1972年诺贝尔物理学奖——超导电性理论
- 格式:doc
- 大小:30.50 KB
- 文档页数:3
论超导现象和超流体现象的关系——灵遁者我相信你和我一样,第一次听到超导概念的时候,是诧异的。
竟然还有这样的现象,其实令我们诧异的现象,有很多很多的。
只要你愿意去找,去发现,物理世界的奇妙,会伴随你一生。
但很多令我们诧异的现象,我们也找到了原因。
这就是人类的智慧。
1911年,荷兰莱顿大学的H·卡茂林·昂内斯意外地发现,将汞冷却到-268.98℃(4.2K)时,汞的电阻突然消失。
后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,H·卡茂林·昂内斯称之为超导态。
昂内斯由于他的这一发现获得了1913年诺贝尔奖。
首先电阻是描述导体导电性能的物理量,用R表示。
电阻由导体两端的电压U与通过导体的电流I的比值来定义,即R=U/I。
所以,当导体两端的电压一定时,电阻愈大,通过的电流就愈小; 反之,电阻愈小,通过的电流就愈大。
因此,电阻的大小可以用来衡量导体对电流阻碍作用的强弱,即导电性能的好坏。
电阻的量值与导体的材料、形状、体积以及周围环境等因素有关。
超导状态的导体称之为“超导体”。
超导体的直流电阻率在一定的低温下突然消失,被称作零电阻效应。
导体没有了电阻,电流流经超导体时就不发生热损耗,电流可以毫无阻力地在导线中形成强大的电流,从而产生超强磁场。
1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质——当金属处在超导状态时,超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。
对单晶锡球进行实验发现:锡球过渡到超导态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。
迈斯纳效应于1933年被瓦尔特·迈斯纳与罗伯特·奥克森菲尔德在量度超导锡及铅样品外的磁场时发现。
在有磁场的情况下,样品被冷却至它们的超导相变温度以下。
在相变温度以下时,样品几乎抵消掉所有里面的磁场。
历史回眸:超导现象的理论解释原文:David Lindley翻译:葛韶锋原文网址:/story/v18/st8引文美国物理学会(APS: American Physical Society)已经把自从1893年以来的所有《物理学评论》期刊放到了网上。
Focus网站的Landmarks栏目从这些期刊文章中找出重要的文章写了一些评论,以飨读者。
正文《物理学评论》于1957年刊登了一篇理论文章,第一次解释了在低温下一些材料电阻完全消失的现象。
在实验线索和早期理论尝试的基础上,来自伊利诺斯大学(University of Illinois in Urbana)的John Bardeen,Leon Cooper和Robert Schrieffer不仅解释了电阻消失的现象,同时还解释了超导体的许多磁学和热学性质。
即所谓的BCS理论,他们的发现还对粒子物理理论有重要的影响,并且为解释高温超导现象的尝试提供了依据。
超导现象最早是在1911年发现的,到上世纪三十年代的时候物理学家们确定超导体中的电子占据了不同于正常导体中电子的量子态。
研究人员们于1950年发现,水银转变成超导体的临界温度比原子量较大的水银同位素的临界温度稍微要高一些,这就说明超导电性除了和材料中电子的运动有关外还和原子的运动有关。
为了解释这种“同位素效应”(Isotope Effect)Bardeen和他在伊利诺斯大学的同事David Pines从理论上证明,在原子晶格中电子可以相互吸引,虽然电子和电子之间有很强的静电排斥作用。
关键在于,电子可以影响晶格原子的振动,这种振动可以影响其它的电子,也就是说电子和电子之间的相互吸引并不是直接的。
到了上世纪五十年代中期,Bardeen和博士后Cooper以及研究生Schrieffer合作。
Cooper发表了一篇短文,在这篇文章中他发现Bardeen-Pines吸引可以使得动量相反的电子配对,并且这种配对是稳定的[1]。
超导体的电磁学性质及热力学解释超导电是在低温下具有广泛性的现象,现在已知道,有二十多种元素,大量的化合物,都在一定的临界温度下,转入所谓超导电状态。
超导体与温度、磁场、电流密度的大小密切相关,这些条件的上限分别称为临界温度(critical temperature, Tc)、临界磁场(critical magnetic field, Hc)和临界电流密度(critical electric current density, Jc)。
超导电性有两个最基本的特性:完全导电性和完全抗磁性。
常压下,元素中超导临界温度最高的是Nb(9.26K),最低的是Rh(0.0002K)。
近年来人们始终在努力寻求临界温度更高的所谓高 Tc 超导材料,到目前为止,已经发现了三代高温超导材料,第一代为镧系高温超导材料,第二代为钇系高温超导材料,第三代为铋系、铊系及汞系高温超导材料。
1.超导体的电磁学性质1.1 零电阻1911年荷兰物理学家昂内斯(H.R.Onnes)在研究水银在低温下的电阻时,发现当温度降低至4.2K以下后,水银的电阻突然消失,呈现零电阻状态。
昂内斯便把这种低温下物质具有零电阻的性能称为超导电性。
电阻是用灵敏电位计测量通过一定电流样品上的电压降而确定的,样品本身被浸在液氦中。
当时发现 Hg 的电阻在 4.2K 左右陡然下降。
实验证明,测量电流愈小,电阻变化愈尖锐,用足够小的测量电流能使电阻的下降集中发生在 0.01K 的狭窄范围内。
在这个转变温度以下,电阻完全消失。
汞在液氦温度左右的电阻变化如下图所示。
上述检测方法由于仪器的灵敏度问题而受到质疑。
Onnes利用“持久电流”实验解决了这个问题。
在外磁场作用下,使环状的样品发生上述转变,然后撤去磁场,这时在环内产生感生电流。
他发现当温度降到临界温度以下,用磁针在低温容器之外检验感生电流,结果在很长时间内,完全不能发现任何变化。
而温度提高到临界温度以上时,电流立即消失。
1972年诺贝尔物理学奖1972年物理学奖,颁发给了三位美国的物理学家,他们是约翰·巴丁(John Bardeen)、利昂·库珀(Leon NCoope)和约翰·施里弗(John R.Schrieffer,1931—2019),他们曾在同一个实验室工作过,并且创立了以他们名字的第一个字母为缩写的BCS超导微观理论。
其中巴丁是第二次获得这一奖项(第一次获奖是1956年),是物理学史上唯一两次获得这一荣誉的人。
约翰·巴丁(John Bardeen,1908—1991),他的生平在前面已经介绍过,在这里不再重复。
早在20世纪50年代早期,巴丁就已经开始考虑超导电性的问题。
他意识到电子与声子的相互作用是解决问题的关键。
1953年,施里弗来到伊利诺伊大学,在巴丁的指导下攻读物理学博士学位,并选择超导问题作为博士论文题目。
在普林斯顿高等研究院的杨振宁的推荐下,刚从哥伦比亚大学获得博士学位不久的库柏开始与巴丁和施里弗进行合作,研究超导的微观机制。
从20世纪30年代开始,巴丁就接触到了超导电性,他对这种现象长期得不到解释甚为担忧,认为这是理论物理学界的耻辱。
E.伦敦(E.London)认为,超导电性是一种宏观尺度上的量子现象,他的能隙概念和对迈斯纳效应的重视,对巴丁很有启发。
1940年,巴丁曾经尝试对超导电性进行解释,他认为关键在于费米面(描述金属中电子状态的动量空间中的等能面)是起因于微小点阵位移而出现的一些小能隙,1在紧靠费米面下面的态的电子能量被降低,处于这种态的电子具有非常小的有效能量、很大的轨道和很强的抗磁性。
巴丁的这一解释是不成功的。
1941年,巴丁参加战时军事研究,只好把超导电性的研究暂时放下。
1950年,由于麦克斯韦(E.Maxwell)等人发现超导体的同位素效应,促使巴丁回到超导电性的研究上来。
当巴丁听到这一效应的发现时,马上想到有可能是一种电子和声子的相互作用。
高温超导实验报告【摘要】采用杜瓦容器和低温恒温器获得从液氮沸点到室温的任意温度,在此条件下,测量高温超导材料电阻的起始转变温度为101.4K、临界温度约为96.50K、零电阻温度为92.39K。
