对流传热总结
- 格式:ppt
- 大小:337.50 KB
- 文档页数:6
《传热学》计算题总结一、 题型导热换热、对流换热、辐射换热、换热器 二、 公式小结1、 平壁稳态导热 第一类边界条件: 1) 单层:xt t t t w w w δ121--=221/)(m W t t q w w -=δλ多层∑∑=+=+-=-=ni in n i i in R t t t t q 1,11111λλδ第三类边界条件:传热问题2112111h h t t q n i i f f ++-=∑=λδ单位W/m 22、 圆筒壁稳态导热第一类边界条件 单层:121121r r n r r nt t t t w w w =--()12212112212r r n l t t t t r r n lw w w w πλπλ-=-=Φ多层:∑=++-=Φn i ii i n w w r r n l t t 111,1121 λπ第三类边界条件:1211112121ln 2121+=+++-=∑n n i i if f l r h ri r r h t t q ππλπ单位:W/m3、 对流换热 牛顿冷却公式:[]W )(f w t t hA Φ-=吸放热热量(热对流):tvc t t mc p f f p ∆=-=Φρ)(21平板对流换热表面换热系数h管内对流换热表面换热系数h :n Nu Pr Re023.08.0=(紊流,流体被加热n=0.4,流体被冷却 n=0.3)对流换热解题步骤1)定性温度→查物性,下标f 由t f 确定,下标w 由t w 确定; 2)由Re 判断流态;3)据Re 选择准则关联式计算Nu f ; 4)计算h 。
注意:1)外掠平板定性温度tm=1/2(tw+tf);管内定性温度tf 2)外掠平板临界Re=5×105;管内临界Re=104 3)换热量据牛顿冷却公式计算。
4、辐射换热斯蒂芬-玻尔兹曼定律(四次方定律): (黑体)两表面封闭体系的辐射换热量:(实际表面)几种特殊情况的简化式: (a ) X 1-2=1时:(其中一个表面为平面或凸表面)(b )A 1=A 2 时:(两无限大平壁之间)(c) A 1/A 2≈0 时 (空腔与内包壁)遮热板:111)T T (21214241b 2,1-+-=εεσq5、换热器设计计算传热过程方程式m t kA ∆=Φ;minmax minmax t lnt t t t m ∆∆∆-∆=∆热平衡式)()(22221111t t c M t t c M '-''=''-'=Φ, 其中M 为质量流量kg/s,c 为定压比热,由对应算术平均温度确定。
各种对流换热过程的特征及其计算公式对流换热是指热量通过传导和传导的方式从一个物体转移到另一个物体的过程。
在许多工程和自然现象中,对流换热都起着重要的作用。
下面是各种对流换热过程的特征及其计算公式。
1.强制对流换热:强制对流换热是指通过对流传热介质(如气体或液体)的外力驱动,使热量从一个物体转移到另一个物体的过程。
其特征包括:-较高的传热速率:由于外力使传热介质保持流动状态,因此强制对流传热速率较高。
-计算公式:Q=h*A*(Ts-T∞)其中,Q是传热速率,h是对流换热系数,A是传热面积,Ts是表面温度,T∞是流体温度。
2.自然对流换热:自然对流换热是指在没有外力驱动的情况下,通过自然气流或自然对流传热介质(如气体或液体)进行热量传输的过程。
其特征包括:-由温度差引起的自然循环:由于温度差异造成的密度差异,导致气体或液体在物体表面形成循环,从而传热。
-计算公式:Q=α*A*ΔT其中,Q是传热速率,α是自然对流换热系数,A是传热面积,ΔT 是温度差。
3.相变换热:相变换热是指物体在相变过程中吸收或释放的热量。
其特征包括:-温度保持不变:当物体处于相变过程中时,温度保持不变,热量主要用于相变过程。
-计算公式:Q=m*L其中,Q是传热速率,m是物体的质量,L是单位质量的相变潜热。
4.辐射换热:辐射换热是指通过电磁辐射传播热量的过程。
其特征包括:-不需要传热介质:辐射传热不需要传热介质,可以在真空中传递热量。
