2020年浙江省宁波市中考数学试题(含参考答案及评分标准,word版)
- 格式:doc
- 大小:1.35 MB
- 文档页数:10
2020年浙江省宁波市中考数学试题一、选择题1.﹣3的相反数为()A. ﹣3B. ﹣13C.13D. 32.下列计算正确的是()A. a3•a2=a6B. (a3)2=a5C. a6÷a3=a3D. a2+a3=a53.2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为()A. 1.12×108B. 1.12×109C. 1.12×1010D.0.112×10104.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A. B.C. D.5.一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为()A. 14B.13C. 12D.236.x的取值范围是()A. x>2B. x≠2C. x≥2D. x≤27.如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A. 2B. 2.5C. 3D. 48.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.4.50.51y xy x=+⎧⎨=-⎩B.4.521y xy x=+⎧⎨=-⎩C.4.50.51y xy x=-⎧⎨=+⎩D.4.521y xy x=-⎧⎨=-⎩9.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A. abc<0B. 4ac﹣b2>0C. c﹣a>0D. 当x=﹣n2﹣2(n为实数)时,y≥c10.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC 内.若求五边形DECHF的周长,则只需知道()A. △ABC的周长B. △AFH的周长C. 四边形FBGH的周长D. 四边形ADEC的周长二、填空题(每小题5分,共30分)11.实数8的立方根是_____.12.分解因式:2a2﹣18=________﹣13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如表所示:明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是__.14.如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中AB的长为__cm(结果保留π).15.如图,﹣O的半径OA=2,B是﹣O上的动点(不与点A重合),过点B作﹣O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为__.16.如图,经过原点O的直线与反比例函数y=ax(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=bx(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为__,ba的值为__.三、解答题(本大题有8小题,共80分)17.(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).18.图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)19.图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB =AC =50cm ,﹣ABC =47°. (1)求车位锁的底盒长BC .(2)若一辆汽车的底盘高度为30cm ,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)20.如图,在平面直角坐标系中,二次函数y =ax 2+4x ﹣3图象顶点是A ,与x 轴交于B ,C 两点,与y 轴交于点D .点B 的坐标是(1,0).(1)求A ,C 两点的坐标,并根据图象直接写出当y >0时x 的取值范围.(2)平移该二次函数的图象,使点D 恰好落在点A 的位置上,求平移后图象所对应的二次函数的表达式.21.某学校开展了防疫知识宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x 均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x <70),合格(70≤x <80),良好(80≤x <90),优秀(90≤x ≤100),制作了如图统计图(部分信息未给出).的由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?22.A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?23.【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在﹣ABCD 中,E 为BC 上一点,F 为CD 延长线上一点,∠BFE =∠A .若BF =4,BE =3,求AD 的长.【拓展提高】(3)如图3,在菱形ABCD 中,E 是AB 上一点,F 是△ABC 内一点,EF ∥AC ,AC =2EF ,∠EDF =12∠BAD ,AE =2,DF =5,求菱形ABCD 边长.24.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E .(2)如图2,四边形ABCD 内接于﹣O ,AD =BD ,四边形ABCD 的外角平分线DF 交﹣O于点F ,连结BF 并延长交CD 的延长线于点E .求证:∠BEC 是△ABC 中∠BAC 的遥望角. (3)如图3,在(2)的条件下,连结AE ,AF ,若AC 是﹣O 的直径. ﹣求∠AED 度数;﹣若AB =8,CD =5,求△DEF 的面积.的2020年浙江省宁波市中考数学试题一、选择题1.﹣3的相反数为()A. ﹣3B. ﹣13C.13D. 3【答案】D【解析】【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【详解】解:﹣3的相反数是3.故选:D.【点睛】此题考查求一个数的相反数,解题关键在于掌握相反数的概念.2.下列计算正确的是()A. a3•a2=a6B. (a3)2=a5C. a6÷a3=a3D. a2+a3=a5【答案】C【解析】分析】根据同底数幂相乘、幂的乘方、同底数幂相除及合并同类项法则逐一判断即可得.【【详解】解:A、a3•a2=a5,故此选项错误;B、(a3)2=a6,故此选项错误;C、a6÷a3=a3,正确;D、a2+a3,不是同类项,不能合并,故此选项错误;故选:C.【点睛】本题主要考查整式的运算,解题的关键是掌握同底数幂相乘、幂的乘方、同底数幂相除及合并同类项法则.3.2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为()A. 1.12×108B. 1.12×109C. 1.12×1010D.0.112×1010【答案】B【解析】【分析】科学记数法表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】1120000000=1.12×109,故选:B.【点睛】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A. B.C. D.【答案】B【解析】【分析】根据主视图的意义和画法可以得出答案.【详解】解:根据主视图的意义可知,从正面看物体所得到的图形,选项B符合题意,故选:B.【点睛】本题考查了简单几何体的三视图的画法,主视图就是从正面看物体所得到的图形.5.一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为()A. 14B.13C.12D.23【答案】D【解析】【分析】的利用红球的个数除以球的总个数解答即可.【详解】解:从袋中任意摸出一个球是红球的概率=42 423=+.故选:D.【点睛】本题考查了简单的概率计算,属于基础题型,熟练掌握计算的方法是关键.6.x的取值范围是()A. x>2B. x≠2C. x≥2D. x≤2【答案】C【解析】【分析】根据被开方数大于等于0列不等式求解即可.【详解】由题意得,x﹣2≥0,解得x≥2.故选:C.【分析】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.7.如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A. 2B. 2.5C. 3D. 4【答案】B【解析】【分析】利用勾股定理求得AB=10;然后由直角三角形斜边上的中线等于斜边的一半求得CD的长度;结合题意知线段BF是△CDE的中位线,则BF=12 CD.【详解】解:∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB10.又∵CD为中线,∴CD=12AB=5.∵F为DE中点,BE=BC,即点B是EC的中点,∴BF是△CDE的中位线,则BF=12CD=2.5.故选:B.【点睛】本题主要考查了勾股定理,三角形中位线定理,直角三角形斜边上的中线,此题的突破口是推知线段CD的长度和线段BF是△CDE的中位线.8.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.4.50.51y xy x=+⎧⎨=-⎩B.4.521y xy x=+⎧⎨=-⎩C4.50.51y xy x=-⎧⎨=+⎩D.4.521y xy x=-⎧⎨=-⎩【答案】A【解析】【分析】根据“一根绳子去量一根木条,绳子剩余4.5尺”可知:绳子=木条+4.5,再根据“将绳子对折再量木条,木条剩余1尺”可知:12绳子=木条-1,据此列出方程组即可.【详解】解:设木条长x尺,绳子长y尺,那么可列方程组为:4.5 0.51 y xy x=+⎧⎨=-⎩,故选:A.【点睛】本题考查二元一次方程组的实际应用,解题的关键是明确题意,找出等量关系,列出相应的二元一次方程组..9.如图,二次函数y =ax 2+bx+c (a >0)的图象与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,它的对称轴为直线x =﹣1.则下列选项中正确的是( )A. abc <0B. 4ac ﹣b 2>0C. c ﹣a >0D. 当x =﹣n 2﹣2(n 为实数)时,y ≥c 【答案】D【解析】【分析】 由图象开口向上,可知a >0,与y 轴的交点在x 轴的上方,可知c >0,根据对称轴方程得到b >0,于是得到abc >0,故A 错误;根据一次函数y=ax 2+bx+c (a >0)的图象与x 轴的交点,得到b 2-4ac >0,求得4ac -b 2<0,故B 错误;根据对称轴方程得到b=2a ,当x=-1时,y=a -b+c <0,于是得到c -a <0,故C 错误;当x=-n 2-2(n 为实数)时,代入解析式得到y=ax 2+bx+c=a (-n 2-2)+b (-n 2-2)=an 2(n 2+2)+c ,于是得到y=an 2(n 2+2)+c ≥c ,故D 正确.【详解】解:由图象开口向上,可知a >0,与y 轴的交点在x 轴的上方,可知c >0,又对称轴方程为x =﹣1,所以﹣2b a <0,所以b >0, ∴abc >0,故A 错误;∴一次函数y =ax 2+bx+c (a >0)的图象与x 轴交于A ,B 两点,∴b 2﹣4ac >0,∴4ac ﹣b 2<0,故B 错误; ∵﹣2b a=﹣1, ∴b =2a ,∵当x =﹣1时,y =a ﹣b+c <0,∴a ﹣2a+c <0,∴c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,∵a>0,n2≥0,n2+2>0,∴y=an2(n2+2)+c≥c,故D正确,故选:D.【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.10.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC 内.若求五边形DECHF的周长,则只需知道()A. △ABC的周长B. △AFH的周长C. 四边形FBGH的周长D. 四边形ADEC的周长【答案】A【解析】【分析】由等边三角形的性质和三角形的内角和定理可得:FH=GH,∠ACB=∠A=60°,∠AHF =∠HGC,进而可根据AAS证明△AFH≌△CHG,可得AF=CH,然后根据等量代换和线段间的和差关系即可推出五边形DECHF的周长=AB+BC,从而可得结论.