进行温度计的比对,发现硅二极管电压、温差电偶均与温度成接近线性的关系。
观察了高温超导磁悬浮现象,并定量对高温超导体的磁悬浮力与距离的关系曲线进行了扫描,进一步了解场冷和零场冷。
【关键词】液氮、高温超导、铂电阻、硅二极管、温差电偶一、引言1911年昂纳斯首次在4.2K水银的电阻突然消失的超导电现象。
1933年迈斯纳发现超导体内部的磁场是保持不变的,而且实际上为零,这个现象叫做迈纳斯效应。
1957年巴丁、库柏和施里弗共同提出来超导电性的微观理论:当成对的电子有相同的总动量时,超导体处于最低能态。
电子对的相同动量是由电子之间的集体相互作用引起的,它在一定条件下导致超流动性。
电子对的集体行为意味着宏观量子态的存在。
这一超导的微观理论成为BCS理论,1972年他们三个人共同获得了诺贝尔物理学奖。
T超导电性》,后1986年4月,柏诺兹和缪勒投寄文章《Ba-La-Cu-O系统中可能的高c来日本东京大学几位学者和他们二人先后证实此化合物的完全抗磁性。
虽然后来又发现了125K的铊系超导体和150K的汞系氧化物,但是YBCO仍是目前最流行的高温超导材料。
超导电性的应用十分广泛,例如超导磁悬浮列车、超导重力仪、超导计算机、超导微波器件等,超导电性还可以用于计量标准等。
二、原理2.1MEISSNER效应1933年,MEISSNER和OCHSENFELD通过实验发现,无论加磁场的次序如何,超导体内磁场感应强度总是等于零,即使超导体在处于外磁场中冷却到超导态,也永远没有内部磁场,它与加磁场的历史无关。
这个效应被称为MEISSNER效应。
2.2临界磁场磁场加到超导体上之后,一定数量的磁场能量用来立屏蔽电流的磁场以抵消超导体的内部磁场。
细推物理须行乐,何用浮名绊此身——记次年轻的诺贝尔科学奖得主李政道作者:暂无来源:《世界科学》 2021年第9期朱安远苏州天赐庄李氏家族李政道的曾祖父李子义(1844—1904)是一位虔诚的基督徒,1866年前后他受美国监理会传教士的派遣,由松江府上海迁居苏州府而成为苏州天赐庄李氏家族的始迁祖,经多年繁衍生息,李氏家族早已成为当地的名门望族,英才辈出并扬名海内外。
据罗元旭著《东成西就:七个华人基督教家族与中西交流百年》(2014年5月生活·读书·新知三联书店出版)一书介绍,苏州李氏家族是中国近代史上最著名和最有影响力的七个基督教家族之一。
李政道的曾祖父李子义和祖父李仲覃(1870—1941)都是当时颇为知名的基督教牧师和长老,父子俩与存养书院、博习书院和东吴大学(今苏州大学)的渊源深厚。
李政道的父亲李骏康(1897—1955)1915年从苏州东吴大学附属中学毕业后考入东吴大学,次年转入南京金陵大学新成立的农林科(今南京农业大学的前身),1919年毕业时系农林科第2届毕业生。
大学毕业后在上海外国洋行从事化肥进口贸易,收入颇丰,家庭殷实富足。
1918年与出身于天主教名门世家的张明璋(1900—1983)在上海结婚。
1926年11月24日,李政道出生在上海一个中西合璧的殷富商人基督教家庭,上有两个哥哥(李宏道、李崇道),下有两个弟弟(李达道、李学道)和一个妹妹(李雅芸)。
李政道自幼天资聪慧,心灵手巧,智商和情商都很高。
虽然家中的宗教氛围浓厚,但从小就崇尚自然科学的他终生未曾信奉过宗教。
受社会动荡和战争动乱等因素的影响,李政道从未取得过正式的小学、初中、高中和大学本科毕业文凭,唯一拥有的学位就是世界级名校芝加哥大学的博士毕业文凭,这一稀罕现象在全世界来说都属凤毛麟角。
李政道博士的爱情故事杨振宁和凌宁(1919—2019)同为第六届庚款留美公费生(1943年8月开考,翌年3月发榜,1945年8月才启程赴美),杨振宁考中物理学(注重高电压实验),凌宁考中动物学。
超导电性及其应用超导电性,就是指在某些材料中,在极低的温度下,电阻会突然下降为零的现象。
发现这种现象的人被授予了诺贝尔物理学奖,超导性是物理学的一个经典研究领域,也是应用最广泛的研究领域之一。
超导材料通常需要极低的温度才能表现出超导。
铅、汞等金属,以及铜氧化物、镁二硅、铝等复合材料都表现出了超导现象。
其中,铜氧化物超导体是当前研究最活跃的方向。
超导材料在电力行业、航空航天、电子学、计算机技术等领域都得到了广泛的应用。
超导电缆是一项比较实际的应用,它基于超导体的能量输送性能。
这些电缆可以输送更多的电能,并且容易维护。
铜导线需要冷却才能通过更多的电流,而超导体却不需要这样。
因此,超导电缆不仅提供了更高效的电力输送能力,而且还节省了能源。
此外,超导电缆具有更好的抗干扰性能,能够更好地保护环境和人类健康。
超导飞船是另一种利用超导体的设备。
超导体通过提供强大磁场来推动飞船。
超导飞船可以减少对环境的污染,使飞行过程更加安全可靠。
它们可以在大气层的低压下运行,从而减少航空器的落地问题。
超导电机,比如说MRI(磁共振成像)机器里面的电机,就是超导电机。
它的特点是,比传统的电机更加高效、更加稳定。
超导电机消耗的电能少,功率密度高,这意味着它可以达到更高的速度和马力,而且噪声非常小。
MRI机使用的超导材料TD(LiF)-Cu也是一种新型、优良的超导体材料。
超导电子器件的应用则主要在于极低温度下的高速计算机思路,例如更优拟造型将会出现在军用领域中。
大型计算机系统对于计算时的发热是个很大的问题,但采用超导材料可以很好的解决这个问题。
可以预见,未来的超导材料将成为宇宙航行、火箭燃料等领域新一代的推进系统、高速铁路、静电发生器等领域新一代强电源,同时也会取代传统的发电方法成为新一代的发电系统。
总的来说,超导电性是一个非常重要的研究领域,它在许多领域都具有广泛的应用前景。
未来,我们可以预计超导技术将会越来越成熟,创造出更多高效节能、绿色环保的应用。
超导电性的物理机制超导电性是指某些物质在低温下表现出的零电阻和完全磁通排斥的现象。
它被广泛应用于能源输送、磁共振成像以及粒子加速器等领域。
虽然超导电性已经被研究了数十年,但其物理机制迄今尚未完全揭示。
本文将探讨关于超导电性的物理机制的一些主要理论和实验发现。
超导电性的物理机制可以通过不同的理论框架进行解释。
最著名的是BCS理论和Ginzburg-Landau理论。
BCS理论由Bardeen、Cooper和Schrieffer于1957年提出,通过解释超导电性的微观机制而获得了诺贝尔物理学奖。
该理论基于电子和晶格的相互作用,在导体中形成库伦电子对。
这些库伦电子对被称为Cooper对。
库伦电子对的形成是由晶格中的振动引起的,这些振动被称为声子。
声子交换引起电子间的吸引力,促使电子形成Cooper对,从而导致超导电性的现象。
Ginzburg-Landau理论是对BCS理论的补充和扩展。
它是由Ginzburg和Landau于1950年代提出的,并在1962年Nobel物理学奖中被承认。
该理论通过引入一个宏观的量子场来描述超导态和正常态之间的相变。
该场被称为超导参量,它的非零值代表了超导态的存在。
Ginzburg-Landau理论还解释了超导电性的一些特征,如磁通的排斥。
实验观察不仅支持了BCS和Ginzburg-Landau理论,还揭示了其他有关超导电性的重要现像。
一个重要的实验现象是超导态与正常态之间存在一个临界温度。
在低于该温度的情况下,物质表现出超导电性,而在高于该温度时,物质表现出正常态。
这个临界温度被称为超导转变温度,通常用符号Tc来表示。
各种不同的材料具有不同的超导转变温度。
此外,超导电性还表现出Meissner效应,即超导体对外施加的磁场具有排斥作用。
这是超导体磁性行为的一个重要特征,也是超导电性应用的基础。
近年来,研究人员还发现了一类新型超导体,被称为高温超导体。
它们的超导转变温度高于传统超导体,这为更广泛的应用提供了可能性。
诺贝尔物理学奖110年知识竞答一、填空题1.1901年,德国物理学家因发现以及对性质的研究,获得了第一届诺贝尔物理学奖。
因当时不知该射线的本质,故称为。
现已知是波长约为10-1~103Å的电磁辐射,其长波端与紫外线谱的短波端重叠,短波端与γ射线谱重叠。