-计算公式:Q=ε*σ*A*(Th^4-Tc^4)其中,Q是传热速率,ε是辐射率,σ是斯特藩-玻尔兹曼常数,A 是物体表面积,Th和Tc分别是辐射物体和周围环境的温度。
总结:不同的对流换热过程具有不同的特征和计算公式。
在实际应用中,根据具体的情况选择适当的计算公式可以帮助我们准确计算和分析热量的传递过程。
要注意,实际的对流换热过程可能是多种换热方式的复合,需要综合考虑不同的换热方式。
热量的传导与对流知识点总结在我们的日常生活和自然界中,热量的传递是一个非常普遍且重要的现象。
无论是煮水时热量从锅底传递到水中,还是冬天室内外的温差导致热量交换,都涉及到热量的传导与对流。
理解热量的传导与对流对于我们解释许多物理现象、优化工程设计以及提高能源利用效率都具有重要意义。
一、热量传导热量传导,简单来说,就是由于物体内部存在温度差,使得热量从高温区域向低温区域传递的过程。
这种传递方式不需要物质的宏观移动,而是通过分子、原子等微观粒子的热运动来实现。
1、热传导的基本定律——傅里叶定律傅里叶定律指出,在均质的固体中,单位时间内通过垂直于热流方向的单位面积的热量,与温度梯度成正比,而与截面面积成正比。
数学表达式为:$Q = kA\frac{dT}{dx}$,其中$Q$表示热流量,$k$为材料的热导率,$A$是垂直于热流方向的截面积,$\frac{dT}{dx}$是温度梯度。
热导率是材料的一个重要热物性参数,它表示材料导热能力的大小。
不同的材料具有不同的热导率,例如金属通常具有较高的热导率,是良好的导热材料;而空气、塑料等的热导率较低,属于绝热材料。
2、常见的热传导现象(1)金属棒的传热拿一根金属棒,一端加热,另一端会逐渐变热。
这是因为金属内部的自由电子能够快速传递热量,使得热量能够沿着金属棒迅速传导。
(2)墙壁的传热在房屋中,墙壁内外存在温度差时,热量会通过墙壁从室内传递到室外或者从室外传递到室内。
墙壁的材料和厚度会影响传热的速率。
二、热量对流热量对流是指由于流体(液体或气体)的宏观运动而引起的热量传递过程。
它可以分为自然对流和强制对流两种类型。
1、自然对流自然对流是由于流体内部存在温度差,从而导致流体密度不均匀,引起流体的流动。
例如,在一个烧热的锅中,靠近锅底的水受热后温度升高,密度减小而上浮;而上方较冷的水密度较大而下沉,形成了自然对流。
2、强制对流强制对流则是通过外部力量(如风扇、泵等)迫使流体流动,从而实现热量传递。
传热的三种基本方式的特点
传热的三种基本方式的特点如下:
1. 导热:导热是由于物体内部温度差异引起的热量传递。
它可以在固体、液体和气体中发生,因为物质内部的分子或分子的振动方向不同,使得热量从高温部分传至低温部分。
导热只发生在密实的固体中,当物体中有温差时,热量会从温度较高的部分传至温度较低的部分。
2. 对流:对流是由于流体各部分之间的相对运动而引起的热量传递。
它主要发生在流体中,如气体和液体。
当流体被加热或冷却时,流体的密度会发生变化,导致流体的流动。
对流换热可以分为自然对流和受迫对流。
自然对流是由于流体的密度变化而产生的流动,而受迫对流则是由于外部力(如泵或风扇)驱动的流动。
3. 辐射:辐射是物体通过电磁波传递能量的方式。
任何温度高于绝对零度的物体都会以电磁波的形式向外辐射能量。
辐射换热不需要任何中间介质,可以穿过真空。
辐射换热的特点是伴随能量的形式转化,即物体的热能转化为电磁波的能量。
辐射换热过程中,物体不仅向外辐射热量,同时也吸收周围物体的辐射热。
以上内容仅供参考,如需更全面准确的信息,可以查阅物理书籍或咨询物理专业人士。
传热学知识点总结本文将围绕传热学的基本概念、传热方式、传热方程、传热实验和应用等方面进行详细的介绍和总结,以便读者更好地了解传热学的相关知识。
一、传热学的基本概念1. 热量传递热量传递是指物体内部或物体之间由于温度差异而产生的热量的传递过程。
热量的传递方式主要有传导、对流和辐射三种。
2. 传热方程传热方程描述了物体内部或物体之间热量传递的数学关系,是传热学的基础理论。
传热方程一般包括传热率、温度差和传热面积等参数,可以用来计算热量传递的速率和大小。
