,1),此时b=-1,b=1符合;共6个3.【答案】C【解析】解:令F(x)=,(x>0),则F′(x)=,∵f(x)>xf′(x),∴F′(x)<0,∴F(x)为定义域上的减函数,由不等式x2f()﹣f(x)>0,得:>,∴<x,∴x>1,故选:C.4.【答案】C【解析】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx||sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.5.【答案】D【解析】:解:∵∥,∴﹣4﹣2x=0,解得x=﹣2.故选:D.6.【答案】C【解析】解:根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法;②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法;故选:C.7.【答案】C【解析】解:易知函数f(x)=lnx+2x﹣6,在定义域R+上单调递增.因为当x→0时,f(x)→﹣∞;f(1)=﹣4<0;f(2)=ln2﹣2<0;f(3)=ln3>0;f(4)=ln4+2>0.可见f(2)•f(3)<0,故函数在(2,3)上有且只有一个零点.故选C.8. 【答案】D【解析】解:∵a=5,b=4,cosC=,可得:sinC==,∴S △ABC =absinC==8.故选:D .9. 【答案】A10.【答案】C【解析】解:由题,f (x )的定义域为(0,+∞),f ′(x )=2x ﹣2﹣,令2x ﹣2﹣>0,整理得x 2﹣x ﹣2>0,解得x >2或x <﹣1,结合函数的定义域知,f ′(x )>0的解集为(2,+∞). 故选:C .11.【答案】D【解析】解:由{0,1}∪A={0,1}易知:集合A ⊆{0,1} 而集合{0,1}的子集个数为22=4故选D【点评】本题考查两个集合并集时的包含关系,以及求n 个元素的集合的子集个数为2n个这个知识点,为基础题.12.【答案】D 【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a . 考点:等比数列的性质.二、填空题13.【答案】 4 .【解析】解:画出满足条件的平面区域,如图示:,由,解得:A(3,4),显然直线z=ax+by过A(3,4)时z取到最大值12,此时:3a+4b=12,即+=1,∴+=(+)(+)=2++≥2+2=4,当且仅当3a=4b时“=”成立,故答案为:4.【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.14.【答案】【解析】因为在上恒成立,所以,解得答案:-15.【答案】[]1,1【解析】考点:函数的定义域.16.【答案】[0,2].【解析】解:命题p:||x﹣a|<3,解得a﹣3<x<a+3,即p=(a﹣3,a+3);命题q:x2﹣2x﹣3<0,解得﹣1<x<3,即q=(﹣1,3).∵q是p的充分不必要条件,∴q⊊p,∴,解得0≤a≤2,则实数a的取值范围是[0,2].故答案为:[0,2].【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题17.【答案】x+4y﹣5=0.【解析】解:设这条弦与椭圆+=1交于P(x1,y1),Q(x2,y2),由中点坐标公式知x1+x2=2,y1+y2=2,把P(x1,y1),Q(x2,y2)代入x2+4y2=36,得,①﹣②,得2(x1﹣x2)+8(y1﹣y2)=0,∴k==﹣,∴这条弦所在的直线的方程y﹣1=﹣(x﹣1),即为x+4y﹣5=0,由(1,1)在椭圆内,则所求直线方程为x+4y﹣5=0.故答案为:x+4y﹣5=0.【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键.18.【答案】(﹣∞,﹣1).【解析】解:函数的定义域为{x|x >3或x <﹣1}令t=x 2﹣2x ﹣3,则y=因为y=在(0,+∞)单调递减t=x 2﹣2x ﹣3在(﹣∞,﹣1)单调递减,在(3,+∞)单调递增 由复合函数的单调性可知函数的单调增区间为(﹣∞,﹣1) 故答案为:(﹣∞,﹣1)三、解答题19.【答案】(1)1n a n=,(2)详见解析.当8n =时911872222015S =⨯+>>,…………13分∴存在正整数n ,使得2015n S ≥的取值集合为{}*|8,n n n N ≥∈,…………15分20.【答案】【解析】解:(1)设直线AB 的方程为y=kx+2(k ≠0), 设A (x 1,y 1),B (x 2,y 2), 由,得k 2x 2+(4k ﹣4)x+4=0,则由△=(4k﹣4)2﹣16k2=﹣32k+16>0,得k<,=,,所以y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=,因为以AB为直径的圆经过原点O,所以∠AOB=90°,即,所以,解得k=﹣,即所求直线l的方程为y=﹣.(2)设线段AB的中点坐标为(x0,y0),则由(1)得,,所以线段AB的中垂线方程为,令y=0,得==,又由(1)知k<,且k≠0,得或,所以,所以=,所以△POQ面积的取值范围为(2,+∞).【点评】本题考查直线l的方程的求法和求△POQ面积的取值范围.考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.21.【答案】【解析】解:(1)依题意,可设椭圆C的方程为(a>0,b>0),且可知左焦点为F(﹣2,0),从而有,解得c=2,a=4,又a2=b2+c2,所以b2=12,故椭圆C的方程为.