【详解】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质以及多边形的周长问题,熟练掌握等边三角形的性质以及全等三角形的判定和性质是解题的关键.二、填空题(每小题5分,共30分)11.实数8的立方根是_____.【答案】2.【解析】【分析】根据立方根的定义解答.,﹣8的立方根是2.故答案为2.【详解】﹣328【点睛】本题考查立方根的定义,熟记定义是解题的关键..12.分解因式:2a2﹣18=________﹣【答案】2﹣a+3﹣﹣a﹣3﹣【解析】【分析】先提取公因式2﹣再对余下的多项式利用平方差公式继续分解﹣【详解】2a2﹣18﹣2﹣a2﹣9﹣﹣2﹣a+3﹣﹣a﹣3﹣﹣故答案为2﹣a+3﹣﹣a﹣3﹣﹣【点睛】本题考查了提公因式法与公式法进行因式分解﹣一个多项式有公因式首先提取公因式﹣然后再用其他方法进行因式分解﹣同时因式分解要彻底﹣直到不能分解为止﹣13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如表所示:明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是__.【答案】甲【解析】【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.14.如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中AB的长为__cm(结果保留π).【答案】18π【解析】【分析】根据弧长公式即可得到结论.【详解】解:∵折扇的骨柄长为27cm,折扇张开的角度为120°,∴AB的长=12027180π⋅⨯=18π(cm),故答案为:18π.【点睛】本题考查了弧长的计算,熟练掌握弧长公式是解题的关键.15.如图,﹣O的半径OA=2,B是﹣O上的动点(不与点A重合),过点B作﹣O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为__.【答案】【解析】【分析】先根据切线的性质和等腰直角三角形的判定方法证得△OBC是等腰直角三角形,当AOC=90°,连接OB,根据勾股定理可得斜边AC的长,当OAC=90°,A与B重合,不符合题意.【详解】解:连接OB,∵BC是﹣O的切线,∴∠OBC=90°,∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°,当∠AOC=90°,△OAC是直角三角形时,∴OC OB=,∴AC当OAC=90°,A与B重合,不符合题意,故排除此种情况;∴其斜边长为故答案为:【点睛】本题考查切斜的性质、等腰直角三角形的判定及其性质、勾股定理,解题的关键是综合运用所学的知识求出OC.16.如图,经过原点O的直线与反比例函数y=ax(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=bx(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为__,ba的值为__.【答案】(1). 24(2). ﹣1 3【解析】【分析】如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.求出证明四边形ACDE是平行四边形,推出S△ADE=S△ADC=S五边形ABCDE-S四边形ABCD=56-32=24,推出S△AOE=S△DEO=12,可得12a-12b=12,推出a-b=24.再证明BC∥AD,证明AD=3BC,推出AT=3BT,再证明AK=3BK即可解决问题.【详解】如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.由题意A,D关于原点对称,∴A,D的纵坐标的绝对值相等,∵AE∥CD,∴E,C的纵坐标的绝对值相等,∵E,C在反比例函数y=bx的图象上,∴E,C关于原点对称,∴E,O,C共线,∵OE=OC,OA=OD,∴四边形ACDE是平行四边形,∴S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,∴S△AOE=S△DEO=12,∴12a﹣12b=12,∴a﹣b=24,∵S△AOC=S△AOB=12,∴BC∥AD,∴BC AD =TB TA, ∵S △ACB =32﹣24=8,∴S △ADC :S △ABC =24:8=1:3,∴BC :AD =1:3,∴TB :TA =1:3,设BT =a ,则AT =3a ,AK =TK =1.5k ,BK =0.5k ,∴AK :BK =3:1, ∴AOK BKO S S =1212a b -=13, ∴a b =﹣13. 故答案为24,﹣13. 【点睛】本题考查了反比例函数与一次函数的交点问题,平行四边形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考填空题中的压轴题.三、解答题(本大题有8小题,共80分)17.(1)计算:(a+1)2+a (2﹣a ). (2)解不等式:3x ﹣5<2(2+3x ).【答案】(1)4a+1;(2)x >﹣3【解析】【分析】(1)先根据完全平方公式计算前一项,再计算单项式乘以多项式,最后相加减即可; (2)去括号,移项,合并同类项,系数化为1即可.【详解】解:(1)()()212a a a ++-=2221+2a a a a ++-=41a +;(2)3x ﹣5<2(2+3x )去括号得:3x ﹣5<4+6x ,移项得:3x ﹣6x <4+5,合并同类项:﹣3x<9,系数化1得:x>﹣3.【点睛】本题考查整式的混合运算、解一元一次不等式,解题的关键是熟练掌握整式的运算法则和解一元一次不等式的步骤.18.图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据轴对称图形的定义画出图形构成一个大的等边三角形即可(答案不唯一).(2)根据中心对称图形的定义画出图形构成一个平行四边形即可(答案不唯一).【详解】解:(1)轴对称图形如图1所示.(2)中心对称图形如图2所示.【点睛】本题考查利用中心对称设计图案,利用轴对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.19.图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,﹣ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)【答案】(1)68cm;(2)当车位锁上锁时,这辆汽车不能进入该车位【解析】【分析】(1)过点A作AH⊥BC于点H,根据锐角三角函数的定义即可求出答案.(2)根据锐角三角函数的定义求出AH的长度即可判断.【详解】解:(1)过点A作AH﹣BC于点H,﹣AB=AC,﹣BH=HC,在Rt﹣ABH中,﹣B=47°,AB=50,﹣BH=ABcosB=50cos47°≈50×0.68=34,﹣BC=2BH=68cm.(2)在Rt﹣ABH中,﹣AH=ABsinB=50sin47°≈50×0.73=36.5,﹣36.5>30,﹣当车位锁上锁时,这辆汽车不能进入该车位.【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角函数的定义,本题属于基础题型.20.如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.【答案】(1)A(2,1),C(3,0),当y>0时,1<x<3;(2)y=﹣(x﹣4)2+5【解析】【分析】(1)把点B坐标代入抛物线的解析式即可求出a的值,把抛物线的一般式化为顶点式即可求出点A的坐标,根据二次函数的对称性即可求出点C的坐标,二次函数的图象在x轴上方的部分对应的x的范围即为当y>0时x的取值范围;(2)先由点D和点A的坐标求出抛物线的平移方式,再根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:(1)把B(1,0)代入y=ax2+4x﹣3,得0=a+4﹣3,解得:a=﹣1,∴y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴A(2,1),∵抛物线的对称轴是直线x=2,B、C两点关于直线x=2对称,∴C(3,0),∴当y>0时,1<x<3;(2)∵D(0,﹣3),A(2,1),∴点D平移到点A,抛物线应向右平移2个单位,再向上平移4个单位,∴平移后抛物线的解析式为y=﹣(x﹣4)2+5.【点睛】本题考查了二次函数的图象与性质、二次函数图象上点的坐标特征、抛物线的平移规律和抛物线与不等式的关系等知识,属于常考题型,熟练掌握二次函数的基本知识是解题的关键.21.某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?【答案】(1)见解析;(2)144°;(3)这次测试成绩的中位数的等第是良好;(4)估计该校获得优秀的学生有300人【解析】【分析】(1)根据基本合格人数已经百分比求出总人数即可解决问题;(2)根据圆心角=360°×百分比计算即可;(3)根据中位数的定义判断即可;(4)利用样本估计总体的思想解决问题即可.【详解】解:(1)30÷15%=200(人),200﹣30﹣80﹣40=50(人),直方图如图所示:;(2)“良好”所对应的扇形圆心角的度数=360°×80200=144°;(3)这次成绩按从小到大的顺序排列,中位数在80分-90分之间,∴这次测试成绩的中位数的等第是良好;(4)1500×40200=300(人),答:估计该校获得优秀的学生有300人.【点睛】本题考查频数分布直方图,样本估计总体,扇形统计图,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?【答案】(1)y=80x﹣128(1.6≤x≤3.1);(2)货车乙返回B地的车速至少为75千米/小时【解析】【分析】(1)先设出函数关系式y=kx+b(k≠0),观察图象,经过两点(1.6,0),(2.6,80),代入求解即可得到函数关系式;(2)先求出货车甲正常到达B地的时间,再求出货车乙出发回B地时距离货车甲比正常到达B地晚1个小时的时间以及故障地点距B地的距离,然后设货车乙返回B地的车速为v 千米/小时,最后列出不等式并求解即可.【详解】解:(1)设函数表达式为y=kx+b(k≠0),把(1.6,0),(2.6,80)代入y=kx+b,得0 1.680 2.6k bk b=+⎧⎨=+⎩,解得:80128 kb=⎧⎨=-⎩,∴y关于x的函数表达式为y=80x﹣128(1.6≤x≤3.1);(2)根据图象可知:货车甲的速度是80÷1.6=50(km/h)∴货车甲正常到达B地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),当y=200﹣80=120 时,120=80x﹣128,解得x=3.1,5﹣3.1﹣0.3=1.6(小时),设货车乙返回B地的车速为v千米/小时,∴1.6v≥120,解得v≥75.答:货车乙返回B地的车速至少为75千米/小时.【点睛】本题考查一次函数的应用,一元一次不等式的应用,解题的关键是掌握待定系数法,并求出函数解析式,根据题意正确列出一元一次不等式.23.【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在﹣ABCD 中,E 为BC 上一点,F 为CD 延长线上一点,∠BFE =∠A .若BF =4,BE =3,求AD 的长.【拓展提高】(3)如图3,在菱形ABCD 中,E 是AB 上一点,F 是△ABC 内一点,EF ∥AC ,AC =2EF ,∠EDF =12∠BAD ,AE =2,DF =5,求菱形ABCD 的边长.【答案】(1)见解析;(2)AD =163;(3)﹣2 【解析】【分析】 (1)根据题意证明△ADC ∽△ACB ,即可得到结论;(2)根据现有条件推出△BFE ∽△BCF ,再根据相似三角形的性质推断,即可得到答案;(3)如图,分别延长EF ,DC 相交于点G ,先证明四边形AEGC 为平行四边形,再证△EDF ∽△EGD ,可得ED EF EG DE,根据EG =AC =2EF ,可得DE EF ,再根据DG DEDF EF=,可推出DG,即可求出答案.【详解】解:(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴AD AC AC AB=,∴AC2=AD•AB;(2)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵∠BFE=∠A,∴∠BFE=∠C,又∵∠FBE=∠CBF,∴△BFE∽△BCF,∴BF BE BC BF=,∴BF2=BE•BC,∴BC=2BFBE=243=163,∴AD=163;(3)如图,分别延长EF,DC相交于点G,∵四边形ABCD是菱形,∴AB∥DC,∠BAC=12∠BAD,∵AC∥EF,∴四边形AEGC为平行四边形,∴AC=EG,CG=AE,∠EAC=∠G,∵∠EDF=12∠BAD,∴∠EDF=∠BAC,∴∠EDF=∠G,又∵∠DEF=∠GED,∴△EDF∽△EGD,∴ED EF EG DE=,∴DE2=EF•EG,又∵EG=AC=2EF,∴DE2=2EF2,∴DE EF,又∵DG DE DF EF=,∴DG,∴DC=DG﹣CG=﹣2.【点睛】本题考查了相似三角形的性质和判定,菱形的性质,平行四边形的性质和证明,证明三角形相似是解题关键.24.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于﹣O,AD=BD,四边形ABCD的外角平分线DF交﹣O 于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是﹣O的直径.﹣求∠AED的度数;﹣若AB=8,CD=5,求△DEF的面积.。