2.在110年中仅有两位女科学家获得诺贝尔物理学奖,一位是法国的,她于年因而获奖;另一位是美国的,她于年因而获奖。
3.最年轻的诺贝尔物理学奖得主是英国物理学家,他于年因而获奖,时年岁,最年长的物理学奖得主是美国物理学家,他于年因在而获奖,当时已88岁高龄。
4.1915年,和父子因在用X射线研究晶体结构方面所做出的杰出贡献分享了该年度诺贝尔物理学奖。
他们提出了著名的方程:nλ=2d sinθ, n =1,2,3,…从而把X射线的波长λ和反射出现的掠射角θ联系起来,式中d为相邻原子面的间距,n为光谱的阶数。
他们俩开创了父子同获诺贝尔奖的先例。
5.在从经典物理学到量子物理学的过渡中,X 射线的研究起了十分重要的作用。
20世纪30年代之前,7位物理学家因为在这方面的研究工作获得了诺贝尔物理学奖。
他们分别是:(1901年)、(1914年)、(1915年)、(1917年)、(1924年)、(1927年)。
6.1905年,爱因斯坦在物理学三个不同领域中取得了历史性成就,特别是狭义相对论的建立和光量子论的提出,推动了物理学的革命;1915年,他又建立了广义相对论。
但是,使他获得1921年诺贝尔物理学奖的原因却是运用概念成功地解释了。
7.在110年中,共有6位华裔物理学家获诺贝尔物理学奖,他们分别是:1957年,和因发现在弱作用过程中宇称不守恒而获奖;1976年因发现后来称为J/ψ的新粒子而获奖;1997年,因发展激光冷却和陷俘原子的方法而获奖;1998年,因发现分数量子霍尔效应而获奖;2009年,因在有关光在纤维中的传输以及将其用于光学通信方面取得了突破性成就而获奖。
2011年诺贝尔物理学奖获奖者为美国加州大学伯克利分校教授索尔·佩尔马特,澳大利亚国立大学教授布莱恩·施密特,以及美国约翰斯·霍普金斯大学教授亚当·里斯。
他们的贡献是,通过对超新星的观测证明宇宙在加速膨胀、变冷。
2010年诺贝尔物理学奖获奖者为英国曼彻斯特大学科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫。
他们在2004年制成石墨烯材料。
石墨烯是目前已知材料中最薄的一种,被普遍认为会最终替代硅,从而引发电子工业的再次革命。
2009年诺贝尔物理学奖获奖者为英国华裔科学家高锟以及美国科学家威拉德·博伊尔和乔治·史密斯。
高锟获奖是由于在“有关光在纤维中的传输以用于光学通信方面”作出了突破性成就,而两位美国科学家的主要成就是发明半导体成像器件——电荷耦合器件(CCD)图像传感器。
2008年诺贝尔物理学奖获奖者为美国籍科学家南部阳一郎和日本科学家小林诚、益川敏英。
南部阳一郎的贡献是发现了亚原子物理学中的自发对称性破缺机制,而小林诚和益川敏英的贡献是发现了有关对称性破缺的起源。
2007年,法国科学家阿尔贝·费尔和德国科学家彼得·格林贝格尔因发现“巨磁电阻”效应而获诺贝尔物理学奖。
2006年,美国科学家约翰·马瑟和乔治·斯穆特因发现了宇宙微波背景辐射的黑体形式和各向异性而获奖。
2005年,美国科学家罗伊·格劳伯、约翰·霍尔和德国科学家特奥多尔·亨施因为“对光学相干的量子理论的贡献”和对基于激光的精密光谱学发展作出了贡献而获奖。
2004年,诺贝尔物理学奖归属美国科学家戴维·格罗斯、戴维·波利策和弗兰克·维尔切克。
他们发现了粒子物理强相互作用理论中的渐近自由现象。
2003年诺贝尔物理学奖——超导和超流体理论研究领域的卓越贡献2003年度诺贝尔物理奖授予拥有俄罗斯和美国双重国籍的科学家阿列克谢·阿布里科索夫、俄罗斯科学家维塔利·金茨堡以及拥有英国和美国双重国籍的科学家安东尼·莱格特,以表彰他们由于在超导和超流体理论研究领域所作出的开创性贡献。
历年诺贝尔物理学奖各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢篇一:历年诺贝尔物理学奖历年诺贝尔物理学奖(1901-2014)年份获奖者国籍1901年威廉·康拉德·伦琴德国亨得里克·洛仑兹荷兰1902年彼得·塞曼荷兰亨利·贝克勒法国1903年皮埃尔·居里法国玛丽·居里法国1904年约翰·威廉·斯特拉斯英国菲利普·爱德华·安东·冯·莱1905年德国纳德1906年约瑟夫·汤姆孙英国1907年阿尔伯特·迈克耳孙美国1908年加布里埃尔·李普曼法国古列尔莫·马可尼意大利1909年卡尔·费迪南德·布劳恩德国1910年范德华荷兰1911年威廉·维恩德国1912年尼尔斯.古斯塔夫·达伦瑞典1913年海克·卡末林·昂内斯荷兰获奖原因“发现不寻常的射线,之后以他的名字命名”(即X射线,又称伦琴射线,并伦琴做为辐射量的单位)“关于磁场对辐射现象影响的研究”(即塞曼效应)“发现天然放射性” “他们对亨利·贝克勒教授所发现的放射性现象的共同研究” “对那些重要的气体的密度的测定,以及由这些研究而发现氩”(对氢气、氧气、氮气等气体密度的测量,并因测量氮气而发现氩)“关于阴极射线的研究” “对气体导电的理论和实验研究” “他的精密光学仪器,以及借助它们所做的光谱学和计量学研究” “他的利用干涉现象来重现色彩于照片上的方法” “他们对无线电报的发展的贡献” “关于气体和液体的状态方程的研究” “发现那些影响热辐射的定律” “发明用于控制灯塔和浮标中气体蓄积器的自动调节阀” “他在低温下物体性质的研究,尤其是液态氦的制成”1914年马克斯·冯·劳厄德国威廉·亨利·布拉格英国1915年威廉·劳伦斯·布拉格英国1917年查尔斯·格洛弗·巴克拉英国1918年马克斯·普朗克德国1919年约翰尼斯·斯塔克德国1920年夏尔·爱德华·纪尧姆瑞士1921年阿尔伯特·爱因斯坦德国1922年尼尔斯·玻尔丹麦1923年罗伯特·安德鲁·密立根美国1924年卡尔·曼内·乔奇·塞格巴恩瑞典詹姆斯·弗兰克德国1925年古斯塔夫·赫兹德国1926年让·佩兰法国阿瑟·康普顿美国1927年查尔斯·威耳逊英国1928年欧文·理查森英国1929年路易·德布罗意公爵法国钱德拉塞卡拉·文卡塔·拉1930年印度曼1932年维尔纳·海森堡德国1933年埃尔温·薛定谔奥地利“发现晶体中的X射线衍射现象” “用X射线对晶体结构的研究” “发现元素的特征伦琴辐射” “因他的对量子的发现而推动物理学的发展” “发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象” “他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现” “他对理论物理学的成就,特别是光电效应定律的发现” “他对原子结构以及由原子发射出的辐射的研究” “他的关于基本电荷以及光电效应的工作” “他在X射线光谱学领域的发现和研究”[3] “发现那些支配原子和电子碰撞的定律” “研究物质不连续结构和发现沉积平衡” “发现以他命名的效应” “通过水蒸气的凝结来显示带电荷的粒子的轨迹的方法” “他对热离子现象的研究,特别是发现以他命名的定律” “发现电子的波动性” “他对光散射的研究,以及发现以他命名的效应” “创立量子力学,以及由此导致的氢的同素异形体的发现” “发现了原子理论的新的多产的形式”(即量子力学的基本方程——薛定谔方程和狄拉保罗·狄拉克1935年詹姆斯·查德威克维克托·弗朗西斯·赫斯英国英国克方程)“发现中子” 奥地利“发现宇宙辐射” 