3. 传热系数传热系数是描述物体材料对热量传递率影响的重要参数,通常用符号h表示。
在物质传热过程中,传热系数的大小直接影响热量的传递速率。
4. 传热表面积传热表面积是指在热量传递过程中热量流经的表面积,是计算热传递速率的重要参数。
传热表面积的大小与物体的形状和大小有关,也与传热方式和传热系数有关。
5. 热传导热传导是一种物质内部热量传递的方式,指的是热量通过物质内部原子、分子之间相互作用的传递过程。
热传导是传热学的基本概念之一。
6. 热对流热对流是一种物体表面热量传递的方式,指的是热量通过流体传递到物体表面,然后再由物体表面传递到其它介质的传热过程。
7. 热辐射热辐射是一种通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。
热辐射是传热学的另一个基本概念之一。
二、传热方式1. 传导传热传导传热是指热量通过物质内部的原子、分子的直接作用而传递的方式。
在传导传热过程中,热量的传递是从高温区向低温区进行的,其传热速率与温度差和物质的传热系数有关。
2. 对流传热对流传热是指流体传热传递的方式,包括自然对流和强制对流两种。
在对流传热过程中,流体的流动是热量传递的主要形式,其传热速率与流体的流速、温度差和传热面积有关。
3. 辐射传热辐射传热是通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。
在辐射传热过程中,热量的传递不依赖于介质,而是通过电磁波的辐射进行的。
在我想变的对流传热过程中对流传热是一种常见的热传导方式,它在日常生活和工业生产中都有广泛应用。
在这篇文章中,我们将探讨对流传热的原理、应用和影响因素,并从人类的视角出发,描述这一过程。
一、对流传热的原理对流传热是指热量通过流体的流动而传递的过程。
在自然界中,对流传热常常发生在气体和液体中,由于流体的流动,热量可以通过流体的传递而实现。
这一过程主要分为自然对流和强制对流两种情况。
自然对流是指在没有外力作用下,由于温度差异而导致的流体的自发流动。
例如,我们常常可以观察到热水壶中的水自然对流现象,当壶底加热时,底部的水受热膨胀,形成一个上升的热流,同时冷却的水则下沉,形成一个下降的冷流,这样就实现了热量的传递。
强制对流是指在外力的作用下,流体被迫流动,从而实现热量的传递。
例如,我们常常可以观察到风扇吹过的空气对热量的传递。
风扇产生的气流使空气迅速流动,使热量从一个地方传递到另一个地方,这就是强制对流。
二、对流传热的应用对流传热在日常生活中有着广泛的应用。
首先,对流传热在空调和暖气系统中起着重要作用。
空调系统通过强制对流将室内的热量带走,从而降低室内的温度。
暖气系统则通过强制对流将热量传递到室内,提高室内的温度。
这些系统使我们在不同季节里都能享受到舒适的温度。
对流传热在汽车散热系统中也起着重要作用。
汽车发动机产生的热量需要及时排出,以保证发动机的正常工作。
散热器通过对流传热的方式,将发动机产生的热量传递给空气,从而实现散热。
对流传热还广泛应用于工业生产过程中。
例如,化工厂中的反应釜需要通过对流传热的方式控制温度,保证反应的进行。
工业炉窑中的燃烧过程也需要对流传热来实现热量的传递。
三、对流传热的影响因素对流传热的效率受到多个因素的影响。
首先是流体的性质,不同的流体具有不同的热导率和粘度,这会影响对流传热的效果。
其次是流体的流动速度,流体的流动速度越大,对流传热的效果越好。
再次是传热表面的特性,传热表面的面积越大,对流传热的效率越高。
热传导和热对流热能的传导和对流的原理热传导和热对流:热能的传导和对流原理热能传导和对流是热力学中重要的概念,用以描述热量如何从一个物体传递到另一个物体的过程。
本文将详细介绍热传导和热对流的原理,探讨它们在日常生活和工业应用中的重要性。
一、热传导的原理热传导是指热量通过直接接触而从一个物体传递到另一个物体的过程。
它的原理可以用分子动理论来解释。
在物体中,分子不断的振动和碰撞,而这些振动和碰撞会导致能量传递。
当两个物体接触时,它们的分子会相互传递能量,使得温度差异逐渐减小,最终达到热平衡。