(2)假设存在符合题意的直线l,其方程为y=x+t,由得3x2+3tx+t2﹣12=0,因为直线l与椭圆有公共点,所以有△=(3t)2﹣4×3(t2﹣12)≥0,解得﹣4≤t≤4,另一方面,由直线OA与l的距离4=,从而t=±2,由于±2∉[﹣4,4],所以符合题意的直线l不存在.【点评】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.∆为等边三角形.22.【答案】ABC【解析】试题分析:由2=,在结合2a b c=,根据正弦定理得出2a bcsin sin sinA B C==,=+,可推理得到a b c即可可判定三角形的形状.考点:正弦定理;三角形形状的判定.23.【答案】【解析】解:(1)a=1时,因为f(x)=x﹣lnx,f′(x)=1﹣,∴当0<x<1时,f′(x)<0,此时函数f(x)单调递减.当1<x≤e时,f′(x)>0,此时函数f(x)单调递增.所以函数f(x)的极小值为f(1)=1.(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e]上的最小值为1.又g′(x)=,所以当0<x<e时,g′(x)>0,此时g(x)单调递增.所以g(x)的最大值为g(e)=,所以f(x)min﹣g(x)max>,所以在(1)的条件下,f(x)>g(x)+.【点评】本题主要考查利用函数的单调性研究函数的单调性问题,考查函数的极值问题,本题属于中档题..24.【答案】(1)3cos2sinxyθθ=⎧⎨=⎩(为参数);(2【解析】试题解析:(1)将曲线1cos :sin xCyαα=⎧⎨=⎩(α为参数),化为221x y+=,由伸缩变换32x xy y'=⎧⎨'=⎩化为1312x xy y⎧'=⎪⎪⎨⎪'=⎪⎩,代入圆的方程211132x y⎛⎫⎛⎫''+=⎪ ⎪⎝⎭⎝⎭,得到()()222:194x yC''+=,可得参数方程为3cos2sinxyαα=⎧⎨=⎩;考点:坐标系与参数方程.。
2018年黄陂一中分配生素质测试数 学 试 卷本卷满分150分,考试时间120分钟一、选择题(本大题共8小题,每小题5分,共40分.)1、若2(2)()2x x a x bx -+=+-,则a b +=( )A 、-1B 、0C 、1D 、22、非负整数,x y 满足2216x y -=,则y 的全部可取值之和是( )A 、9B 、5C 、4D 、33、如图,已知正方形ABCD 的边长为4,M 点为CD边上的中点,若M 点是A 点关于线段EF 的对称点,则AE ED=( ) A 、53 B 、35 C 、D 、12 4、在ABC ∆中,AB AC =,036,A ∠=D 在AB 上,CD 是C ∠的平分线,则DBC ∆的面积与ABC ∆的面积之比是:A 、、 C 、 D 5、已知实数x y ,满足42424233y y x x -=+=,,则444y x +的值为( ). (A )7 (B ) (C ) (D )5 6、把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是B'( ).(A )512 (B )49 (C )1736 (D )127、如图,直径AB 为6的半圆O ,绕A 点逆时针旋转60°,此时点B 到了点B ',则图中阴影部分的面积为A.6πB.5πC.4πD.3π8、已知2111=++z y x ,3111=++x z y ,4111=++y x z ,则z y x 432++的值为 ( )A .1.B .23.C .2.D .25.二、填空题(本大题共8小题,每小题5分,共40分)9、已知,560,x y +-=则248x y y x +-⋅= .10、设12,x -≤≤则1222x x x --++的最大值与最小值之差为 .11、已知211,2,84b a a a -=+=那么b a a-= .12、有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是___________.13、某校从参加计算机测试的学生中抽取了60名学生的成绩(40~100分)进行分析,并将其分成了六段后绘制成如图所示的频数分布直方图(其中70~80段因故看不清),若60分以上(含60分)为及格,试根据图中信息来估计这次测试的及格率约为 .14. 有3张不透明的卡片,除正面分别写有不同的数字-1、-2、3外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数y kx b=+表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数y kx b=+表达式中的b.则一次函数y kx b=+的图象经过二、三、四象限的概率是.15.如图,AB是⊙O的直径,AC和BD是它的两条切线,CO平分∠ACD. AC=2,BC=3,则AB的长是 .16.用两个全等的含30︒角的直角三角形制作如图1所示的两种卡片, 两种卡片中扇形的半径均为1,且扇形所在圆的圆心分别为长直角边的中点和30︒角的顶点,按先A后B的顺序交替摆放A、B 两种卡片得到图2所示的图案.若摆放这个图案共用两种卡片8张,则这个图案中阴影部分的面积之和为__________;若摆放这个图案共用两种卡片(2n+1)张(n为正整数),则这个图案中阴影部分的面积之和为 .(结果保留 )……三、解答题(本大题共5小题)17、(本题满分12分)下面图像反映的是甲、乙两人以每分钟80米的速度从公司出发步行到火车站乘车的过程.