1936年卡尔·戴维·安德森美国克林顿·约瑟夫·戴维孙美国1937年乔治·汤姆孙英国1938年恩里科·费米意大利1939年欧内斯特·劳伦斯美国1943年奥托·施特恩美国1944年伊西多·艾萨克·拉比美国1945年沃尔夫冈·泡利奥地利1946年珀西·威廉斯·布里奇曼美国1947年爱德华·维克托·阿普尔顿英国帕特里克·梅纳德·斯图尔1948年英国特·布莱克特1949年汤川秀树日1950年塞西尔·弗兰克·鲍威尔英国约翰·道格拉斯·考克饶夫英国1951年欧内斯特·沃吞爱尔兰费利克斯·布洛赫美国1952年爱德华·珀塞尔美国“发现正电子” “他们有关电子被晶体衍射的现象的实验发现” “证明了可由中子辐照而产生的新放射性元素的存在,以及有关慢中子引发的核反应的发现” “对回旋加速器的发明和发展,并以此获得有关人工放射性元素的研究成果” “他对分子束方法的发展以及有关质子磁矩的研究发现” “他用共振方法记录原子核的磁属性” “发现不相容原理,也称泡利原理” “发明获得超高压的装置,并在高压物理学领域作出发现” “对高层大气的物理学的研究,特别是对所谓阿普顿层的发现” “改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现” “他以核作用力的理论为基础预言了介子的存在” “发展研究核过程的照相方法,以及基于该方法的有关介子的研究发现” “他们在用人工加速原子产生原子核嬗变方面的开创性工作” “发展出用于核磁精密测量的新方法,并凭此所得的研究成果”1953年弗里茨·塞尔尼克荷兰马克斯·玻恩英国1954年瓦尔特·博特德国威利斯·尤金·兰姆美国1955年波利卡普·库施美国威廉·布拉德福德·肖克利美国1956年约翰·巴丁美国沃尔特·豪泽·布喇顿美国杨振宁中国1957年李政道中国帕维尔·阿列克谢耶维苏联奇·切连科夫1958年伊利亚·弗兰克苏联伊戈尔·叶夫根耶维奇·塔苏联姆埃米利奥·吉诺·塞格雷美国1959年欧文·张伯伦美国1960年唐纳德·阿瑟·格拉泽美国罗伯特·霍夫施塔特美国1961年鲁道夫·路德维希·穆斯堡德国尔“他对相衬法的证实,特别是发明相衬显微镜” “在量子力学领域的基础研究,特别是他对波函数的统计解释” “符合法,以及以此方法所获得的研究成果” “他的有关氢光谱的精细结构的研究成果” “精确地测定出电子磁矩” “他们对半导体的研究和发现晶体管效应” “他们对所谓的宇称不守恒定律的敏锐地研究,该定律导致了有关基本粒子的许多重大发现” “发现并解释切连科夫效应” “发现反质子” “发明气泡室” “关于对原子核中的电子散射的先驱性研究,并由此得到的关于核子结构的研究发现” “他的有关γ射线共振吸收现象的研究以及与这个以他命名的效应相关的研究发现”1962年列夫·达维多维奇·朗道苏联耶诺·帕尔·维格纳美国1963年玛丽亚·格佩特-梅耶美国J·汉斯·D·延森德国查尔斯·汤斯美国尼古拉·根纳季耶维奇·巴1964年苏联索夫亚历山大·普罗霍罗夫苏联朝永振一郎日1965年朱利安·施温格美国理查德·菲利普·费曼美国1966年阿尔弗雷德·卡斯特勒法国1967年汉斯·阿尔布雷希特·贝特美国路易斯·沃尔特·阿尔瓦雷1968年美国茨1969年默里·盖尔曼美国汉尼斯·奥洛夫·哥斯达·阿瑞典1970年尔文路易·奈耳法国1971年伽博·丹尼斯英国约翰·巴丁美国1972年利昂·库珀美国“关于凝聚态物质的开创性理论,特别是液氦” “他对原子核和基本粒子理论的贡献,特别是对基础的对称性原理的发现和应用” “发现原子核的壳层结构” “在量子电子学领域的基础研究成果,该成果导致了基于激微波-激光原理建造的振荡器和放大器” “他们在量子电动力学方面的基础性工作,这些工作对粒子物理学产生深远影响” “发现和发展了研究原子中赫兹共振的光学方法” “他对核反应理论的贡献,特别是关于恒星中能源的产生的研究发现” “他对粒子物理学的决定性贡献,特别是因他发展了氢气泡室技术和数据分析方法,从而发现了一大批共振态” “对基本粒子的分类及其相互作用的研究发现” “磁流体动力学的基础研究和发现,及其在等离子体物理学富有成果的应用” “关于反铁磁性和铁磁性的基础研究和发现以及在固体物理学方面的重要应用” “发明并发展全息照相法” “他们联合创立了超导微观理论,即常说的BCS理论”篇二:历届诺贝尔物理学奖获得者名单历届诺贝尔物理学奖获得者名单(1901-2012)1、1901年:威尔姆·康拉德·伦琴(德国)发现X射线2、1902年:亨德瑞克·安图恩·洛伦兹(荷兰)、塞曼(荷兰)关于磁场对辐射现象影响的研究3、1903年:安东尼·亨利·贝克勒尔(法国)发现天然放射性;皮埃尔·居里(法国)、玛丽·居里(波兰裔法国人)发现并研究放射性元素钋和镭4、1904年:瑞利(英国)气体密度的研究和发现氩5、1905年:伦纳德(德国)关于阴极射线的研究6、1906年:约瑟夫·汤姆生(英国)对气体放电理论和实验研究作出重要贡献并发现电子7、1907年:迈克尔逊(美国)发明光学干涉仪并使用其进行光谱学和基本度量学研究8、1908年:李普曼(法国)发明彩色照相干涉法(即李普曼干涉定律)9、1909年:伽利尔摩·马克尼(意大利)、布劳恩(德国)发明和改进无线电报;理查森(英国)从事热离子现象的研究,特别是发现理查森定律10、1910年:范德华(荷兰)关于气态和液态方程的研究11、1911年:维恩(德国)发现热辐射定律12、1912年:达伦(瑞典)发明可用于同燃点航标、浮标气体蓄电池联合使用的自动调节装置13、1913年:卡末林-昂内斯(荷兰)关于低温下物体性质的研究和制成液态氦14、1914年:马克斯·凡·劳厄(德国)发现晶体中的X射线衍射现象15、1915年:威廉·亨利·布拉格、威廉·劳伦斯·布拉格(英国)用X射线对晶体结构的研究16、1916年:未颁奖17、1917年:查尔斯·格洛弗·巴克拉(英国)发现元素的次级X辐射特性18、1918年:马克斯·卡尔·欧内斯特·路德维希·普朗克(德国)对确立量子论作出巨大贡献19、1919年:斯塔克(德国)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象20、1920年:纪尧姆(瑞士)发现镍钢合金的反常现象及其在精密物理学中的重要性21、1921年:阿尔伯特·爱因斯坦(德国)他对数学物理学的成就,特别是光电效应定律的发现22、1922年:尼尔斯·亨利克·大卫·玻尔(丹麦)关于原子结构以及原子辐射的研究23、1923年:罗伯特·安德鲁·密立根(美国)关于基本电荷的研究以及验证光电效应24、1924年:西格巴恩(瑞典)发现X射线中的光谱线25、1925年:弗兰克·赫兹(德国)发现原子和电子的碰撞规律26、1926年:佩兰(法国)研究物质不连续结构和发现沉积平衡27、1927年:康普顿(美国)发现康普顿效应;威尔逊(英国)发明了云雾室,能显示出电子穿过空气的径迹28、1928年:理查森(英国)研究热离子现象,并提出理查森定律29、1929年:路易·维克多·德布罗意(法国)发现电子的波动性30、1930年:拉曼(印度)研究光散射并发现拉曼效应31、1931年:未颁奖32、1932年:维尔纳·海森伯(德国)在量子力学方面的贡献33、1933年:埃尔温·薛定谔(奥地利)创立波动力学理论;保罗·阿德里·莫里斯·狄拉克(英国)提出狄拉克方程和空穴理论34、1934年:未颁奖35、1935年:詹姆斯·查德威克(英国)发现中子36、1936年:赫斯(奥地利)发现宇宙射线;安德森(美国)发现正电子37、1937年:戴维森(美国)、乔治·佩杰特·汤姆生(英国)发现晶体对电子的衍射现象38、1938年:恩利克·费米(意大利)发现由中子照射产生的新放射性元素并用慢中子实现核反应39、1939年:欧内斯特·奥兰多·劳伦斯(美国)发明回旋加速器,并获得人工放射性元素40、1940—1942年:未颁奖41、1943年:斯特恩(美国)开发分子束方法和测量质子磁矩42、1944年:拉比(美国)发明核磁共振法43、1945年:沃尔夫冈·E·泡利(奥地利)发现泡利不相容原理44、1946年:布里奇曼(美国)发明获得强高压的装置,并在高压物理学领域作出发现45、1947年:阿普尔顿(英国)高层大气物理性质的研究,发现阿普顿层(电离层)46、1948年:布莱克特(英国)改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现47、1949年:汤川秀树(日本)提出核子的介子理论并预言∏介子的存在48、1950年:塞索·法兰克·鲍威尔(英国)发展研究核过程的照相方法,并发现π介子49、1951年:科克罗夫特(英国)、沃尔顿(爱尔兰)用人工加速粒子轰击原子产生原子核嬗变50、1952年:布洛赫、珀塞尔(美国)从事物质核磁共振现象的研究并创立原子核磁力测量法51、1953年:泽尔尼克(荷兰)发明相衬显微镜52、1954年:马克斯·玻恩(英国)在量子力学和波函数的统计解释及研究方面作出贡献;博特(德国)发明了符合计数法,用以研究原子核反应和γ射线53、1955年:拉姆(美国)发明了微波技术,进而研究氢原子的精细结构;库什(美国)用射频束技术精确地测定出电子磁矩,创新了核理论54、1956年:布拉顿、巴丁(犹太人)、肖克利(美国)发明晶体管及对晶体管效应的研究55、1957年:李政道、杨振宁(美籍华人)发现弱相互作用下宇称不守衡,从而导致有关基本粒子的重大发现56、1958年:切伦科夫、塔姆、弗兰克(苏联)发现并解释切伦科夫效应57、1959年:塞格雷、欧文·张伯伦(OwenChamberlain)(美国)发现反质子58、1960年:格拉塞(美国)发现气泡室,取代了威尔逊的云雾室59、1961年:霍夫斯塔特(美国)关于电子对原子核散射的先驱性研究,并由此发现原子核的结构;穆斯堡尔(德国)从事γ射线的共振吸收现象研究并发现了穆斯堡尔效应60、1962年:达维多维奇·朗道(苏联)关于凝聚态物质,特别是液氦的开创性理论61、1963年:维格纳(美国)发现基本粒子的对称性及支配质子与中子相互作用的原理;梅耶夫人(美国人.