课程标准2011年版提出了10个核心概念
- 格式:doc
- 大小:30.50 KB
- 文档页数:2
义务教育数学课程标准的十个核心概念包括:数与代数、函数、几何与空间、统计与概率、数论、初等数学思想方法、数学语言、计算、数学应用以及数学史与文化。
这些核心概念的描述如下:
数与代数:包括整数、有理数、无理数、实数和复数等基本概念,以及代数符号、多项式、方程和不等式等内容。
函数:包括函数的基本概念、函数的定义域和值域、函数图像的性质、分段函数、反函数等内容。
几何与空间:包括平面几何、立体几何、向量、三角函数以及空间中位置关系、轨迹等内容。
统计与概率:包括统计数据、频率分布、概率的概念、概率计算、随机事件、期望值、方差等内容。
数论:包括素数、约数、最大公约数、最小公倍数等基本概念,以及同余、欧几里得算法等内容。
初等数学思想方法:包括数形结合、分类讨论、归纳法、递推法等基本思想方法。
数学语言:包括术语、符号、图形等数学表达方式。
计算:包括加减乘除、分数运算、有理数运算、多项式运算以及根号化简、分式分解等基本计算方法。
数学应用:包括数学模型的建立和求解、函数在实际问题中的应用、图形的变换和投影等内容。
数学史与文化:包括数学史上的重要人物、数学思想的发展历程以及数学在文化中的地位和作用等内容。
小学数学核心素养的内涵与价值马云鹏东北师大义务教育数学课程标准(2011年版)》明确提出了10 个核心素养,即数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。
在《数学课程标准解读》等一些材料中,曾把这些称之为核心概念,但严格意义上讲,称这些词为“概念”并不合适,它们是思想、方法或者关于数学的整体理解与把握,是学生数学素养的表现。
本文把这10 个词称之为数学的核心素养,并结合小学阶段(第一、二学段)的数学内容以及具体的教学案例分析核心素养的内涵和价值。
一、小学数学核心素养的内涵数学核心素养可以理解为学生学习数学应当达成的有特定意义的综合性能力,核心素养不是指具体的知识与技能,也不是一般意义上的数学能力。
核心素养基于数学知识技能,又高于具体的数学知识技能。
核心素养反映数学本质与数学思想,是在数学学习过程中形成的,具有综合性、整体性和持久性。
数学核心素养与数学课程的目标和内容直接相关,对于理解数学学科本质,设计数学教学,以及开展数学评价等有着重要的意义和价值。
一般认为,“素养与知识(或认知)、能力(或技能)、态度(或情意)等概念的不同在于,它强调知识、能力、态度的统整,超越了长期以来知识与能力二元对立的思维方式,凸显了情感、态度、价值观的重要,强调了人的反省思考及行动与学习。
”“数学素养是指当前或未来的生活中为满足个人成为一个会关心、会思考的公民的需要而具备的认识,并理解数学在自然、社会生活中的地位和能力,作出数学判断的能力,以及参与数学活动的能力。
”可见,数学素养是人们通过数学的学习建立起来的认识、理解和处理周围事物时所具备的品质,通常是在人们与周围环境产生相互作用时所表现出来的思考方式和解决问题的策略。
人们所遇到的问题可以是数学问题,也可能不是明显的和直接的数学问题,而具备数学素养可以从数学的角度看待问题,可以用数学的思维方法思考问题,可以用数学的方法解决问题。
关于在数学教学中落实《数学课程标准(2011年版)》10个核心概念的思考与实践(四)作者:赵升龙来源:《黑龙江教育·小学教学案例与研究》2014年第01期《数学课程标准(2011年版)》调整和界定了数学课程中的若干核心概念,对于原实验稿中应用意识的标准内容进行了一定的修订,那么你们是怎样理解应用意识的?张文静:首先我来说说对应用意识的理解。
《数学课程标准(2011年版)》中明确了应用意识的两方面含义,就我个人的理解,应用意识意在强调数学和现实的联系,数学和其他学科的联系,如何运用所学到的数学,去解决现实中和其他学科中的一些问题,当然也包括运用数学知识去解决另一个数学问题。
如教学“三角形的特征”时,出示图片:房屋的房顶、大型吊车支架、自行车、晾衣架等,提出问题:人们在生产、生活中为什么要把这些部分做成三角形的,它具有什么特性?接着让学生分小组实验:拿出预先准备的三角形、四边形框架,试着拉动它,会有什么发现?学生们经过实验交流,发现:三角形具有稳定性。
之后,再让学生举出生活中应用三角形稳定性的例子。
这样的教学设计,使学生在操作活动中体会到三角形的稳定性,并用这个数学原理来解释现实世界中的现象。
这样使学生能从数学的角度,用数学的语言、知识、思想方法去描述、理解、思考和解决各种问题,体会知识源于生活,用于生活。
刚才张文静老师谈了对应用意识的理解,那么在教学中你们又是怎样落实的呢?能否结合具体的课例再说一说。