在去火车站的途中,甲突然发现忘带预购的火车票,于是立刻以同样的速度返回公司,然后乘出租车赶往火车站,途中与乙相遇后,带上乙一同到火车站(忽略停顿所需时间),结果到火车站的时间比预计步行到火车站的时间早到了3分钟.⑴甲、乙离开公司 分钟时发现忘记带火车票;图中甲、乙预计步行到火车站时路程s 与时间t 的函数解析式为 (不要求写自变量的取值范围) ⑵求出图中出租车行驶时路程s 与时间t 的函数解析式(不要求写自变量的取值范围);⑶求公司到火车站的距离.18、(本题满分12分)某楼盘一楼是车库(暂不销售),二楼至二十三楼均为商品房(对外销售).商品房售价方案如下:第八层售价为3000元/米2,从第八层起每上升一层,每平方米的售价增加40 图1 图2元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为120平方米.开发商为购买者制定了两种购房方案:方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).方案二:购买者若一次付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元)(1)请写出每平方米售价y(元/米2)与楼层x(2≤x≤23,x是正整数)之间的函数解析式;(2)小张已筹到120000元,若用方案一购房,他可以购买哪些楼层的商品房呢?(3)有人建议老王使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为老王的说法一定正确吗?请用具体的数据阐明你的看法。
]19、(本题满分15分)|网如图1,若四边形ABCD、四边形CFED都是正方形,显然图中有AG=CE,AG⊥CE.⑴当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由.⑵当正方形GFED绕D旋转到如图3的位置时(点F在AD上),延长CE交AG于H,交AD于M.①求证:AG⊥CH;②当AD=4,DG=2时,求CH的长.20.(本题满分15分)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t 的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.21、(本题满分16分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.2016年黄陂一中分配生素质测试数 学 试 卷(A )参考答案和评分标准一、 选择题 (本大题共8小题,每小题5分,共40分)1 B2 D3 A 4、C 5A 6. C 7.A 8C.二、填空题(本大题共8小题,每小题5分,共40分)9、64 10、1 11、23 12、6 13、75%。
14、31 15. 16. 三、解答题(本大题共5小题,)17、18、解:(1)当2≤x ≤8时,每平方米的售价应为:3000-(8-x )×20=20x +2840 ;当9≤x ≤23时,每平方米的售价应为:3000+(x -8)·40=40x +2680。
∴20x 2840(2x 8,x )y 40x 2680(8x 23,x )+≤≤⎧=⎨+<≤⎩为正整数为正整数 。
……………(4分)(2)由(1)知:∵当2≤x ≤8时,小张首付款为(20x +2840)·120·30%=36(20x +2840)≤36(20·8+2840)=108000元<120000元∴2~8层可任选。
∵当9≤x ≤23时,小张首付款为(40x +2680)·120·30%=36(40x +2680)元由36(40x +2680)≤120000,解得:x ≤1163。
∵x 为正整数,∴9≤x ≤16。
综上所述,小张用方案一可以购买二至十六层的任何一层。
………(4分)(3)若按方案二购买第十六层,则老王要实交房款为:y 1=(40·16+2680) ·120·92%-60a (元)若按老王的想法则要交房款为:y 2=(40·16+2680) ·120·91%(元)∵y 1-y 2=3984-60a ,当y 1>y 2即y 1-y 2>0时,解得0<a <66.4。
此时老王想法正确;当y 1≤y 2即y 1-y 2≤0时,解得a ≥66.4。
此时老王想法不正确。
………(4分)19、(本题15分 解:(1)AG CE =成立.四边形ABCD 、四边形DEFG 是正方形,∴,,GD DE AD DC ==∠GDE =∠90ADC =︒.∴∠GDA =90°-∠ADE =∠EDC ∴△AGD ≅△CED . ∴AG CE =.…(5分)(2)①类似(1)可得△AGD ≅△CED , ∴∠1=∠2 又∵∠HMA =∠DMC . ∴∠AH M =∠ADC =90︒即.AG CH ⊥ (4分) ②过G 作GP AD ⊥于P , 由题意有1==PD GP ∴3AP =,则13GP AP = 而∠1=∠2,∴ DM DC =13GP AP = ∴43DM = ,即83AM AD DM =-=.在Rt DMC ∆中,CM =而AMH ∆∽CMD ∆,∴AH AM DC CM =,即84AH =,∴AH =.再连接AC,显然有AC =∴CH 所求CH 的长为5108. (6分) 20.(15分) ∴,即∴,即﹣t ﹣=t ﹣t ﹣t+1=t 即t (t t=(t (t 3+﹣3+即:t (t 或﹣3+时,≤S=t ,当<﹣﹣;≤时,﹣t ﹣,当﹣t+.21、解:(1)由抛物线y=﹣x 2+bx+c 过点A (﹣1,0)及C (2,3)得,1b+c=04+2b+c=3--⎧⎨-⎩,解得b=2c=3⎧⎨⎩。