犹太人)、延森(德国)发现原子核的壳层结构62、1964年:汤斯(美国)在量子电子学领域的基础研究成果,为微波激射器、激光器的发明奠定理论基础;巴索夫、普罗霍罗夫(苏联)发明微波激射器63、1965年:朝永振一郎(日本)、施温格、费因曼(美国)在量子电动力学方面取得对粒子物理学产生深远影响的研究成果64、1966年:卡斯特勒(法国)发明并发展用于研究原子内光、磁共振的双共振方法65、1967年:贝蒂(美国)核反应理论方面的贡献,特别是关于恒星能源的发现66、1968年:阿尔瓦雷斯(美国)发展氢气泡室技术和数据分析,发现大量共振态67、1969年:盖尔曼(美国)对基本粒子的分类及其相互作用的发现68、1970年:阿尔文(瑞典)磁流体动力学的基础研究和发现,及其在等离子物理富有成果的应用;内尔(法国)关于反磁铁性和铁磁性的基础研究和发现69、1971年:加博尔(英国)发明并发展全息照相法70、1972年:巴丁、库柏、施里弗(美国)创立BCS超导微观理论71、1973年:江崎玲于奈(日本)发现半导体隧道效应;贾埃弗(美国)发现超导体隧道效应;约瑟夫森(英国)提出并发现通过隧道势垒的超电流的性质,即约瑟夫森效应72、1974年:马丁·赖尔(英国)发明应用合成孔径射电天文望远镜进行射电天体物理学的开创性研究;赫威斯(英国)发现脉冲星73、1975年:阿格·N·玻尔、莫特尔森(丹麦)、雷恩沃特(美国)发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系提出核结构理论74、1976年:丁肇中、里希特(美国)各自独立发现新的J/ψ基本粒子75、1977年:安德森、范弗莱克(美国)、莫特(英国)对磁性和无序体系电子结构的基础性研究76、1978年:卡皮察(苏联)低温物理领域的基本发明和发现;彭齐亚斯、R·W·威尔逊(美国)发现宇宙微波背景辐射77、1979年:谢尔登·李·格拉肖、史蒂文·温伯格(美国)、阿布杜斯·萨拉姆(巴基斯坦)关于基本粒子间弱相互作用和电磁作用的统一理论的贡献,并预言弱中性流的存在78、1980年:克罗宁、菲奇(美国)发现电荷共轭宇称不守恒79、1981年:西格巴恩(瑞典)开发高分辨率测量仪器以及对光电子和轻元素的定量分析;布洛姆伯根(美国)非线性光学和激光光谱学的开创性工作;肖洛(美国)发明高分辨率的激光光谱仪80、1982年:K·G·威尔逊(美国)提出重整群理论,阐明相变临界现象81、1983年:萨拉马尼安·强德拉塞卡(美国)提出强德拉塞卡极限,对恒星结构和演化具有重要意义的物理过程进行的理论研究;福勒(美国)对宇宙中化学元素形成具有重要意义的核反应所进行的理论和实验的研究82、1984年:卡洛·鲁比亚(意大利)证实传递弱相互作用的中间矢量玻色子[[W+]],W-和Zc的存在;范德梅尔(荷兰)发明粒子束的随机冷却法,使质子-反质子束对撞产生W和Z粒子的实验成为可能83、1985年:冯·克里津(德国)发现量子霍耳效应并开发了测定物理常数的技术84、1986年:鲁斯卡(德国)设计第一台透射电子显微镜;比尼格(德国)、罗雷尔(瑞士)设计第一台扫描隧道电子显微镜85、1987年:柏德诺兹(德国)、缪勒(瑞士)发现氧化物高温超导材料篇三:历年诺贝尔物理学奖历年诺贝尔物理学奖1901年诺贝尔物理学奖——X射线的发现1902年诺贝尔物理学奖——塞曼效应的发现和研究1904年诺贝尔物理学奖——氩的发现1906年诺贝尔物理学奖——气体导电1907年诺贝尔物理学奖——光学精密计量和光谱学研究1909年诺贝尔物理学奖——无线电报1911年诺贝尔物理学奖——热辐射定律的发现1913年诺贝尔物理学奖——低温物质的特性1914年诺贝尔物理学奖——晶体的X射线衍射1916年诺贝尔物理学奖——未授奖1918年诺贝尔物理学奖——能量级的发现1919年诺贝尔物理学奖——斯塔克效应的发现1924年诺贝尔物理学奖——X射线光谱学1925年诺贝尔物理学奖——弗兰克-赫兹实验1926年诺贝尔物理学奖——物质结构的不连续性1927年诺贝尔物理学奖——康普顿效应和威尔逊云室1928年诺贝尔物理学奖——热电子发射定律1929年诺贝尔物理学奖——电子的波动性《历年诺贝尔物理学奖》各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。
1972年12月10日第七十二届诺贝尔奖颁发。
物理学奖美国科学家巴丁、库珀、施里弗因创立超导理论(BCS理论)而共同获得诺贝尔物理学奖。
简介巴丁,J.(JohnBardeen1908.5.23—1991.1.30)理论物理学家。
生平1908年5月23日生于威斯康星州麦迪逊城,1923年入威斯康星大学电机工程系就学,毕业后即留在该校担任电机工程研究助理。
1930-1933年在匹兹堡海湾实验研究所从事地球磁场及重力场勘测方法的研究。
1928年获威斯康星大学理学士学位,1929年获硕士学位。
1936年获普林斯顿大学博士学位。
1933年到普林斯顿大学,在E·P·维格纳的指导下,从事固态理论的研究。
1935-1938年任哈佛大学研究员。
1936年以《金属功函数理论》的论文从普林斯顿大学获得哲学博士学位。
1938-1941年任明尼苏达大学物理学助理教授,1941-1945年在华盛顿海军军械实验室工作,1945-1951年在贝尔电话公司实验研究所研究半导体及金属的导电机制、半导体表面性能等基本问题。
1947年和其同事W·H·布喇顿共同发明第一个半导体三极管,一个月后,W·肖克莱发明PN结晶体管。
这一发明使他们三人获得1956年诺贝尔物理学奖,巴丁并被选为美国科学院院士。
科研方向与获奖情况1951年迄今,他同时任伊利诺伊大学物理系和电机工程系教授。
他和L·N·库珀、J·R·施里弗合作,于1957年提出低温超导理论(BCS理论),为此,他们三人被授予1972年诺贝尔物理学奖,在同一领域(固态理论)中,一个人两次获得诺贝尔奖,历史上还是第一次。
晚年他研究如何用简单而基本的成分理解大自然非常复杂的性质,对整个近代理论物理学发展提出明确的见解。
1980年他发表题为《物质结构的概念统一》的总结性论文,强调相同的基本物理概念可以广泛地用于表面上似乎悬殊的各个问题上,包括固体、液晶、核物质、高能粒子等领域。