张文静:让学生了解数学的广泛应用,既可以帮助学生认知数学的发展,体会数学的应用价值,激发学生学好数学的勇气和信心,更可以帮助学生领悟数学知识的全过程。
我们在整个数学教育的过程中,都应该培养学生的应用意识,不同的教学内容中,都应有所体现。
如在教学“组合图形的面积”时,我引导学生在探究解组合图形面积的一般方法之后,出示几道生活中的数学问题。
1 下面是环保回收箱的指示牌,请你算一算它的面积。
2 油漆工人刷门(如图),计算涂油漆的面积是多少。
义务教育数学课程标准(2011年版)》明确提出了10 个核心素养,即数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。
在《数学课程标准解读》等一些材料中,曾把这些称之为核心概念,但严格意义上讲,称这些词为“概念”并不合适,它们是思想、方法或者关于数学的整体理解与把握,是学生数学素养的表现。
本文把这10 个词称之为数学的核心素养,并结合小学阶段(第一、二学段)的数学内容以及具体的教学案例分析核心素养的内涵和价值。
一、小学数学核心素养的内涵数学核心素养可以理解为学生学习数学应当达成的有特定意义的综合性能力,核心素养不是指具体的知识与技能,也不是一般意义上的数学能力。
核心素养基于数学知识技能,又高于具体的数学知识技能。
核心素养反映数学本质与数学思想,是在数学学习过程中形成的,具有综合性、整体性和持久性。
数学核心素养与数学课程的目标和内容直接相关,对于理解数学学科本质,设计数学教学,以及开展数学评价等有着重要的意义和价值。
一般认为,“素养与知识(或认知)、能力(或技能)、态度(或情意)等概念的不同在于,它强调知识、能力、态度的统整,超越了长期以来知识与能力二元对立的思维方式,凸显了情感、态度、价值观的重要,强调了人的反省思考及行动与学习。
”“数学素养是指当前或未来的生活中为满足个人成为一个会关心、会思考的公民的需要而具备的认识,并理解数学在自然、社会生活中的地位和能力,作出数学判断的能力,以及参与数学活动的能力。
”可见,数学素养是人们通过数学的学习建立起来的认识、理解和处理周围事物时所具备的品质,通常是在人们与周围环境产生相互作用时所表现出来的思考方式和解决问题的策略。
人们所遇到的问题可以是数学问题,也可能不是明显的和直接的数学问题,而具备数学素养可以从数学的角度看待问题,可以用数学的思维方法思考问题,可以用数学的方法解决问题。
比如,人们在超市购物时常常发现这样的情境,收银台前排了长长的队等待结账,而只买一、两样东西的人也同样和买一车东西的人排队等候。
义务教育数学课程标准(2011年版)中此次课标的最大改变是:“双基”变“四基”。
四基:数学的基础知识、基本技能、基本思想、基本活动经验“六个核心词”变“十个核心词”十个核心词:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识、创新意识其中:几何直观、运算能力、模型思想、创新意识是新加上去的。
下面我们一一对十个核心词进行讲解:一、数感数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。
建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
如同球员的球感,歌手的乐感一样……(姚明是大家都比较熟悉的,他在NBA赛场上,大家都看到他一个个漂亮的投球、一个个漂亮的动作,这都是跟他的球感分不开的;还有歌手,之所以成名,是因为他们具有较好的音乐细胞,具有较强的音乐感分不开的,如果一个人,五音不全,也就是说他缺少音乐感,你想说他要成为一个歌手那就是做白日梦一样,就是让他唱一首普通的歌曲都很难的。
)简单、通俗地说,数感就是数的感觉。
教学数数、数的基数意义与序数意义、数序与数的大小比较……都有助于形成数感。
数感培养实践的误区……误区之一:数感是与生俱来的,后天无法养成(龙生龙、凤生凤、老鼠生来挖地洞;猫生猫、狗生狗、小偷儿子三只手的思想)不可否认,某些数学家天生就有很强烈的数感,10岁的高斯毫不费劲地完成了等差数列(比如由1到100的自然数)求和,得益于他对计算方法的直接把握;12岁的帕斯加独立完成了三角形内角和定理的证明,一直为人们津津乐道。
瑞士著名的伯努利家族在三代人中产生了八位数学家,我国南北朝祖氏父子、清朝梅文鼎祖孙的数学成就闻名于世,但毕竟是凤毛麟角,屈指可数。
数感的形成固然有遗传因素和家族影响的作用,而更多是后天努力的结果。
解析几何创始人笛卡儿出身于法国贵族家庭,父亲是政府雇员;牛顿出身在英国农民家庭,还是遗腹子,全靠自己努力取得成功;概率论奠基者拉普拉斯的父母是法国农民;费马则是法国皮革商的儿子。