2020年浙江省宁波市中考试题数学一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.在-3,-1,0,1这四个数中,最小的数是( )A.-3B.-1C.0D.1解析:由正数大于零,零大于负数,得-3<-1<0<1,最小的数是-3.答案:A2.2018中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为( )A.0.55×106B.5.5×105C.5.5×104D.55×104解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.550000=5.5×105.答案:B3.下列计算正确的是( )A.a3+a3=2a3B.a3·a2=a6C.a6÷a2=a3D.(a3)2=a5解析:∵a3+a3=2a3,∴选项A符合题意;∵a3·a2=a5,∴选项B不符合题意;∵a6÷a2=a4,∴选项C不符合题意;∵(a3)2=a6,∴选项D不符合题意.答案:A4.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为( )A.4 5B.3 5C.25D.1 5解析:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为2 5.答案:C5.已知正多边形的一个外角等于40°,那么这个正多边形的边数为( )A.6B.7C.8D.9解析:正多边形的一个外角等于40°,且外角和为360°,则这个正多边形的边数是:360°÷40°=9.答案:D6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A.主视图B.左视图C.俯视图D.主视图和左视图解析:从上边看是一个田字,“田”字是中心对称图形.答案:C7.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为( )A.50°B.40°C.30°D.20°解析:∵∠ABC=60°,∠BAC=80°,∴∠BCA=180°-60°-80°=40°,∵对角线AC与BD相交于点O,E是边CD的中点,∴EO是△DBC的中位线,∴EO∥BC,∴∠1=∠ACB=40°.答案:B8.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为( )A.7B.5C.4D.3解析:∵数据4,1,7,x,5的平均数为4,∴41755x++++=4,解得:x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4.答案:C9.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则CD的长为( )A.16πB.13πC.23πD.23π解析:∠ACB=90°,AB=4,∠A=30°,∴∠B=60°,BC=2,∴CD的长为6022 1803ππ⨯=.答案:C10.如图,平行于x轴的直线与函数y=1kx(k1>0,x>0),y=2kx(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1-k2的值为( )A.8B.-8C.4D.-4解析:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.∵S△ABC=()()()12111142222AAB y a b h ah bh k k⋅=-=-=-=,∴k1-k2=8.答案:A11.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是( )A.B.C.D.解析:由二次函数的图象可知,a<0,b<0,当x=-1时,y=a-b<0,∴y=(a-b)x+b的图象在第二、三、四象限.答案:D12.在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD-AB=2时,S2-S1的值为( )A.2aB.2bC.2a-2bD.-2b解析:S1=(AB-a)·a+(CD-b)(AD-a)=(AB-a)·a+(AB-b)(AD-a),S2=AB(AD-a)+(a-b)(AB-a),∴S2-S1=AB(AD-a)+(a-b)(AB-a)-(AB-a)·a-(AB-b)(AD-a)=(AD-a)(AB-AB+b)+(AB-a)(a-b-a)= b·AD-ab-b·AB+ab=b(AD-AB)=2b.答案:B二、填空题(每小题4分,共24分)13.计算:|-2018|= .解析:|-2018|=2018.答案:201814.要使分式11x 有意义,x的取值应满足 .解析:要使分式11x-有意义,则:x-1≠0.解得:x≠1,故x的取值应满足:x≠1.答案:x≠115.已知x,y满足方程组2523x yx y-=⎧⎨+=-⎩,,则x2-4y2的值为 .解析:原式=(x+2y)(x-2y)=-3×5=-15.答案:-1516.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B 两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为米(结果保留根号).解析:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°,在Rt△ACH中,∴∠CAH=45°,∴AH=CH=1200米,在Rt△HCB,∵tan∠B=CHHB,∴1200tan303tan3CHHBB==︒==∠(米).∴()120031*********AB HB HA=-==米.答案:) 12003117.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P 为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为 .解析:如图1中,当⊙P与直线CD相切时,设PC=PM=m.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8-x)2,∴x=5,∴PC=5,BP=BC-PC=8-5=3.如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,228443 -=综上所述,BP的长为3或3.答案:3或318.如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为 .解析:延长DM交CB的延长线于点H.∵四边形ABCD是菱形,∴AB=BC=AD=2,AD∥CH,∴∠ADM=∠H,∵AM=BM,∠AMD=∠HMB,∴△ADM≌△BHM,∴AD=HB=2,∵EM⊥DH,∴EH=ED,设BE=x,∵AE⊥BC,∴AE⊥AD,∴∠AEB=∠EAD=90°∵AE2=AB2-BE2=DE2-AD2,∴22-x2=(2+x)2-22,∴x=3-1或-3-1(舍弃),∴cosB=31BEAB-=.答案:31 2 -三、解答题(本大题有8小题,共78分)19.先化简,再求值:(x-1)2+x(3-x),其中x=-1 2.解析:首先计算完全平方,再计算单项式乘以多项式,再合并同类项,化简后再把x的值代入即可.答案:原式=x2-2x+1+3x-x2=x+1,当x=-12时,原式=-11122+=.20.在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.解析:(1)将线段AC沿着AB方向平移2个单位,即可得到线段BD;(2)利用2×3的长方形的对角线,即可得到线段BE⊥AC.答案:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求.21.在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.解析:(1)由条形图、扇形图中给出的级别A的数字,可计算出调查学生人数;(2)先计算出C在扇形图中的百分比,用1-[(A+D+C)在扇形图中的百分比]可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角.(3)总人数×课外阅读时间满足3≤t<4的百分比即得所求.答案:(1)由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的10%,所以:20÷10%=20×10010=200(人),即本次调查的学生人数为200人;(2)由条形图知:C级的人数为60人所以C级所占的百分比为:60200×100%=30%,B级所占的百分比为:1-10%-30%-45%=15%,B级的人数为200×15%=30(人),D级的人数为:200×45%=90(人),B所在扇形的圆心角为:360°×15%=54°.(3)因为C级所占的百分比为30%,所以全校每周课外阅读时间满足3≤t<4的人数为:1200×30%=360(人) 答:全校每周课外阅读时间满足3≤t<4的约有360人.22.已知抛物线y=-12x2+bx+c经过点(1,0),(0,32).(1)求该抛物线的函数表达式;(2)将抛物线y=-12x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.解析:(1)把已知点的坐标代入抛物线解析式求出b与c的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可.答案:(1)把(1,0),(0,32)代入抛物线解析式得:1232b cc⎧++=⎪⎪⎨⎪=⎪⎩,,解得:132bc=-⎧⎪⎨=⎪⎩,,则抛物线解析式为21322y x x=--+;(2)抛物线解析式为y=-2 131222x x-+=-(x+1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=-12x2.23.如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.解析:(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB-∠DCB,∠BCE=∠DCE-∠DCB,所以∠ACD=∠BCE,从而可证明△ACD≌△BCE(SAS)(2)由△ACD≌△BCE(SAS)可知:∠A=∠CBE=45°,BE=BF,从而可求出∠BEF的度数.答案:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB-∠DCB,∠BCE=∠DCE-∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,,,∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°.24.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?解析:(1)设甲种商品的每件进价为x元,乙种商品的每件进价为y元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程;(2)设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.