热传导的速度取决于多个因素,其中最主要的是以下几点:1. 物体的热导率:热导率越大,热传导速度越快。
不同物质的热导率各不相同,例如金属通常有较高的热导率,而绝缘材料则具有较低的热导率。
2. 温度差异:温度差异越大,热传导速度越快。
3. 物体的形状和尺寸:物体形状和尺寸的不同会影响热传导的路径和速度。
热传导在日常生活中随处可见。
例如,我们可以通过接触热杯子来感受到热传导,因为杯子中的热量会传递到我们的手中。
此外,热传导也是导致建筑物内部温度不断变化的原因之一。
当阳光照射到建筑物表面时,热量会通过传导进入室内空气,导致室内温度上升。
二、热对流的原理热对流是指热量通过流体的运动传递的过程。
当流体被加热后,其密度会减小,上升的热量会带动周围较冷的流体下沉,从而形成对流循环。
这种对流循环可以加速热量的传递,使得质量更大的热量被分散到周围环境中。
热对流的速度和强度与流体的性质和流动条件密切相关。
以下因素对热对流的影响较大:1. 流体的性质:流体的粘度和密度都会影响热对流的传输速度。
粘度较低的流体和较稀薄的流体通常具有较快的热对流速度。
2. 温度差异:温度差异越大,热对流速度越快。
3. 流体的流动条件:流体的流速、流动的方向和方式都会影响热对流传输的速度和路径。
热对流在自然界中广泛存在,例如热气球的升空过程。
当气球内部加热时,热量通过对流的方式传递到气球外部,从而导致气体的密度变化,使得气球能够升空。
对流传热第一题:知识点总结(一)对流传热概述1、对流传热:流体流过固体壁时的热量传递。
传热机理:热对流和热传导的联合作用热流量用牛顿冷却公式表示:Φ=hA△t其中对流传热面积A,温差△t,对流传热系数h2、影响对流传热系数的因素(1)流动的起因:>由于流动起因的不同,对流换热分为强迫对流传热与自然对流传热两大类。
(2)流动速度:>根据粘性流体流动存在着层流和湍流两种状态,对流传热分为层流对流传热与湍流对流传热两大类。
(3)流体有无相变:同种流体发生相变的换热强度比无相变时大得多。
(4)壁面的几何形状、大小和位置:对流体在壁面上的运动状态、速度分布和温度分布有很大影响。
(5)流体的热物理性质:影响对流传热系数有热导率λ,密度,比定压热容,流体粘度,体积膨胀系数。
综上所述,影响对流传热系数h的主要因素,可定性地用函数形式表示为h=f(v,l,λ,,,或,,)(二)流动边界层和热边界层1、流动边界层特性:(1)流体雷诺数较大时,流动边界层厚度与物体的几何尺寸相比很小;(2)流体流速变化几乎完全在流动边界层内,而边界层外的主流区流速几乎不变化;(3)在边界层内,粘性力和惯性力具有相同的量级,他们均不可忽略;(4)在垂直于壁面方向上,流体压力实际上可视为不变,即=0;(5)当雷诺数大到一定数值时,边界层内的流动状态可分为层流和湍流。
2、热边界层定义:当流体流过物体,而平物体表面的温度与来流流体的温度不相等时,在壁面上方形成的温度发生显著变化的薄层,称为热边界层。
热边界层厚度:当壁面与流体之间的温差达到壁面与来流流体之间的温差的0.99倍时,即=0.99,此位置就是边界层的外边缘,而该点到壁面之间的距离则是热边界层的厚度记为。
与δ一般不相等。
3、普朗特数流动边界层厚度δ反应流体分子动量扩散能力,与运动粘度有关;而热边界层厚度反应流体分子热量扩散的能力,与热扩散率a有关。
==它的大小表征流体动量扩散率与热量扩散率之比(三)边界层对流传热微分方程组1、连续性方程+=02、动量微分方程根据动量定理可导出流体边界层动量微分方程流体纵掠平壁时3、能量微分方程热扩散率a=边界层能量微分方程式:+=4、对流传热微分方程-------x处的对流传热温差------流体的热导率-------x处壁面上流体的温度变化率(四)、管内强迫对流传热1、全管长平均温度可取管的进、出口断面平均温度的算术平均值作为全管长温度的平均,即=()2、层流和湍流的判别由雷诺数Re大小来判别针对管内流动,当Re<2200时为层流;Re>1×时为湍流;2200<Re<1×时则为不稳定的过渡段(1)管内流动:(2)板内流动:湍流强迫对流传热管内强迫对流平均对流传热系数特征数关联式为:=0.023R P:考虑边界层内温度分布对对流传热系数影响的温度修正系数;:考虑短管管长对对流传热系数影响的短管修正系数;:考虑管道弯曲对对流传热系数影响的弯管修正系数。