《数学课程标准(2011年版)》10个核心概念及四基四能《数学课程标准(2011年版)》数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想,以及应用意识、创新意识。
这10个核心概念,揭示了课程具体内容与基本数学思想之间的联系。
对此,广大教师在教学实践中应当加以充分的关注。
1.数感主要是指关于数与数量,数量关系,运算结果估计等方面的感悟。
建立数感,有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
2.符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。
知道使用符号可以进行运算和推理,另外可以获得一个结论,获得一个结论具有一般性。
符号意识有助于学生理解符号的使用,是数学表达和数学思考的重要的形式。
3.空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。
4.几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。
几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用。
5.数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。
体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。
一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,数据分析是统计的核心。
6.运算能力是指能够根据法则和运算正确的进行运算的能力。
培养运算能力有助于学生理解运算的算力,寻求合理、简洁的运算途径解决问题。
7.推理是数学的基本思维方式,也是人们学习和生活当中,经常使用这样一种思维方式,推理一般包括合情推理和演绎推理。
《数学课程标准(2011年版)》10个核心概念《数学课程标准(2011年版)》数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想,以及应用意识、创新意识。
这10个核心概念,揭示了课程具体内容与基本数学思想之间的联系。
对此,广大教师在教学实践中应当加以充分的关注。
1.数感主要是指关于数与数量,数量关系,运算结果估计等方面的感悟。
建立数感,有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
2.符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。
知道使用符号可以进行运算和推理,另外可以获得一个结论,获得一个结论具有一般性。
符号意识有助于学生理解符号的使用,是数学表达和数学思考的重要的形式。
3.空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。
4.几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。
几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用。
5.数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。
体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。
一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,数据分析是统计的核心。
6.运算能力是指能够根据法则和运算正确的进行运算的能力。
培养运算能力有助于学生理解运算的算力,寻求合理、简洁的运算途径解决问题。
7.推理是数学的基本思维方式,也是人们学习和生活当中,经常使用这样一种思维方式,推理一般包括合情推理和演绎推理。
十大核心素养运算能力解读一、什么是运算能力《数学课程标准(2011版)》指出,“运算能力主要是指能够根据法则和运算律正确地进行运算的能力。
培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径来解决问题。
”这两句话,实际上刻画了运算能力的三个主要表现特征:正确运算、理解算理、掌握算法。
运算能力的形成可以分成两个阶段:第一阶段:能够按照一定的程序与步骤进行正确运算,称为运算技能。
运算技能的特征是正确、熟练。
第二阶段:不仅会正确、熟练地进行运算,而且能根据题目条件寻求合理、简洁的运算途径来解决问题,这个阶段方称之为运算能力。