历年诺贝尔物理学奖1901-19101901年诺贝尔物理学奖—— X射线的发现1902年诺贝尔物理学奖——塞曼效应的发现和研究1903年诺贝尔物理学奖——放射形的发现和研究1904年诺贝尔物理学奖——氩的发现1905年诺贝尔物理学奖——阴极射线的研究1906年诺贝尔物理学奖——气体导电1907年诺贝尔物理学奖——光学精密计量和光谱学研究1908年诺贝尔物理学奖——照片彩色重现1909年诺贝尔物理学奖——无线电报1910年诺贝尔物理学奖——气夜状态方程1911-19201911年诺贝尔物理学奖——热辐射定律的发现1912年诺贝尔物理学奖——航标灯自动调节器1913年诺贝尔物理学奖——低温物质的特性1914年诺贝尔物理学奖——晶体的X射线衍射1915年诺贝尔物理学奖—— X射线晶体结构分析1916年诺贝尔物理学奖——未授奖1917年诺贝尔物理学奖——元素的标识X辐射1918年诺贝尔物理学奖——能量级的发现1919年诺贝尔物理学奖——斯塔克效应的发现1920年诺贝尔物理学奖——合金的反常特性1921-19301921年诺贝尔物理学奖——对理论物理学的贡献1922年诺贝尔物理学奖——原子结构和原子光谱1923年诺贝尔物理学奖——基本电荷和光电效应实验1924年诺贝尔物理学奖—— X射线光谱学1925年诺贝尔物理学奖——弗兰克-赫兹实验1926年诺贝尔物理学奖——物质结构的不连续性1927年诺贝尔物理学奖——康普顿效应和威尔逊云室1928年诺贝尔物理学奖——热电子发射定律1929年诺贝尔物理学奖——电子的波动性1930年诺贝尔物理学奖——拉曼效应1931-19401931年诺贝尔物理学奖——未授奖1932年诺贝尔物理学奖——量子力学的创立1933年诺贝尔物理学奖——原子理论的新形式1934年诺贝尔物理学奖——未授奖1935年诺贝尔物理学奖——中子的发现1936年诺贝尔物理学奖——宇宙辐射和正电子的发现1937年诺贝尔物理学奖——电子衍射1938年诺贝尔物理学奖——中子辐照产生新放射性元素1939年诺贝尔物理学奖——回旋加速器的发明1940年诺贝尔物理学奖——未授奖1941-19501942年诺贝尔物理学奖——未授奖1943年诺贝尔物理学奖——分子束方法和质子磁矩1944年诺贝尔物理学奖——原子核的磁特性1945年诺贝尔物理学奖——泡利不相容原理1946年诺贝尔物理学奖——高压物理学1947年诺贝尔物理学奖——电离层的研究v1948年诺贝尔物理学奖——云室方法的改进1949年诺贝尔物理学奖——预言介子的存在1950年诺贝尔物理学奖——核乳胶的发明1951-19601951年诺贝尔物理学奖——人工加速带电粒1952年诺贝尔物理学奖——核磁共振1953年诺贝尔物理学奖——相称显微法1954年诺贝尔物理学奖——波函数的统计解释和用符合法作出的发现1955年诺贝尔物理学奖——兰姆位移与电子磁矩1956年诺贝尔物理学奖——晶体管的发明1957年诺贝尔物理学奖——宇称守恒定律的破坏1958年诺贝尔物理学奖——切连科夫效应的发现和解释1959年诺贝尔物理学奖——反质子的发现1960年诺贝尔物理学奖——泡室的发明1961-19701961年诺贝尔物理学奖——核子结构和穆斯堡尔效应1962年诺贝尔物理学奖——凝聚态理论1963年诺贝尔物理学奖——原子核理论和对称性原理1964年诺贝尔物理学奖——微波激射器和激光器的发明1965年诺贝尔物理学奖——量子电动力学的发展1966年诺贝尔物理学奖——光磁共振方法1967年诺贝尔物理学奖——恒星能量的生成1968年诺贝尔物理学奖——共振态的发现1969年诺贝尔物理学奖——基本粒子及其相互作用的分类1970年诺贝尔物理学奖——磁流体动力学和新的磁性理论1971-19801971年诺贝尔物理学奖——全息术的发明1972年诺贝尔物理学奖——超导电性理论1973年诺贝尔物理学奖——隧道现象和约瑟夫森效应的发现1974年诺贝尔物理学奖——射电天文学的先驱性工作1975年诺贝尔物理学奖——原子核理论1976年诺贝尔物理学奖—— J/?粒子的发展1977年诺贝尔物理学奖——电子结构理论1978年诺贝尔物理学奖——低温研究和宇宙背景辐射1979年诺贝尔物理学奖——弱电统一理论1980年诺贝尔物理学奖—— C_P破坏的发现1981-19901981年诺贝尔物理学奖——激光光谱学与电子能谱学1983年诺贝尔物理学奖——天体物理学的成就1984年诺贝尔物理学奖—— W±和Z?粒子的发现1985年诺贝尔物理学奖——量子霍尔效应1986年诺贝尔物理学奖——电子显微镜与扫描隧道显微镜1987年诺贝尔物理学奖——高温超导电性1988年诺贝尔物理学奖——中微子的研究1989年诺贝尔物理学奖——原子钟和离子捕集技术1990年诺贝尔物理学奖——核子的深度非弹性散射1991-20011991年诺贝尔物理学奖——液晶和聚合物1992年诺贝尔物理学奖——多斯正比室的发明1993年诺贝尔物理学奖——新型脉冲星1994年诺贝尔物理学奖——中子谱学和中子衍射技术1995年诺贝尔物理学奖——中微子和重轻子的发现1996年诺贝尔物理学奖——发现氦-3中的超流动性1997年诺贝尔物理学奖——激光冷却和陷俘原子1998年诺贝尔物理学奖——分数量子霍耳效应的发现1999年诺贝尔物理学奖——亚原子粒子之间电弱相互作用的量子结构2000年诺贝尔物理学奖——半导体研究的突破性进展2001年诺贝尔物理学奖——玻色爱因斯坦冷凝态的研究2002年诺贝尔物理学奖——天体物理学领域的卓越贡献(资料来源:山东大学物理系张承踞老师)。
1、1901年:伦琴(德国)发现X射线2、1902年:洛伦兹(荷兰)、塞曼(荷兰)关于磁场对辐射现象影响的研究3、1903年:贝克勒尔(法国)发现天然放射性;皮埃尔·居里(法国)、玛丽·居里(波兰裔法国人)发现并研究放射性元素钋和镭4、1904年:瑞利(英国)气体密度的研究和发现氩5、1905年:伦纳德(德国)关于阴极射线的研究6、1906年:约瑟夫·汤姆生(英国)对气体放电理论和实验研究作出重要贡献并发现电子7、1907年:迈克尔逊(美国)发明光学干涉仪并使用其进行光谱学和基本度量学研究8、1908年:李普曼(法国)发明彩色照相干涉法(即李普曼干涉定律)9、1909年:马克尼(意大利)、布劳恩(德国)发明和改进无线电报;理查森(英国)从事热离子现象的研究,特别是发现理查森定律10、1910年:范德瓦尔斯(荷兰)关于气态和液态方程的研究11、1911年:维恩(德国)发现热辐射定律12、1912年:达伦(瑞典)发明可用于同燃点航标、浮标气体蓄电池联合使用的自动调节装置13、1913年:昂内斯(荷兰)关于低温下物体性质的研究和制成液态氦14、1914年:劳厄(德国)发现晶体中的X射线衍射现象15、1915年:W·H·布拉格、W·L·布拉格(英国)用X射线对晶体结构的研究16、1916年:未颁奖17、1917年:巴克拉(英国)发现元素的次级X辐射特性18、1918年:普朗克(德国)对确立量子论作出巨大贡献19、1919年:斯塔克(德国)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象20、1920年:纪尧姆(瑞士)发现镍钢合金的反常现象及其在精密物理学中的重要性21、1921年:爱因斯坦(德国犹太人)他对数学物理学的成就,特别是光电效应定律的发现22、1922年:玻尔(丹麦犹太人)关于原子结构以及原子辐射的研究23、1923年:密立根(美国)关于基本电荷的研究以及验证光电效应24、1924年:西格巴恩(瑞典)发现X射线中的光谱线25、1925年:弗兰克·赫兹(德国)发现原子和电子的碰撞规律26、1926年:佩兰(法国)研究物质不连续结构和发现沉积平衡27、1927年:康普顿(美国)发现康普顿效应;威尔逊(英国)发明了云雾室,能显示出电子穿过空气的径迹28、1928年:理查森(英国)研究热离子现象,并提出理查森定律29、1929年:路易·维克多·德·布罗伊(法国)发现电子的波动性30、1930年:拉曼(印度)研究光散射并发现拉曼效应31、1931年:未颁奖32、1932年:海森堡(德国)在量子力学方面的贡献33、1933年:薛定谔(奥地利)创立波动力学理论;狄拉克(英国)提出狄拉克方程和空穴理论34、1934年:未颁奖35、1935年:詹姆斯·查德威克(英国)发现中子36、1936年:赫斯(奥地利)发现宇宙射线;安德森(美国)发现正电子37、1937年:戴维森(美国)、乔治·佩杰特·汤姆生(英国)发现晶体对电子的衍射现象38、1938年:费米(意大利犹太人)发现由中子照射产生的新放射性元素并用慢中子实现核反应39、1939年:劳伦斯(美国)发明回旋加速器,并获得人工放射性元素40、1940——1942年:未颁奖41、1943年:斯特恩(美国)开发分子束方法和测量质子磁矩42、1944年:拉比(美国)发明核磁共振法43、1945年:泡利(奥地利犹太人)发现泡利不相容原理44、1946年:布里奇曼(美国)发明获得强高压的装置,并在高压物理学领域作出发现45、