6刚体动力学解析.ppt
- 格式:ppt
- 大小:3.85 MB
- 文档页数:6
§6、刚体的动量矩及转动动能上次课我们将质点组的两个基本动力学定理,即质心运动定理和动量矩定理:M dtd dt J d M F r v m r Fre ii i i i e ic=⨯∑=⨯∑=∑=)(,)( 应用于刚体,于是就给出了描述刚体动力学规律的基本运动微分方程。
虽然上次课已经给出刚体动力学基本方程,但是对基本方程中的动量矩的具体形式并没有给出,这次课我们仍然以质点组的动量矩和动能定义为出发点推出刚体的动量矩以及刚体的转动动能。
下面我们先讨论:一、 刚体定点转动的动量矩:假设刚体在某一时刻以角速度ω转动。
取刚体上任一质点p i 的质量为m i 。
它相对固定点O 点的位矢量为i r。
那么根据质点组的动量矩定义式可得整个刚体对固定点0的动量矩是:)(v m r i i i iJ⨯=∑因为,r w v ii⨯= 所以,它就等于)(r w m r iiii⨯⨯∑ 根据矢量多重叉积的基本公式:c b a b c a c b a)()()(⋅-⋅=⨯⨯ 可得[]][r r m w r m r w r w r r m rw r m iiiiiiiiiiiiiiiiIiw i J)()()(2)(⋅=-⋅=⨯=∑-∑⋅∑⨯∑由此可以看出,动量矩J 一般不与角速度ω 共线,只有0≡⋅w r时, j 与w 才是共线的。
由于角动量是个矢量,如果我们确定了坐标系,那么就可以将它写成分量形式。
如图所示,建立直角坐标系O —X 、Y 、Z(并与绕定轴转动的刚体固连在一起,坐标这样取在目前的情况下比较方便。
因为刚体上任一点的坐标(x,y,z )不管刚体怎样运动,它们相对刚体都是不随时间改变的常数,所以取与刚体固定的动坐标系比较方便。
)则i r 和w在三正交坐标轴的分量……则:kw jw i w wk z jy ix rz yxiiii++=++=,于是可得动量矩在x 轴上的分量:wz x m wy x m wzy m xw z wy wx m wz yx m Jxiiyiixii i iziyixii xi ii i zi i )()()()()(22222∑∑∑∑∑--⎥⎦⎤⎢⎣⎡+=++-++=同理可得:wx ym w z y m wz x m J w z y m wz ym w y x m J ziiiyii xiiz ziiyi iixii y i i i i )()()()()()(2222++--=-++-=∑∑∑∑∑∑ 在这儿我们就令:)))222222(((x y m I z x m I z ym I iiizziiiyyiii xx +∑+∑+∑=== ∑∑∑======x z m IIy z m I I y x m I Iii i xzzxii i zy yzii i yxxy则动量矩在直角坐标系中的分量式就可简写为:wI w I w I J w I w I w I J w I w I w I Jzzzyzyxzxzzyzyyyxyxy zxzyxyxxxx +---=-+=--=:由这些分量式也可以看出刚体绕固定点转动的动量矩的分量与角速度的三个分量 w w w zy x ,,都有关。
刚体动力学刚体的转动与角动量守恒定律刚体动力学——刚体的转动与角动量守恒定律刚体动力学是研究刚体运动的物理学分支,主要研究刚体的平动和转动。
在刚体的运动过程中,角动量的守恒定律是关键的一条定律,它在很多物理问题的求解中起着重要的作用。
一、刚体转动的基本概念刚体是指具有一定形状和大小的物体,在运动过程中保持其形状和大小不变的情况下,绕一个固定轴线进行旋转。
在刚体转动的过程中,存在着固定轴线上的角位移、角速度、角加速度等概念。
角位移表示刚体在转动过程中的角度变化,通常用符号θ表示;角速度表示单位时间内刚体转动的角度变化率,通常用符号ω表示;角加速度表示单位时间内角速度的变化率,通常用符号α表示。
二、刚体的转动与力矩刚体在转动过程中需受到外力的作用,这些外力可以将刚体带动产生转动现象。
力矩是刚体转动的重要力学量,它描述了力对于刚体转动的影响程度。
力矩的大小等于力乘以作用点到转轴的距离,用数学式表示为:τ = F × r其中τ表示力矩,F表示力的大小,r表示作用点到转轴的距离。
三、刚体的转动惯量与角动量刚体的转动惯量与角动量是刚体转动过程中的另外两个重要概念。
转动惯量描述了刚体对于转动的惯性程度,它的大小取决于刚体的质量分布和几何形状。
角动量描述了刚体在转动过程中的旋转性质,它等于刚体质量的转动惯量乘以角速度,用数学式表示为:L = I × ω其中L表示角动量,I表示转动惯量,ω表示角速度。
四、角动量守恒定律角动量守恒定律是刚体动力学中的一个基本定律,它表明在没有外力矩作用的情况下,刚体转动过程中的角动量保持不变。
如果一个刚体在初态时角动量为L1,在末态时角动量为L2,且没有外力矩作用,则有L1 = L2。
这一定律体现了一个自然规律,对于理解刚体的转动过程和求解相关物理问题具有重要意义。
五、应用案例角动量守恒定律可以应用于各种实际物理问题的求解中,例如刚体的转动稳定性、陀螺的运动等。
刚体动力学
刚体动力学是指研究力和质量对刚体运动的影响,它涉及物理
和数学,主要研究力对物体运动的影响。
它广泛应用于工程和物理领域,用于描述物体在局部或全局中的运动状态。
如何利用运动学理论
来分析和解释物理世界中物体的运动轨迹,最终揭示物体运动的物理
原理至关重要。
在刚体动力学的概念中,物体的运动被建模为一种力对对对象的
瞬时影响。
通过应用力,物体的运动可以得到估计。
瞬时力是指在特
定时空会给物体造成瞬时影响的力。
可以从特征定律出发,将其用于
物体运动分析。
这些定律涉及到物理力学,牛顿力学和拉普拉斯力学,上述定律可将物体的运动状态的分类。
与此同时,通过测量物体的加
速度、速度和位移,有可能解释其运动轨迹,解析物体的运动和定义
有关的物理参数,这些物理参数的累积可以描述物体的运动状态,从
而揭示物体运动的原理。
刚体动力学的原理也可以用来处理运动学中更加抽象的问题,例
如变换,尤其是物体受力时联合受力的问题。
此外,它还可以用于研
究物理系统中某些复杂的力的运动模式,包括动量、角动量、能量和
声学等。
可以说,它是物理上最基本的模型,用于解释物体的局部或
全局运动。
利用刚体动力学的原理,可以研究物体运动在各种复杂条
件下的变化,从而揭示物体运动的物理原理。