答案:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.根据题意,得,200024008x x=+,解得 x=40.经检验,x=40是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;(2)甲乙两种商品的销售量为200040=50.设甲种商品按原销售单价销售a件,则(60-40)a+(60×0.7-40)(50-a)+(88-48)×50≥2460,解得a≥20.答:甲种商品按原销售单价至少销售20件.25.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC 是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求BDAC的值.解析:(1)根据比例三角形的定义分AB2=BC·AC、BC2=AB·AC、AC2=AB·BC三种情况分别代入计算可得;(2)先证△ABC∽△DCA得CA2=BC·AD,再由∠ADB=∠CBD=∠ABD知AB=AD即可得;(3)作AH⊥BD,由AB=AD知BH=12BD,再证△ABH∽△DBC得AB·BC=BH·DB,即AB·BC=12BD2,结合AB·BC=AC2知12BD2=AC2,据此可得答案.答案:(1)∵△ABC是比例三角形,且AB=2、AC=3,①当AB2=BC·AC时,得:4=3AC,解得:AC=4 3;②当BC2=AB·AC时,得:9=2AC,解得:AC=9 2;③当AC2=AB·BC时,得:AC=6,解得:AC=6(负值舍去);所以当AC=43或926时,△ABC是比例三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴BC CACA AD,即CA2=BC·AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC·AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=12BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴AB BHDB BC=,即AB·BC=BH·DB,∴AB·BC=12BD2,又∵AB·BC=AC2,∴2212 2BDBD ACAC=∴=,.26.如图1,直线l:y=-34x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<165).以点A为圆心,AC长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE·EF的最大值.解析:(1)利用待定系数法求出b即可得出直线l表达式,即可求出OA,OB,即可得出结论;(2)①先判断出∠CDF=2∠CDE,进而得出∠OAE=∠ODF,即可得出结论;②设出EM=3m,AM=4m,进而得出点E坐标,即可得出OE的平方,再根据①的相似得出比例式得出OE的平方,建立方程即可得出结论;(3)利用面积法求出OG,进而得出AG,HE,再构造相似三角形,即可得出结论.答案:(1)∵直线l:y=-34x+b与x轴交于点A(4,0),∴-34×4+b=0,∴b=3,∴直线l的函数表达式y=-34x+3,∴B(0,3),∴OA=4,OB=3,在Rt△AOB中,tan∠BAO=34OBOA=;(2)①如图2,连接DF,∵CE=EF,∴∠CDE=∠FDE,∴∠CDF=2∠CDE,∵∠OAE=2∠CDE,∴∠OAE=∠ODF,∵四边形CEFD是⊙O的圆内接四边形,∴∠OEC=∠ODF,∴∠OEC=∠OAE,∵∠COE=∠EOA,∴△COE∽△EOA,②过点E⊥OA于M,由①知,tan∠OAB=34,设EM=3m,则AM=4m,∴OM=4-4m,AE=5m,∴E(4-4m,3m),AC=5m,∴OC=4-5m,由①知,△COE∽△EOA,∴OC OEOE OA=,∴OE2=OA·OC=4(4-5m)=16-20m,∵E(4-4m,3m),∴(4-4m)2+9m2=25m2-32m+16,∴25m2-32m+16=16-20m,∴m=0(舍)或m=1225,∴48364432525m m-==,,∴(48362525,).(3)如图,设⊙O的半径为r,过点O作OG⊥AB于G,∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB=5,∴1122AB OG OA OB⨯=⨯,∴OG=125,∴AG=12416tan535OGAOB=⨯=∠,∴EG=AG-AE=165-r,连接FH,∵EH是⊙O直径,∴EH=2r,∠EFH=90°=∠EGO,∵∠OEG=∠HEF,∴△OEG∽△HEF,∴OE EG HE EF=,∴OE·EF=HE·EG=2r216812825525r r-=--⎛⎫⎛⎫⎪⎪+⎝⎭⎝⎭,∴r=85时,OE·EF最大值为12825.。
2020年宁波市数学中考试题一、选择题1.﹣3的相反数为()A.﹣3B.﹣C.D.32.下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.a6÷a3=a3D.a2+a3=a5 3.2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为()A.1.12×108B.1.12×109C.1.12×109D.0.112×1010 4.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A.B.C.D.5.一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为()A.B.C.D.6.二次根式中字母x的取值范围是()A.x>2B.x≠2C.x≥2D.x≤27.如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2B.2.5C.3D.48.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.B.C.D.9.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c10.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长二、填空题(每小题5分,共30分)11.实数8的立方根是.12.分解因式:2a2﹣18=.13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙454542S2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.14.如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为cm(结果保留π).15.如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为.16.如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A 在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为,的值为.三、解答题(本大题有8小题,共80分)17.(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).18.图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)19.图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)20.如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.21.某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?22.A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?23.【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,求菱形ABCD的边长.24.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC 的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.参考答案一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.D.2.C.3.B.4.B.5.D.6.C.7.B.8.A.9.D.10.A.二、填空题(每小题5分,共30分)11.2.12.2(a+3)(a﹣3).13.甲.14.18π.15.2或2.16.24,﹣.三、解答题(本大题有8小题,共80分)17.解:(1)(a+1)2+a(2﹣a)=a2+2a+1+2a﹣a2=4a+1;(2)3x﹣5<2(2+3x)3x﹣5<4+6x,移项得:3x﹣6x<4+5,合并同类项,系数化1得:x>﹣3.18.解:(1)轴对称图形如图1所示.(2)中心对称图形如图2所示.19.解:(1)过点A作AH⊥BC于点H,∵AB=AC,∴BH=HC,在Rt△ABH中,∠B=47°,AB=50,∴BH=AB cos B=50cos47°≈50×0.68=34,∴BC=2BH=68cm.(2)在Rt△ABH中,∴AH=AB sin B=50sin47°≈50×0.73=36.5,∴36.5>30,∴当车位锁上锁时,这辆汽车不能进入该车位.20.解:(1)把B(1,0)代入y=ax2+4x﹣3,得0=a+4﹣3,解得a=﹣1,∴y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴A(2,1),∵对称轴x=1,B,C关于x=2对称,∴C(3,0),∴当y>0时,1<x<3.(2)∵D(0,﹣3),∴点D平移的A,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y=﹣(x﹣4)2+5.21.解:(1)30÷15%=200(人),200﹣30﹣80﹣40=50(人),直方图如图所示:(2)“良好”所对应的扇形圆心角的度数=360°×=144°.(3)这次测试成绩的中位数是良好.(4)1500×=300(人),答:估计该校获得优秀的学生有300人.22.解:(1)设函数表达式为y=kx+b(k≠0),把(1.6,0),(2.6,80)代入y=kx+b,得,解得:,∴y关于x的函数表达式为y=80x﹣128(1.6≤x≤3.1);(2)当y=200﹣80=120时,120=80x﹣128,解得x=3.1,货车甲正常到达B地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时),设货车乙返回B地的车速为v千米/小时,∴1.6v≥120,解得v≥75.答:货车乙返回B地的车速至少为75千米/小时.23.解:(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴,∴AC2=AD•AB.(2)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵∠BFE=∠A,∴∠BFE=∠C,又∵∠FBE=∠CBF,∴△BFE∽△BCF,∴,∴BF2=BE•BC,∴BC==,∴AD=.(3)如图,分别延长EF,DC相交于点G,∵四边形ABCD是菱形,∴AB∥DC,∠BAC=∠BAD,∵AC∥EF,∴四边形AEGC为平行四边形,∴AC=EG,CG=AE,∠EAC=∠G,∵∠EDF=∠BAD,∴∠EDF=∠BAC,∴∠EDF=∠G,又∵∠DEF=∠GED,∴△EDF∽△EGD,∴,∴DE2=EF•EG,又∵EG=AC=2EF,∴DE2=2EF2,∴DE=EF,又∵,∴DG=,∴DC=DG﹣CG=5﹣2.24.解:(1)∵BE平分∠ABC,CE平分∠ACD,∴∠E=∠ECD﹣∠EBD=(∠ACD﹣∠ABC)=α,(2)如图1,延长BC到点T,∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,∵=,∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠FAD,∴∠BEC=∠FAD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,②如图3,过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,∵AC是⊙O的直径,∴∠ABC=90°,∵BE平分∠ABC,∴∠FAC=∠EBC=∠ABC=45°,∵∠AED=45°,∴∠AED=∠FAC,∵∠FED=∠FAD,∴∠AED﹣∠FED=∠FAC﹣∠FAD,∴∠AEG=∠CAD,∵∠EGA=∠ADC=90°,∴△EGA∽△ADC,∴,∵在Rt△ABG中,AG=,在Rt△ADE中,AE=AD,∴,在Rt△ADC中,AD2+DC2=AC2,∴设AD=4x,AC=5x,则有(4x)2+52=(5x)2,∴x=,∴ED=AD=,∴CE=CD+DE=,∵∠BEC=∠FCE,∴FC=FE,∵FM⊥CE,∴EM=CE=,∴DM=DE﹣EM=,∵∠FDM=45°,∴FM=DM=,∴S△DEF=DE•FM=.。