1947年:阿普尔顿(英国)高层大气物理性质的研究,发现阿普顿层(电离层)46、1948年:布莱克特(英国)改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现47、1949年:汤川秀树(日本)提出核子的介子理论并预言∏介子的存在48、1950年:塞索·法兰克·鲍威尔(英国)发展研究核过程的照相方法,并发现π介子49、1951年:科克罗夫特(英国)、沃尔顿(爱尔兰)用人工加速粒子轰击原子产生原子核嬗变50、1952年:布洛赫、珀塞尔(美国)从事物质核磁共振现象的研究并创立原子核磁力测量法51、1953年:泽尔尼克(荷兰)发明相衬显微镜52、1954年:玻恩(英国犹太人)在量子力学和波函数的统计解释及研究方面作出贡献;博特(德国)发明了符合计数法,用以研究原子核反应和γ射线53、1955年:拉姆(美国)发明了微波技术,进而研究氢原子的精细结构;库什(美国)用射频束技术精确地测定出电子磁矩,创新了核理论54、1956年:布拉顿、巴丁(犹太人)、肖克利(美国)发明晶体管及对晶体管效应的研究55、1957年:李政道、杨振宁(中国)发现弱相互作用下宇称不守衡,从而导致有关基本粒子的重大发现56、1958年:切伦科夫、塔姆、弗兰克(苏联)发现并解释切伦科夫效应57、1959年:塞格雷、张伯伦(Owen Chamberlain)(美国)发现反质子58、1960年:格拉塞(美国犹太人)发现气泡室,取代了威尔逊的云雾室59、1961年:霍夫斯塔特(美国)关于电子对原子核散射的先驱性研究,并由此发现原子核的结构;穆斯堡尔(德国)从事γ射线的共振吸收现象研究并发现了穆斯堡尔效应60、1962年:达维多维奇·朗道(苏联)关于凝聚态物质,特别是液氦的开创性理论61、1963年:维格纳(美国)发现基本粒子的对称性及支配质子与中子相互作用的原理;梅耶夫人(美国人.犹太人)、延森(德国)发现原子核的壳层结构62、1964年:汤斯(美国)在量子电子学领域的基础研究成果,为微波激射器、激光器的发明奠定理论基础;巴索夫、普罗霍罗夫(苏联)发明微波激射器63、1965年:朝永振一郎(日本)、施温格、费尔曼(美国)在量子电动力学方面取得对粒子物理学产生深远影响的研究成果64、1966年:卡斯特勒(法国)发明并发展用于研究原子内光、磁共振的双共振方法65、1967年:贝蒂(美国)核反应理论方面的贡献,特别是关于恒星能源的发现66、1968年:阿尔瓦雷斯(美国)发展氢气泡室技术和数据分析,发现大量共振态67、1969年:盖尔曼(美国)对基本粒子的分类及其相互作用的发现68、1970年:阿尔文(瑞典)磁流体动力学的基础研究和发现,及其在等离子物理富有成果的应用;内尔(法国)关于反磁铁性和铁磁性的基础研究和发现69、1971年:加博尔(英国)发明并发展全息照相法70、1972年:巴丁、库柏、施里弗(美国)创立BCS超导微观理论71、1973年:江崎玲于奈(日本)发现半导体隧道效应;贾埃弗(美国)发现超导体隧道效应;约瑟夫森(英国)提出并发现通过隧道势垒的超电流的性质,即约瑟夫森效应72、1974年:赖尔(英国)发明应用合成孔径射电天文望远镜进行射电天体物理学的开创性研究;赫威斯(英国)发现脉冲星73、1975年:A·N·玻尔、莫特尔森(丹麦)、雷恩沃特(美国)发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系提出核结构理论74、1976年:丁肇中、里希特(美国)各自独立发现新的J/ψ基本粒子75、1977年:安德森、范弗莱克(美国)、莫特(英国)对磁性和无序体系电子结构的基础性研究76、1978年:卡皮察(苏联)低温物理领域的基本发明和发现;彭齐亚斯、R·W·威尔逊(美国)发现宇宙微波背景辐射77、1979年:格拉肖、温伯格(美国)、萨拉姆(巴基斯坦)关于基本粒子间弱相互作用和电磁作用的统一理论的贡献,并预言弱中性流的存在78、1980年:克罗宁、菲奇(美国)发现电荷共轭宇称不守恒79、1981年:西格巴恩(瑞典)开发高分辨率测量仪器以及对光电子和轻元素的定量分析;布洛姆伯根(美国)非线性光学和激光光谱学的开创性工作;肖洛(美国)发明高分辨率的激光光谱仪80、1982年:K·G·威尔逊(美国)提出重整群理论,阐明相变临界现象81、1983年:萨拉马尼安·强德拉塞卡(美国)提出强德拉塞卡极限,对恒星结构和演化具有重要意义的物理过程进行的理论研究;福勒(美国)对宇宙中化学元素形成具有重要意义的核反应所进行的理论和实验的研究82、1984年:鲁比亚(意大利)证实传递弱相互作用的中间矢量玻色子[[W+]],W-和Zc的存在;范德梅尔(荷兰)发明粒子束的随机冷却法,使质子-反质子束对撞产生W和Z粒子的实验成为可能83、1985年:冯·克里津(德国犹太人)发现量子霍耳效应并开发了测定物理常数的技术84、1986年:鲁斯卡(德国)设计第一台透射电子显微镜;比尼格(德国)、罗雷尔(瑞士)设计第一台扫描隧道电子显微镜85、1987年:柏德诺兹(德国)、缪勒(瑞士)发现氧化物高温超导材料86、1988年:莱德曼、施瓦茨、斯坦伯格(美国)产生第一个实验室创造的中微子束,并发现中微子,从而证明了轻子的对偶结构87、1989年:拉姆齐(美国)发明分离振荡场方法及其在原子钟中的应用;德默尔特(美国)、保尔(德国)发展原子精确光谱学和开发离子陷阱技术88、1990年:弗里德曼、肯德尔(美国)、理查·爱德华·泰勒(加拿大)通过实验首次证明夸克的存在89、1991年:热纳(法国)把研究简单系统中有序现象的方法推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中90、1992年:夏帕克(法国)发明并发展用于高能物理学的多丝正比室91、1993年:赫尔斯、J·H·泰勒(美国)发现脉冲双星,由此间接证实了爱因斯坦所预言的引力波的存在92、1994年:布罗克豪斯(加拿大)、沙尔(美国)在凝聚态物质研究中发展了中子衍射技术93、1995年:佩尔(美国)发现τ轻子;莱因斯(美国)发现中微子94、1996年:D·M·李、奥谢罗夫、R·C·理查森(美国)发现了可以在低温度状态下无摩擦流动的氦同位素95、1997年:朱棣文、W·D·菲利普斯(美国)、科昂·塔努吉(法国)发明用激光冷却和捕获原子的方法96、1998年:劳克林、斯特默、崔琦(美国)发现并研究电子的分数量子霍尔效应97、1999年:H·霍夫特、韦尔特曼(荷兰)阐明弱电相互作用的量子结构98、2000年:阿尔费罗夫(俄国)、克罗默(德国)提出异层结构理论,并开发了异层结构的快速晶体管、激光二极管;杰克·基尔比(美国)发明集成电路99、2001年:克特勒(德国)、康奈尔、维曼(美国)在“碱金属原子稀薄气体的玻色-爱因斯坦凝聚态”以及“凝聚态物质性质早期基本性质研究”方面取得成就100、2002年:雷蒙德·戴维斯、里卡尔多·贾科尼(美国)、小柴昌俊(日本)“表彰他们在天体物理学领域做出的先驱性贡献,其中包括在“探测宇宙中微子”和“发现宇宙X射线源”方面的成就。
超导材料具有什么特性意义超导材料具有什么特性意义篇一:超导体特性当一个磁体和一个处于超导态的超导体相互靠近时,磁体的磁场会使超导体表面中出现超导电流。
此超导电流形成的磁场,在超导体内部,恰好和磁体的磁场大小相等,方向相反。
这两个磁志抵消,使超导体内部的磁感应强度为零,B=0,即超导体排斥体内的磁场。
1933年德国物理学家迈斯纳(W.Meissner)和奥森菲尔(R.Ochsebfekd)对锡单晶球超导体做磁场分布测量时发现,在小磁场中把金属冷却进入超导态时,体内的磁力线一下被排出,磁力线不能穿过它的体内,也就是说超导体处于超导态时,体内的磁场恒等于零。
超导体一旦进入超导状态,体内的磁通量将全部被排出体外,磁感应强度恒为零,且不论对导体是先降温后加磁场,还是先加磁场后降温,只要进入超导状态,超导体就把全部磁通量排出体外。
此外,超导体还是完全的抗磁体,外加磁场无法进入或(严格说是)大范围地存在于超导体内部,这是超导体的另一个基本特性。
原理产生迈斯纳效应的原因是:当超导体处于超导态时,在磁场作用下,表面产生一个无损耗感应电流。
