毛细管电泳分离技术资料
- 格式:ppt
- 大小:355.50 KB
- 文档页数:20
第五章高效毛细管电泳分离技术第一节毛细管电泳技术发展简史及其特点电泳是指带电粒子在电场作用下向电性相反的方向迁移的现象。
据此对某些化学或生物化学组分进行分离的技术称为电泳技术。
从1930年瑞典科学家Arne Tiselius首次提出电泳法至今已有70年的历史。
电泳法的发展大致可分为三个阶段。
1950年以前属初创阶段,主要是界面移动自由电泳,一般在U型管内进行,无支持物。
50年代至80年代中期出现了各种有支持物的电泳方法,如纸电泳、醋酸纤维电泳、琼脂糖电泳、聚丙烯酰胺凝胶电泳等,70年代后实现了仪器的自动化。
80年代后期出现了毛细管电泳方法,实现了微型化、自动化、高效、快速分析,毛细管电泳技术已经成为同现代色谱技术相比的分析化学领域中的一个令人瞩目的分支。
毛细管电泳(Capillary Electrophoresis,CE)或高效毛细管电泳(High Performance Capillary Electrophoresis,HPCE)是指以毛细管为分离室、以高压电场为驱动力的一类新型现代电泳技术。
毛细管电泳仪的基本结构见图5-1。
HV(0-+30KV)图1 毛细管电泳仪的结构图C—毛细管;D—检测器;E—电极槽;HV—直流高压电源;Pt—铂电极;S—样品;DA—数据采集处理系统完善的毛细管电泳仪应具备(1)有多种施压模式;(2)恒温精度高,恒温范围宽;(3)精确的进样控制;(4)检测器的灵敏度高等条件。
毛细管电泳分离技术用的是内径为5-100μm,外径为370μm,长为10-100cm的弹性熔融石英毛细管,毛细管的特点是(1)体积小;(2)散热快,可承受高电场;(3)可使用自由溶液、凝胶等为支持电解质,在溶液介质下可产生平面形状的电渗流。
毛细管电泳分离技术与传统的平板电泳和现代液相色谱分离技术相比具有很多优点:(1)高效(105-107理论塔板/米);(2)快速(几十秒至几十分钟);(3)分离模式多,选择自由度大;(4)分析对象广,从无机离子到整个细胞;(5)高度自动化;(6)样品需量小,运行成本低,无环境污染。
简述毛细管电泳分离原理及分离模式.
答:毛细管电泳的分离原理:带电粒子在电场力的驱动下,在毛细管中按其淌度或和分配系数不同进行高效、快速分离的电泳新技术,也称为高效毛细管电泳。
毛细管电泳分离模式:1、毛细管区带电泳:利用被分离离子在电场作用下移动速度不同而实现分离。
电解质的移动就是由电渗引起的。
2、胶束电动毛细管色谱:胶束存在假固定相,使得溶质不仅可以由于淌度差异而分离,同时可基于水相与胶束相之间的分配系数不同而得到分离。
3、毛细管电色谱:被测组分根据她们在流动相与固定相中的分配系数不同与自身电泳淌度差异而得以分离。
毛细管电泳的分离原理
毛细管电泳(CE)是一种基于电动力和色谱分离原理的分析技术。
它利用毛细管中载带电荷的离子在电场作用下的迁移速率的差异来实现分离。
在毛细管电泳中,首先将样品注入到一条非常细的毛细管内,然后通过使毛细管两端施加电场来产生电动力。
当电场施加到毛细管上时,带电的分析物会受到电场力的作用而在毛细管内迁移。
不同的物质由于自身的特性,比如大小、电荷等,会以不同的速率迁移。
具体来说,有两种常用的毛细管电泳模式:
1. 毛细管凝胶电泳(CGE):在该模式下,毛细管内填充了哑离子聚合物凝胶,通过凝胶的孔道来实现分离。
样品中的离子在电场作用下,根据尺寸的不同,在凝胶中迁移速度也不同,从而实现分离。
2. 毛细管毛细管区带电泳(CZE):在该模式下,毛细管内不填充任何分离介质。
样品中的离子自行在毛细管中迁移,根据大小和电荷的不同,迁移速度也不同,从而实现分离。
总的来说,毛细管电泳的分离原理是利用样品中离子在电场作用下的迁移速率差异,根据大小和电荷特性,在毛细管中实现分离。