2020年浙江省宁波市中考数学试卷一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)﹣3的相反数为()A.﹣3B.﹣C.D.32.(4分)下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.a6÷a3=a3D.a2+a3=a53.(4分)2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为()A.1.12×108B.1.12×109C.1.12×109D.0.112×10104.(4分)如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A.B.C.D.5.(4分)一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为()A.B.C.D.6.(4分)二次根式中字母x的取值范围是()A.x>2B.x≠2C.x≥2D.x≤27.(4分)如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F 为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2B.2.5C.3D.48.(4分)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.B.C.D.9.(4分)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c10.(4分)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长二、填空题(每小题5分,共30分)11.(5分)实数8的立方根是.12.(5分)分解因式:2a2﹣18=.13.(5分)今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙454542S2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.14.(5分)如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为cm(结果保留π).15.(5分)如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为.16.(5分)如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE 的面积为56,四边形ABCD的面积为32,则a﹣b的值为,的值为.三、解答题(本大题有8小题,共80分)17.(8分)(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).18.(8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)19.(8分)图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)20.(10分)如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.21.(10分)某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?22.(10分)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?23.(12分)【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,求菱形ABCD的边长.24.(14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.2020年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)﹣3的相反数为()A.﹣3B.﹣C.D.3【分析】根据只有符号不同的两个数互为相反数解答.【解答】解:﹣3的相反数是3.故选:D.2.(4分)下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.a6÷a3=a3D.a2+a3=a5【分析】直接利用同底数幂的乘除运算法则、幂的乘方运算法则、合并同类项法则分别化简得出答案.【解答】解:A、a3•a2=a5,故此选项错误;B、(a3)2=a6,故此选项错误;C、a6÷a3=a3,正确;D、a2+a3,不是同类项,不能合并,故此选项错误;故选:C.3.(4分)2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为()A.1.12×108B.1.12×109C.1.12×109D.0.112×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:1120000000=1.12×109,故选:B.4.(4分)如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A.B.C.D.【分析】根据主视图的意义和画法可以得出答案.【解答】解:根据主视图的意义可知,从正面看物体所得到的图形,选项B符合题意,故选:B.5.(4分)一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为()A.B.C.D.【分析】根据概率公式计算.【解答】解:从袋中任意摸出一个球是红球的概率==.故选:D.6.(4分)二次根式中字母x的取值范围是()A.x>2B.x≠2C.x≥2D.x≤2【分析】根据被开方数大于等于0列不等式求解即可.【解答】解:由题意得,x﹣2≥0,解得x≥2.故选:C.7.(4分)如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F 为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2B.2.5C.3D.4【分析】利用勾股定理求得AB=10;然后由直角三角形斜边上的中线等于斜边的一半求得CD的长度;结合题意知线段BF是△CDE的中位线,则BF=CD.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB===10.又∵CD为中线,∴CD=AB=5.∵F为DE中点,BE=BC即点B是EC的中点,∴BF是△CDE的中位线,则BF=CD=2.5.故选:B.8.(4分)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.B.C.D.【分析】直接利用“绳长=木条+4.5;绳子=木条﹣1”分别得出等式求出答案.【解答】解:设木条长x尺,绳子长y尺,那么可列方程组为:.故选:A.9.(4分)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c【分析】由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,根据对称轴方程得到b >0,于是得到abc>0,故A错误;根据一次函数y=ax2+bx+c(a>0)的图象与x轴的交点,得到b2﹣4ac>0,求得4ac﹣b2<0,故B错误;根据对称轴方程得到b=2a,当x=﹣1时,y=a﹣b+c<0,于是得到c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,代入解析式得到y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,于是得到y=an2(n2+2)+c≥c,故D正确.【解答】解:由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,又对称轴方程为x=﹣1,所以﹣<0,所以b>0,∴abc>0,故A错误∵;∴一次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,∴b2﹣4ac>0,∴4ac﹣b2<0,故B错误;∵﹣=﹣1,∴b=2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣2a+c<0,∴c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,∵a>0,n2≥0,n2+2>0,∴y=an2(n2+2)+c≥c,故D正确,故选:D.10.(4分)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【分析】证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.【解答】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.二、填空题(每小题5分,共30分)11.(5分)实数8的立方根是2.【分析】根据立方根的性质和求法,求出实数8的立方根是多少即可.【解答】解:实数8的立方根是:=2.故答案为:2.12.(5分)分解因式:2a2﹣18=2(a+3)(a﹣3).【分析】首先提取公因式2,再利用平方差公式分解因式得出答案.【解答】解:2a2﹣18=2(a2﹣9)=2(a+3)(a﹣3).故答案为:2(a+3)(a﹣3).13.(5分)今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙454542S2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲.【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【解答】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.14.(5分)如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为18πcm(结果保留π).【分析】根据弧长公式即可得到结论.【解答】解:∵折扇的骨柄长为27cm,折扇张开的角度为120°,∴的长==18π(cm),故答案为:18π.15.(5分)如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为2.【分析】当∠AOC=90°时,连接OB,根据切线的性质得到∠OBC=90°,根据勾股定理得到AC===2.【解答】解:∵BC是⊙O的切线,∴∠OBC=90°,∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°,∵当△OAC是直角三角形时,①∠AOC=90°,连接OB,∴OC=OB=2,∴AC===2;②当△OAC是直角三角形时,①∠OAC=90°,此时,点A,B重合(不合题意舍去),故答案为:2.16.(5分)如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE 的面积为56,四边形ABCD的面积为32,则a﹣b的值为24,的值为﹣.【分析】如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.