这个电流产生的磁场恰恰与外加磁场大小相等、方向相反,因而总合成磁场为零。
换句话说,这个无损耗感应电流对外加磁场起着屏蔽作用,因此称它为抗磁性屏蔽电流。
超导体不是电阻无限小的理想导体。
因为对于电阻率ρ无限小的理想导体,根据欧姆定律E=ρJ,若ρ=0,则由麦克斯韦方程组▽×E=-δB/δt=0,由此可知在加磁场前后理想导体体内磁感应强度不发生变化,即B=C≠0,C为加入磁场前导体体内的磁感应强度。
而超导体的迈斯纳效应要求超导体内B=0。
后来人们还做过这样一个实验,在一个浅平的锡盘中,放入一个体积很小磁性很强的永久磁铁,然后把温度降低,使锡出现超导性。
这时可以看到,小磁铁竟然离开锡盘表面,飘然升起,与锡盘保持一定距离后,便悬空不动了。
这是由于超导体的完全抗磁性,使小磁铁的磁力线无法穿透超导体,磁场发生畸变,便产生了一个向上的浮力。
1972年诺贝尔物理学奖——超导电性理论1972年诺贝尔物理学奖授予美国伊利诺斯州乌尔班那的伊利诺斯大学的巴
丁(John Bardeen,1908—1991)、美国罗德艾兰州普劳威顿斯(Providence)布朗大学的库珀(Leon N.Cooper,1930—)和美国宾夕法尼亚州宾夕法尼亚大学的施里弗(John Robert Schrieffer,1931—),以表彰他们合作发展了通常称为BCS 理论的超导电性理论。
巴丁1908年5月23日出生于美国威斯康星州的迈第逊。
他在迈第逊接受前期教育,后入威斯康星大学电机工程系,20岁时大学毕业,先有三年在匹兹堡的一个公司工作,从事地球物理方面的研究。
后来又进入普林斯顿大学学习数学物理,在这里受教于著名物理学家维格纳(E.Wigner),从此涉足固体物理学。
1945年受聘于贝尔实验室,由于研制成功半导体晶体管,与肖克利和布拉坦共享1956年诺贝尔物理学奖。
从30年代开始,巴丁就接触到了超导电性。
巴丁对于超导电性长期未能得到理论的解释甚为忧虑,他认为这是理论物理学界的耻辱。
巴丁对 F.伦敦(F.London)的观点留有深刻印象。
F.伦敦认为,超导电性是一种宏观尺度上的量子现象,他的能隙概念和对迈斯纳效应的重视,对巴丁很有启发。
1940年,巴丁曾对超导电性的解释作过初步尝试,他认为关键在于费米面①是起因于微小点阵位移而出现的一些小能隙,在紧靠费米面下面的态的电子能量被降低。
处于这种态的电子具有非常小的有效能量、很大的轨道和很强的抗磁性。
巴丁这一解释是不成功的。
1941年巴丁参加战时军事研究,只好把超导电性暂时放下。
1950年,由于E.麦克斯韦(E.Maxwell)等人发现超导体的同位素效应,促使巴丁回到超导电性的研究上来。
当巴丁听说这一效应的发现时,马上想到有可能是一种电子和声子的相互作用。
他在1950年6月写了一篇短文报道自己在电子-声子相互作用的基础上,应用变分波函数方法处理超导体中电子的自能问题。
但是他仅仅考虑了在振动场中电子的自能,却无法探讨电子与点阵振动之间真实的相互作用。
1955年巴丁再次涉足超导电性。
这是因为《物理手册》编者邀请他撰写一篇有关超导电性的述评文章。
此时对超导电性的特性已经有了更全面的了解,超
hlich)在1952年提出用
导体能隙存在的实验证据不断增加,弗列里希(H.Fr
有效电子-声子相互作用来表示的哈密顿量,巴丁乃与派尼斯(D.Pines)合作,提出了包括库仑相互作用在内的完整的哈密顿量,表明剩余的电子间库仑相互作用是很小的。
这个哈密顿量虽然无法计算,但是却为以后的BCS理论提供了一个有用的基本概念。
此时,巴丁认识到数学方法的重要性,他想到在高能物理中常用到的场论方法也许有助于求解粒子间有相互吸力的费米气体多体问题。
于是就找到普林斯顿高等研究院的杨振宁。
杨振宁当即推荐正在那里的博士后库珀。
库珀在1955年秋来到了巴丁所在的依利诺斯大学。
巴丁身边还有一位年轻的研究生施里弗。
三人合作,在巴丁的领导下为研究超导电性的微观理论共同努力。
库珀1930年2月28日出生于美国纽约。
1951年在哥伦比亚大学获学士学位,1954年获博士学位后到普林斯顿高等研究院当博士后。
他的博士论文是关于原子核理论的,在研究中要运用到量子场论。
杨振宁把他介绍给巴丁,使他抓住了一个难得的机遇,有机会对超导电性的研究作出自己的贡献。
对于库珀来说,研究超导电性的任务是一场遭遇战,在这之前和在这之后,他都不是固体物理学的专家,但是他却在这一领域里作出了关键性的贡献。
库珀的贡献在于为超导态建立了正确的物理图像,即电子对。
电子对概念其实并非库珀首创。
超导体中的电子是费米子,服从量子统计中的费米-狄拉克统计。
1946年,化学家奥格(R.A.Ogg)就在有关液氨中稀释碱金属溶液实验的基础上,想到用低温下的玻色-爱因斯坦凝聚来解释超导电性,这样就要求电子服从玻色-爱因斯坦统计。
如果电子是成对出现,就可以满足这一条件。
50年代,费因曼等人也曾提出过超导电性的玻色气体模型。
然而根据玻色-爱因斯坦凝聚提出的电子对图像所发展的理论,虽然可以导出伦敦方程、可以解释超导体的完全抗磁性,却不能说明超导体的热力学性质,不能解释超导体电阻的产生机制和转变规律。
库珀则不是从玻色气体模型出发,而是从动力学的角度考虑相互吸引的直接作用。
他考虑到在费米面上一对自旋相反的电子。
他在研究了其他人关于这个问题的想法以后,认为可以得出这样的结论:在吸引的电子-声子相互作用和排斥的库仑相互作用相抵之后,电子间应该还存在吸引相互作用。
库珀的计算表明,不论这种吸引相互作用有多弱,总会把电子引向以电子对形式存在的能量较低的束缚态。
既然这种束缚态具有较低的能量,只要加一很小的能量就可以激发电子使电子对破坏,激发电子使电子对破坏所需的最小能量,与基态能量有一很小的间隔,这就形成了能隙。
库珀还从分析费米面上电子对的集体特性入手,得到了超导态的各种平衡特性。
库珀创造性地运用电子对概念是BCS理论成功的关键。
施里弗1931年5月31日出生于美国依利诺斯州的奥克帕克。
中学毕业后,进入麻省理工学院,先学电机工程,三年级时改为主修物理。
大学的毕业论文是关于重原子中多重谱线结构的问题。
毕业后他来到依利诺斯大学当巴丁的研究生。
1955年,施里弗已经得到了硕士学位,读完了研究生课程,这时巴丁出了十个题目让施里弗选择其中之一作为博士论文,第十个是超导电性。
据说,巴了对施里弗说,第十个最难,做不出成果来就有失败的可能,是有点冒险,但我劝你还是选这个。
施里弗最后接受了导师的建议,毅然地选择了最难的题目。
巴丁、库珀和施里弗三人的合作从1955年开始,1956年库珀提出电子对概念,找到了合理的物理图像。
然而,等待解决的问题还是不少,其中最困难的问题就是:电子对的平均空间尺度约为10-4cm,大约是晶体点阵间隔的一万倍。
这样一来,要是费米面附近大量的点阵都结成对子的话,各电子对互相间就会重叠在一起,彼此不会是互相独立的。
这时,关键在于找到一个适当的波函数来代表超导体基态的特性。
这个问题要解决谈何容易!于是,施里弗有点犹豫了,甚至打算把题目改为研究铁磁性。
正好这时,巴丁要去瑞典接受因发明晶体管而获得的诺贝尔物理学奖,临行前,找到施里弗,劝施里弗再坚持一个月,等他回来再作决定。
就在独立工作的这个月中,施里弗在作了多次不成功的尝试之后,终于找到了一个非常简单、便于计算的波函数。
经过数学处理,求出了能隙方程,吸引势
的简单模型以及绝对零度时的凝聚能。
施里弗把这一方案向巴丁介绍后,巴丁认真地加以审核,很快就给予肯定。
巴丁非常欣赏施里弗的才华,鼓励他沿着这个方向干下去。
此后,超导电性的微观理论发展很快,人们终于在1957年3月美国物理学会的年会上,听到了由库珀代表三人向大会报告这一理论的基本内容,同年11月,巴丁、库珀和施里弗三人正式在《物理评论》上发表论文,完整地叙述了他们的理论。
从此,以他们三人姓氏的第一字母表示的BCS理论成了人们心目中基本成功的超导电性微观理论,这个理论在超导研究中广泛运用并取得了良好效果。
①费米面是描述金属中电子状态的动量空间中的等能面,它的能量等于电子系统的化学势,也叫费米能,这个面上的能级称为费米能级。