运算能力是运算技能与逻辑思维等能力的有机整合,不仅是一种数学的操作能力,更是一种数学的思维能力。
二、运算在小学数学课程中占有重要的地位,它有着怎样的历史渊源四则运算在我国起源很早,春秋战国时期,我们的祖先创造了一种十分重要的计算方法——筹算。
后来,在长期使用算筹的基础上发明了算盘,算盘是我国古代一项重要的发明。
小学数学从它的前身“小学堂算术”诞生之日起,就将计算列为首要的学习任务。
清末初等小学堂学制五年,以学习整数四则计算为主,兼及小数,并授以珠算。
然后高等小学堂学制四年,学完“整数、小数、分数的加、减、乘、除”。
辛亥革命后,学堂改称学校,学制也有变动,但“算术要旨,在使儿童熟习日常之计算”始终没变。
1912年颁布的《小学校教则及课程》中明确提出“算术宜用笔算及珠算,尤宜令熟习心算”,即出现“三算”:口算、笔算和珠算。
1932年颁布的《小学课程标准算术》中首次出现了“培养儿童解决日常生活问题的计算能力”和“养成儿童计算敏捷和准确的习惯”这两条课程目标。
计算与应用在目标中是捆绑在一起的,计算的目的是为了解决问题。
新中国成立后,1952年颁发的《小学算术教学大纲(草案)》中提到关于计算的两项目标:一、儿童应获得“整数四则运算……口算和笔算的熟练技巧” 二、“解各种整数应用题的技能”,从这个时候开始,计算与解决问题“分道扬镳”。
课程标准2011年版提出了10个核心概念。
请你选择其中一个,结合教学实际谈谈你是怎么理解的。
1、字数不少于300字。
2、请注意保持作业的原创性。
3、作业提交截止时间2012年9月20日。
浅谈数学推理能力
推理是数学的基本思维方式,也是人们学习和生活当中,经常使用的一种思维方式,推理一般包括合情推理和演绎推理,合情推理的外延包含了两个大方面,一个是合情推理,一个是演绎推理。
演绎推理是从已知的事实出发,按照一些确定的规则,然后进行逻辑的推理,进行证明和计算。
换句话说,从思维形式的角度,是从一般到特殊的过程,在几何的证明当中,实际上都是这样一种推理形式。
合情推理是从已有的事实出发,评论一些经验、直觉,通过归纳和类比等等这样一些形式,来进行推断,来获得一些可能性结论这样一种思维方式。
和演绎推理不一样的是从特殊到一般这样一种推理,所以合情推理得到的结论,知道不一定是对的,通常可能称之为猜想、推测,是一个可能性结论。
五年级数学上册的尝试与猜测,就是通过学生对一些日常生活中的现象的观察与思考,从数量或图形的角度进行合情推理.
培养学生数学的推理能力,要从从多角度认识事物的习惯; 发挥想象在逻辑推理
中的作用; 保持良好的情绪状态.
提高方法一、养成从多角度认识事物的习惯。
逻辑推理是在把握了事物与事物之间的内在的必然联系的基础上展开的,所以,养成从多角度认识事物的习惯,全面地认识事物的内部与外部之间、某事物同他事物之间的多种多样的联系,对逻辑思维能力的提高有着十分重要的意义。
首先是学会“同中求异”的思考习惯:将相同事物进行比较,找出其中在某个方面的不同之处,将相同的事物区别开来。
同时还必须学会“异中求同”的思考习惯:对不同的事物进行比较,找出其中在某个方面的相同之处,将不同的事物归纳起来。
二、发挥想象在逻辑推理中的作用。
发挥想象对逻辑推理能力的提高有很大的促进作用。
发挥想象,首先必须丰富自己的想象素材,扩大自己的知识范围。
知识基础越坚实,知识面越广,就越能发挥自己的想象力。
其次要经常对知识进行形象加工,形成正确的表象。
知识只是构成想象的基础,并不意味着知识越多,想象力越丰富。
关键是是否有对知识进行形象加工,形成正确表象的习惯。
再者,应该丰富自己的语言。
想象依赖于语言,依赖于对形成新的表象的描述。
因此,语言能力的好坏直接影响想象力的发展。
有意识地积累词汇,多阅
读文学作品,多炼多写,学会用丰富的语言来描述人物形象和发生的事件,才能拓展自己的想象力。
三、丰富有关思维的理论知识。
其实,推理有着概括程度、逻辑性以及自觉性程度上的差异,同时又有演绎推理、归纳推理等形式上的区别。
而且推理能力的发展遵循一定的规律。
中学生应该多了解一些思维发展的理论知识,有意识地用理论指导自己的逻辑推理能力的发展。
一般来说,在校中学生掌握和运用各类推理能力存在着不平衡性。
如归纳推理的成绩,初一学生能正确使用率已超过60%;演绎推理的成绩要到初三年级才开始接近60%的正确率。
根据这样的规律,中学生要学会自觉地用理论作指导,促进自己的各种逻辑能力平衡地发展。
四、保持良好的情绪状态
心理学研究揭示,不良的心境会影响逻辑推理的速度和准确程度。
失控的狂欢、暴怒与痛哭,持续的忧郁、烦恼与恐惧,都会对推理产生不良影响。
所以,中学生平时应该学会用意识去调节和控制自己的情绪和心境,使自己保持平静、轻松的情绪和心境,提高自己逻辑推理的水平和质量。