求出证明四边形ACDE是平行四边形,推出S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,推出S△AOE =S△DEO=12,可得a﹣b=12,推出a﹣b=24.再证明BC∥AD,证明AD=3BC,推出AT=3BT,再证明AK=3BK即可解决问题.【解答】解:如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.由题意A,D关于原点对称,∴A,D的纵坐标的绝对值相等,∵AE∥CD,∴E,C的纵坐标的绝对值相等,∵E,C在反比例函数y=的图象上,∴E,C关于原点对称,∴E,O,C共线,∵OE=OC,OA=OD,∴四边形ACDE是平行四边形,∴S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,∴S△AOE=S△DEO=12,∴a﹣b=12,∴a﹣b=24,∵S△AOC=S△AOB=12,∴BC∥AD,∴=,∵S△ACB=32﹣24=8,∴S△ADC:S△ABC=24:8=1:3,∴BC:AD=1:3,∴TB:TA=1:3,设BT=a,则AT=3a,AK=TK=1.5k,BK=0.5k,∴AK:BK=3:1,∴==,∴=﹣.故答案为24,﹣.三、解答题(本大题有8小题,共80分)17.(8分)(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).【分析】(1)直接利用单项式乘以多项式以及完全平方公式分别计算得出答案;(2)直接利用一元一次不等式的解法进而计算即可.【解答】解:(1)(a+1)2+a(2﹣a)=a2+2a+1+2a﹣a2=4a+1;(2)3x﹣5<2(2+3x)3x﹣5<4+6x,移项得:3x﹣6x<4+5,合并同类项,系数化1得:x>﹣3.18.(8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【分析】(1)根据轴对称图形的定义画出图形即可(答案不唯一).(2)根据中心对称图形的定义画出图形即可(答案不唯一).【解答】解:(1)轴对称图形如图1所示.(2)中心对称图形如图2所示.19.(8分)图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)【分析】(1)过点A作AH⊥BC于点H,根据锐角三角函数的定义即可求出答案.(2)根据锐角三角函数的定义求出AH的长度即可判断.【解答】解:(1)过点A作AH⊥BC于点H,∵AB=AC,∴BH=HC,在Rt△ABH中,∠B=47°,AB=50,∴BH=AB cos B=50cos47°≈50×0.68=34,∴BC=2BH=68cm.(2)在Rt△ABH中,∴AH=AB sin B=50sin47°≈50×0.73=36.5,∴36.5>30,∴当车位锁上锁时,这辆汽车不能进入该车位.20.(10分)如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.【分析】(1)利用待定系数法求出a,再求出点C的坐标即可解决问题.(2)由题意点D平移的A,抛物线向右平移2个单位,向上平移4个单位,由此可得抛物线的解析式.【解答】解:(1)把B(1,0)代入y=ax2+4x﹣3,得0=a+4﹣3,解得a=﹣1,∴y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴A(2,1),∵对称轴x=1,B,C关于x=2对称,∴C(3,0),∴当y>0时,1<x<3.(2)∵D(0,﹣3),∴点D平移的A,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y=﹣(x﹣4)2+5.21.(10分)某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?【分析】(1)根据基本合格人数已经百分比求出总人数即可解决问题.(2)根据圆心角=360°×百分比计算即可.(3)根据中位数的定义判断即可.(4)利用样本估计总体的思想解决问题即可.【解答】解:(1)30÷15%=200(人),200﹣30﹣80﹣40=50(人),直方图如图所示:(2)“良好”所对应的扇形圆心角的度数=360°×=144°.(3)这次测试成绩的中位数是良好.(4)1500×=300(人),答:估计该校获得优秀的学生有300人.22.(10分)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?【分析】(1)由待定系数法可求出函数解析式;(2)根据图中的信息求出乙返回B地所需的时间,由题意可列出不等式1.6v≥120,解不等式即可得出答案.【解答】解:(1)设函数表达式为y=kx+b(k≠0),把(1.6,0),(2.6,80)代入y=kx+b,得,解得:,∴y关于x的函数表达式为y=80x﹣128(1.6≤x≤3.1);(2)当y=200﹣80=120时,120=80x﹣128,解得x=3.1,货车甲正常到达B地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时),设货车乙返回B地的车速为v千米/小时,∴1.6v≥120,解得v≥75.答:货车乙返回B地的车速至少为75千米/小时.23.(12分)【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,求菱形ABCD的边长.【分析】(1)证明△ADC∽△ACB,得出,则可得出结论;(2)证明△BFE∽△BCF,得出比例线段,则BF2=BE•BC,求出BC,则可求出AD.(3)分别延长EF,DC相交于点G,证得四边形AEGC为平行四边形,得出AC=EG,CG=AE,∠EAC=∠G,证明△EDF∽△EGD,得出比例线段,则DE=EF,可求出DG,则答案可求出.【解答】解:(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴,∴AC2=AD•AB.(2)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵∠BFE=∠A,∴∠BFE=∠C,又∵∠FBE=∠CBF,∴△BFE∽△BCF,∴,∴BF2=BE•BC,∴BC==,∴AD=.(3)如图,分别延长EF,DC相交于点G,∵四边形ABCD是菱形,∴AB∥DC,∠BAC=∠BAD,∵AC∥EF,∴四边形AEGC为平行四边形,∴AC=EG,CG=AE,∠EAC=∠G,∵∠EDF=∠BAD,∴∠EDF=∠BAC,∴∠EDF=∠G,又∵∠DEF=∠GED,∴△EDF∽△EGD,∴,∴DE2=EF•EG,又∵EG=AC=2EF,∴DE2=2EF2,∴DE=EF,又∵,∴DG=,∴DC=DG﹣CG=5﹣2.24.(14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.【分析】(1)由角平分线的定义可得出结论;(2)由圆内接四边形的性质得出∠FDC+∠FBC=90°,得出∠FDE=∠FBC,证得∠ABF=∠FBC,证出∠ACD=∠DCT,则CE是△ABC的外角平分线,可得出结论;(3)①连接CF,由条件得出∠BFC=∠BAC,则∠BFC=2∠BEC,得出∠BEC=∠F AD,证明△FDE ≌△FDA(AAS),由全等三角形的性质得出DE=DA,则∠AED=∠DAE,得出∠ADC=90°,则可求出答案;②过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,证得△EGA∽△ADC,得出,求出,设AD=4x,AC=5x,则有(4x)2+52=(5x)2,解得x=,求出ED,CE的长,求出DM,由等腰直角三角形的性质求出FM,根据三角形的面积公式可得出答案.【解答】解:(1)∵BE平分∠ABC,CE平分∠ACD,∴∠E=∠ECD﹣∠EBD=(∠ACD﹣∠ABC)=α,(2)如图1,延长BC到点T,∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,∵=,∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠F AD,∴∠BEC=∠F AD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,②如图3,过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,∵AC是⊙O的直径,∴∠ABC=90°,∵BE平分∠ABC,∴∠F AC=∠EBC=∠ABC=45°,∵∠AED=45°,∴∠AED=∠F AC,∵∠FED=∠F AD,∴∠AED﹣∠FED=∠F AC﹣∠F AD,∵∠EGA=∠ADC=90°,∴△EGA∽△ADC,∴,∵在Rt△ABG中,AG=,在Rt△ADE中,AE=AD,∴,在Rt△ADC中,AD2+DC2=AC2,∴设AD=4x,AC=5x,则有(4x)2+52=(5x)2,∴x=,∴ED=AD=,∴CE=CD+DE=,∵∠BEC=∠FCE,∴FC=FE,∵FM⊥CE,∴EM=CE=,∴DM=DE﹣EM=,∵∠FDM=45°,∴FM=DM=,∴S△DEF=DE•FM=.。
2020年宁波中考数学卷答案解析版答案解析部分一、选择题(每小题4分,共48分)1、【答案】A【考点】无理数【解析】【解答】解:无理数就是无限不循环小数。
无理数应满足三个条件:①是小数;②是无限小数;③不循环;由无理数的定义即可得出答案为A.【分析】根据无理数的定义即可得出答案.2、【答案】C【考点】同底数幂的乘法,幂的乘方与积的乘方,合并同类项法则和去括号法则【解析】【解答】解:A.a2与a3不是同类项,不能合并,故错误;B.原式=4a2.故错误;C.原式=a2+3=a5.故正确;D.原式=a6.故错误;故选C。
【分析】利用同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘;积的乘方,将每个数分别乘方;以及合并同类项法则即可判断正确答案。
3、【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:45万吨=4.5×105吨.故答案为B.【分析】科学计数法的定义:将一个数字表示成a×10n的形式;其中1≤|a|<10,n为整数.由此可得出正确答案. 4、【答案】D 【考点】二次根式有意义的条件【解析】【解答】解:依题可得:x-3≥0.∴x≥3.故选D.【分析】根据二次根式有意义的条件:被开方数大于或等于0即可得出答案.5、【答案】D【考点】简单几何体的三视图【解析】【解答】解:俯视图是指从上往下看所得到的平面图形.由此可得出正确答案.故答案为D.【分析】由俯视图的定义即可选出正确答案.6、【答案】C【考点】概率公式【解析】【解答】解:∵从装有5个红球、2个白球、3个黄球的袋中任意摸出1个球有10种等可能结果,其中摸出的球是黄球的结果有3种,∴从袋中任意摸出1个球是黄球的概率为:.故答案为C.【分析】依题可得共有10种等可能结果,其中摸出的球是黄球的结果有3中,利用概率公式即可得出答案. 7、【答案】D 【考点】平行线的性质【解析】【解答】解:∵m∥n.∴∠2=∠1+∠ABC.又∵∠1=20°,∠ABC=30°∴∠2=50°.故答案为D.【分析】根据平行线的性质即可得出内错角相等,由题目条件即可得出答案.8、【答案】C【考点】中位数、众数【解析】【解答】解:依题可得:x=7.将这组数据从小到大排列为:2,3,5,7,7.∴中位数为5.故答案为C.【分析】由众数定义求出x值,再根据中位数定义求出中位数.9、【答案】B【考点】直角三角形斜边上的中线,勾股定理,正方形的判定,切线的性质,弧长的计算【解析】【解答】解:∵O为BC中点.BC=2.∴OA=OB=OC=.又∵AC、AB是⊙O的切线,∴OD=OE=r.OE⊥AC,OD⊥AB,∵∠A=90°.∴四边形ODAE为正方形.∴∠DOE=90°.∴(2r)2+(2r)2=.∴r=1.∴弧DE===.故答案为B.【分析】根据O为BC中点.BC=2.求出OA=OB=OC=;再根据AC、AB是⊙O的切线,得出四边形ODAE 为正方形;由勾股定理求出r的值,再根据弧长公式得出弧DE的长度.10、【答案】A【考点】坐标确定位置,二次函数的性质【解析】【解答】解:∵y=x2-2x+m2+2.∴y=(x-1)2+m2+1.∴顶点坐标(1,m2+1).∴顶点坐标在第一象限.故答案为A.【分析】根据配方法得出顶点坐标,从而判断出象限.11、【答案】C【考点】勾股定理,三角形中位线定理,正方形的性质,相似三角形的判定与性质【解析】【解答】解:取DF、CF中点K、H,连接MK、NH、CM,作MO⊥NH(如下图).∵四边形ABCD是边长为6的正方形,BE=4.。