一、实验目的1. 了解对流传热的基本原理,掌握对流传热系数的测定方法。
2. 掌握牛顿冷却定律的应用,通过实验验证其对流传热系数的计算公式。
3. 分析影响对流传热系数的因素,如流体速度、温度差、流体性质等。
二、实验原理对流传热系数是指单位时间内,单位面积上流体温度差为1℃时,单位面积上传递的热量。
牛顿冷却定律描述了对流传热过程,即:Q = h A (T1 - T2)式中:Q ——传热量(W)h ——对流传热系数(W/(m²·K))A ——传热面积(m²)T1 ——高温流体温度(℃)T2 ——低温流体温度(℃)根据牛顿冷却定律,可以通过实验测量传热量、传热面积、流体温度差,从而计算出对流传热系数。
三、实验仪器与材料1. 套管换热器2. 温度计3. 流量计4. 计时器5. 计算器6. 水和空气四、实验步骤1. 准备实验仪器,连接套管换热器、温度计、流量计等。
2. 在套管换热器内注入水,打开冷却水阀门,调节流量至预定值。
3. 在套管换热器外通入空气,调节风速至预定值。
4. 同时打开加热器和冷却水阀门,使水加热至预定温度,空气冷却至预定温度。
5. 记录开始加热和冷却的时间,观察温度变化。
6. 当温度变化稳定后,记录温度计的读数,计算温度差。
7. 关闭加热器和冷却水阀门,停止实验。
五、实验数据与处理1. 记录实验数据,包括水温度、空气温度、流量、时间等。
2. 根据牛顿冷却定律计算传热量Q:Q = m c ΔT其中,m为水的质量流量(kg/s),c为水的比热容(J/(kg·K)),ΔT为温度差(K)。
3. 计算对流传热系数h:h = Q / (A ΔT)六、实验结果与分析1. 根据实验数据,计算对流传热系数h,并与理论值进行比较。
2. 分析实验结果,探讨影响对流传热系数的因素。
3. 分析实验误差,总结实验经验。
七、结论通过对对流传热系数的测定实验,掌握了对流传热的基本原理和牛顿冷却定律的应用。
热传导应用知识点总结1. 热传导的基本概念热传导是指热量在物体之间由高温处向低温处传递的过程,其传递是通过物体内部分子的碰撞和振动所实现的。
在这个过程中,热能沿着温度梯度的方向传导,直到两个物体的温度相等为止。
2. 热传导的基本定律热传导的速度和大小是由热导率和温度梯度所决定的。
热导率是一个物质特性参数,表示单位时间内单位截面积上的热量传递。
而温度梯度是指单位长度内温度的变化量,用来描述热量传递的速度和方向。
3. 热传导的数学表达热传导的数学表达通常采用傅里叶定律来描述,在一维情况下,可以写作:q = -kA∆T/∆x其中q是热量,k是热导率,A是传导截面积,∆T是温度差,∆x是距离。
这个公式描述了热量通过物体的传导过程。
4. 热传导的方式热传导有三种方式:导热、对流和辐射。
导热是指热量在固体中通过分子的传递而实现,主要发生在固体物体中。
对流是指热量通过流体的传递而实现,主要发生在液体和气体中。
辐射是指热能通过电磁波的传递而实现,在真空中也能传热。
在实际应用中,这三种方式经常混合存在。
5. 热传导的应用热传导在日常生活和工业生产中有着广泛的应用。
以下是一些常见的应用领域:a. 建筑在建筑中,热传导应用非常广泛,例如隔热层的设计和使用,以减少建筑物内部和外部的温度差异,并节约能源。
b. 电子产品电子产品中的散热设计是一个非常重要的问题。
合理的散热设计可以提高电子产品的寿命和稳定性。
c. 工业生产在工业生产中,热传导被广泛应用在炉火、锅炉、冷却器等热处理设备中,以实现对原材料和产品的加热和冷却。
d. 医疗行业在医疗行业中,热传导被应用在医疗设备、药品的储存和运输中,以保证其存储条件和安全性。
e. 环境保护在环境保护方面,热传导的知识被应用在污染物的处理和清洁设备中,以减少对环境的负面影响。
6. 热传导的优化设计在实际应用中,热传导的优化设计对于提高设备的效率和性能至关重要。
通过合理的材料选择、结构设计和散热设备的优化来降低热传导的过程中导致的能量损耗和环境污染。