宁波市2020年初中学业水平考试数学试题(满分为150分,考试时间为120分钟)试题卷Ⅰ一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.﹣3的相反数为()A.﹣3 B.﹣C.D.32.下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.a6÷a3=a3D.a2+a3=a53.2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为()A.1.12×108B.1.12×109C.1.12×109D.0.112×10104.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A.B.C.D.5.一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为()A.B.C.D.6.二次根式中字母x的取值范围是()A.x>2 B.x≠2 C.x≥2 D.x≤27.如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2 B.2.5 C.3 D.48.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.B.C.D.9.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c10.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长试题卷Ⅱ二、填空题(每小题5分,共30分)11.实数8的立方根是.12.分解因式:2a2﹣18=.13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙45 45 42S2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.14.如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为cm(结果保留π).15.如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B 作⊙O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为.16.如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为,的值为.三、解答题(本大题有8小题,共80分)17.(本题8分)(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).18.(本题8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)19.(本题8分)图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)20.(本题10分)如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.21.(本题10分)某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?22.(本题10分)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B 地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?23.(本题12分)【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,求菱形ABCD的边长.24.(本题14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.答案与解析试题卷Ⅰ一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.﹣3的相反数为()A.﹣3 B.﹣C.D.3【知识考点】相反数.【思路分析】根据只有符号不同的两个数互为相反数解答.【解题过程】解:﹣3的相反数是3.故选:D.【总结归纳】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.a6÷a3=a3D.a2+a3=a5【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用同底数幂的乘除运算法则、幂的乘方运算法则、合并同类项法则分别化简得出答案.【解题过程】解:A、a3•a2=a5,故此选项错误;B、(a3)2=a6,故此选项错误;C、a6÷a3=a3,正确;D、a2+a3,不是同类项,不能合并,故此选项错误;故选:C.【总结归纳】此题主要考查了同底数幂的乘除运算、幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.3.2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为()A.1.12×108B.1.12×109C.1.12×109D.0.112×1010【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解题过程】解:1120000000=1.12×109,故选:B.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据主视图的意义和画法可以得出答案.【解题过程】解:根据主视图的意义可知,从正面看物体所得到的图形,选项B符合题意,故选:B.【总结归纳】考查简单几何体的三视图的画法,主视图就是从正面看物体所得到的图形.5.一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为()A.B.C.D.【知识考点】概率公式.【思路分析】根据概率公式计算.【解题过程】解:从袋中任意摸出一个球是红球的概率==.故选:D.【总结归纳】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.6.二次根式中字母x的取值范围是()A.x>2 B.x≠2 C.x≥2 D.x≤2【知识考点】二次根式有意义的条件.【思路分析】根据被开方数大于等于0列不等式求解即可.【解题过程】解:由题意得,x﹣2≥0,解得x≥2.故选:C.【总结归纳】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.7.如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F 为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2 B.2.5 C.3 D.4【知识考点】直角三角形斜边上的中线;勾股定理;三角形中位线定理.【思路分析】利用勾股定理求得AB=10;然后由直角三角形斜边上的中线等于斜边的一半求得CD的长度;结合题意知线段BF是△CDE的中位线,则BF=CD.【解题过程】解:∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB===10.又∵CD为中线,∴CD=AB=5.∵F为DE中点,BE=BC即点B是EC的中点,∴BF是△CDE的中位线,则BF=CD=2.5.故选:B.【总结归纳】本题主要考查了勾股定理,三角形中位线定理,直角三角形斜边上的中线,此题的突破口是推知线段CD的长度和线段BF是△CDE的中位线.8.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.B.C.D.【知识考点】数学常识;由实际问题抽象出二元一次方程组.【思路分析】直接利用“绳长=木条+4.5;绳子=木条﹣1”分别得出等式求出答案.【解题过程】解:设木条长x尺,绳子长y尺,那么可列方程组为:.故选:A.【总结归纳】此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.9.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c【知识考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【思路分析】由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,根据对称轴方程得到b>0,于是得到abc>0,故A错误;根据一次函数y=ax2+bx+c(a>0)的图象与x轴的交点,得到b2﹣4ac>0,求得4ac﹣b2<0,故B错误;根据对称轴方程得到b=2a,当x=﹣1时,y=a﹣b+c<0,于是得到c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,代入解析式得到y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,于是得到y=an2(n2+2)+c≥c,故D正确.【解题过程】解:由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,又对称轴方程为x=﹣1,所以﹣<0,所以b>0,∴abc>0,故A错误∵;∴一次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,∴b2﹣4ac>0,∴4ac﹣b2<0,故B错误;∵﹣=﹣1,∴b=2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣2a+c<0,∴c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,∵a>0,n2≥0,n2+2>0,∴y=an2(n2+2)+c≥c,故D正确,故选:D.【总结归纳】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.10.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【知识考点】全等三角形的判定与性质;等边三角形的性质.【思路分析】证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.【解题过程】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.【总结归纳】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.试题卷Ⅱ二、填空题(每小题5分,共30分)11.实数8的立方根是.【知识考点】立方根.【思路分析】根据立方根的性质和求法,求出实数8的立方根是多少即可.【解题过程】解:实数8的立方根是:=2.故答案为:2.【总结归纳】此题主要考查了立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.12.分解因式:2a2﹣18=.【知识考点】提公因式法与公式法的综合运用.【思路分析】首先提取公因式2,再利用平方差公式分解因式得出答案.【解题过程】解:2a2﹣18=2(a2﹣9)=2(a+3)(a﹣3).故答案为:2(a+3)(a﹣3).【总结归纳】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙45 45 42S2 1.8 2.3 1.8 明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.【知识考点】算术平均数;方差.【思路分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【解题过程】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.【总结归纳】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.14.如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为cm(结果保留π).【知识考点】弧长的计算.【思路分析】根据弧长公式即可得到结论.【解题过程】解:∵折扇的骨柄长为27cm,折扇张开的角度为120°,∴的长==18π(cm),故答案为:18π.【总结归纳】本题考查了弧长的计算,熟练掌握弧长公式是解题的关键.15.如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC =OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为.【知识考点】勾股定理;切线的性质.【思路分析】当∠AOC=90°时,连接OB,根据切线的性质得到∠OBC=90°,根据勾股定理得到AC===2.【解题过程】解:∵BC是⊙O的切线,∴∠OBC=90°,∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°,∵当△OAC是直角三角形时,①∠AOC=90°,连接OB,∴OC=OB=2,∴AC===2;②当△OAC是直角三角形时,∠OAC=90°,连接OB,∵BC是⊙O的切线,∴∠CBO=∠OAC=90°,∵BC=OA=OB,∴△OBC是等腰直角三角形,∴,故答案为:2或2.【总结归纳】本题考查了切线的性质.勾股定理,正确的理解题意是解题的关键.16.如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为,的值为.【知识考点】反比例函数与一次函数的交点问题.【思路分析】如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.求出证明四边形ACDE是平行四边形,推出S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,推出S△AOE=S△DEO=12,可得a﹣b=12,推出a﹣b=24.再证明BC∥AD,证明AD=3BC,推出AT=3BT,再证明AK=3BK即可解决问题.【解题过程】解:如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x 轴于K.由题意A,D关于原点对称,∴A,D的纵坐标的绝对值相等,∵AE∥CD,∴E,C的纵坐标的绝对值相等,∵E,C在反比例函数y=的图象上,∴E,C关于原点对称,∴E,O,C共线,∵OE=OC,OA=OD,∴四边形ACDE是平行四边形,∴S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,∴S△AOE=S△DEO=12,∴a﹣b=12,∴a﹣b=24,∵S△AOC=S△AOB=12,∴BC∥AD,∴=,∵S△ACB=32﹣24=8,∴S△ADC:S△ABC=24:8=1:3,∴BC:AD=1:3,∴TB:TA=1:3,设BT=a,则AT=3a,AK=TK=1.5k,BK=0.5k,∴AK:BK=3:1,∴==3,∴=﹣3.故答案为24,﹣3.【总结归纳】本题考查了反比例函数与一次函数的交点问题,平行四边形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考填空题中的压轴题.三、解答题(本大题有8小题,共80分)17.(本题8分)(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).【知识考点】单项式乘多项式;完全平方公式;解一元一次不等式.【思路分析】(1)直接利用单项式乘以多项式以及完全平方公式分别计算得出答案;(2)直接利用一元一次不等式的解法进而计算即可.【解题过程】解:(1)(a+1)2+a(2﹣a)=a2+2a+1+2a﹣a2=4a+1;(2)3x﹣5<2(2+3x)3x﹣5<4+6x,移项得:3x﹣6x<4+5,合并同类项,系数化1得:x>﹣3.【总结归纳】此题主要考查了一元一次不等式的解法以及单项式乘以多项式,正确掌握相关运算法则是解题关键.18.(本题8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【知识考点】利用轴对称设计图案;利用旋转设计图案.【思路分析】(1)根据轴对称图形的定义画出图形即可(答案不唯一).(2)根据中心对称图形的定义画出图形即可(答案不唯一).【解题过程】解:(1)轴对称图形如图1所示.(2)中心对称图形如图2所示.【总结归纳】本题考查利用旋转设计图案,利用轴对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.19.(本题8分)图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)【知识考点】等腰三角形的性质;解直角三角形的应用.【思路分析】(1)过点A作AH⊥BC于点H,根据锐角三角函数的定义即可求出答案.(2)根据锐角三角函数的定义求出AH的长度即可判断.【解题过程】解:(1)过点A作AH⊥BC于点H,∵AB=AC,∴BH=HC,在Rt△ABH中,∠B=47°,AB=50,∴BH=ABcosB=50cos47°≈50×0.68=34,∴BC=2BH=68cm.(2)在Rt△ABH中,∴AH=ABsinB=50sin47°≈50×0.73=36.5,∴36.5>30,∴当车位锁上锁时,这辆汽车不能进入该车位.【总结归纳】本题考查解直角三角形,解题的关键是熟练运用锐角函数的定义,本题属于基础题型.20.(本题10分)如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.【知识考点】二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换;抛物线与x轴的交点.【思路分析】(1)利用待定系数法求出a,再求出点C的坐标即可解决问题.(2)由题意点D平移的A,抛物线向右平移2个单位,向上平移4个单位,由此可得抛物线的解析式.【解题过程】解:(1)把B(1,0)代入y=ax2+4x﹣3,得0=a+4﹣3,解得a=﹣1,∴y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴A(2,1),∵对称轴x=1,B,C关于x=2对称,∴C(3,0),∴当y>0时,1<x<3.(2)∵D(0,﹣3),∴点D平移的A,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y=﹣(x﹣4)2+5.【总结归纳】本题考查抛物线与x轴的交点,二次函数的性质,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(本题10分)某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?【知识考点】用样本估计总体;频数(率)分布直方图;扇形统计图;中位数.【思路分析】(1)根据基本合格人数已经百分比求出总人数即可解决问题.(2)根据圆心角=360°×百分比计算即可.(3)根据中位数的定义判断即可.(4)利用样本估计总体的思想解决问题即可.【解题过程】解:(1)30÷15%=200(人),200﹣30﹣80﹣40=50(人),直方图如图所示:(2)“良好”所对应的扇形圆心角的度数=360°×=144°.(3)这次测试成绩的中位数是良好.(4)1500×=300(人),答:估计该校获得优秀的学生有300人.【总结归纳】本题考查频数分布直方图,样本估计总体,扇形统计图,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(本题10分)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B 地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?【知识考点】一元一次不等式的应用;一次函数的应用.【思路分析】(1)由待定系数法可求出函数解析式;(2)根据图中的信息求出乙返回B地所需的时间,由题意可列出不等式1.6v≥120,解不等式即可得出答案.【解题过程】解:(1)设函数表达式为y=kx+b(k≠0),把(1.6,0),(2.6,80)代入y=kx+b,得,解得:,∴y关于x的函数表达式为y=80x﹣128(1.6≤x≤3.1);(2)当y=200﹣80=120时,120=80x﹣128,解得x=3.1,由图可甲的速度为=50(千米/小时),货车甲正常到达B地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时),设货车乙返回B地的车速为v千米/小时,∴1.6v≥120,解得v≥75.答:货车乙返回B地的车速至少为75千米/小时.【总结归纳】本题考查了一次函数的应用;待定系数法求函数的解析式,根据数形结合得到甲乙相应的速度以及相应的时间是解决本题的关键.23.(本题12分)【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,求菱形ABCD的边长.【知识考点】相似形综合题.【思路分析】(1)证明△ADC∽△ACB,得出,则可得出结论;(2)证明△BFE∽△BCF,得出比例线段,则BF2=BE•BC,求出BC,则可求出AD.(3)分别延长EF,DC相交于点G,证得四边形AEGC为平行四边形,得出AC=EG,CG=AE,∠EAC=∠G,证明△EDF∽△EGD,得出比例线段,则DE=EF,可求出DG,则答案可求出.【解题过程】解:(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴,∴AC2=AD•AB.(2)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵∠BFE=∠A,∴∠BFE=∠C,又∵∠FBE=∠CBF,∴△BFE∽△BCF,∴,∴BF2=BE•BC,∴BC==,∴AD=.(3)如图,分别延长EF,DC相交于点G,∵四边形ABCD是菱形,∴AB∥DC,∠BAC=∠BAD,∵AC∥EF,∴四边形AEGC为平行四边形,∴AC=EG,CG=AE,∠EAC=∠G,∵∠EDF=∠BAD,∴∠EDF=∠BAC,∴∠EDF=∠G,又∵∠DEF=∠GED,∴△EDF∽△EGD,∴,∴DE2=EF•EG,又∵EG=AC=2EF,∴DE2=2EF2,∴DE=EF,又∵,∴DG=,∴DC=DG﹣CG=5﹣2.【总结归纳】此题是相似形综合题,主要考查了相似三角形的判定与性质,平行四边形的判定与性质,菱形的性质等知识,正确掌握相似三角形的判定方法是解题关键.24.(本题14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.【知识考点】圆的综合题.【思路分析】(1)由角平分线的定义可得出结论;(2)由圆内接四边形的性质得出∠FDC+∠FBC=90°,得出∠FDE=∠FBC,证得∠ABF=∠FBC,证出∠ACD=∠DCT,则CE是△ABC的外角平分线,可得出结论;(3)①连接CF,由条件得出∠BFC=∠BAC,则∠BFC=2∠BEC,得出∠BEC=∠FAD,证明△FDE≌△FDA(AAS),由全等三角形的性质得出DE=DA,则∠AED=∠DAE,得出∠ADC =90°,则可求出答案;②过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,证得△EGA∽△ADC,得出,求出,设AD=4x,AC=5x,则有(4x)2+52=(5x)2,解得x=,求出ED,CE的长,求出DM,由等腰直角三角形的性质求出FM,根据三角形的面积公式可得出答案.。
2020年浙江省宁波市中考数学试题(含参考答案及评 分标准,word 版)一、选择题〔每题 3分,共36分,在每题给出的四个选项中,只有一项符合要求〕 1以下四个数中,比 0小的数是〔〕2 _A. - B .3 C . D . 132.等腰直角三角形的一个底角的度数是 〔〕A . 300B . 450C . 600D . 90°4个只有颜色的球,其中 摸到红球的概率是 1 1C .D .-4 64.据?宁波市休闲基地和商务会议基地建设五年行动打算 客容量将达到4640万人,其中4640万用科学记数法可表示为5. 使二次根式2有意义的x 的取值范畴是 A . B . C . D . A . x 2 B . x 2C . x 26. 如图是由4来个立方块组成的立体图形,它的俯视图是7.以下调查适合作普查的是丨A . 了解在校大学生的要紧娱乐方式.B . 了解宁波市居民对废电池的处理情形. C. 日光灯管厂要检测一批灯管的使用寿命.D. 对甲型H1N1 x 2的解为坐标的点(x, y )在平面直角坐标系中的位置是〔x 1那么 AED 的度数是 一个不透亮的布袋装有 从布袋里摸出1个球, 11A .B .-2 3 2个红色,1个白色,1个黑色,搅匀后 〕 2019年,宁波市接待游〔 〕9A . 0.464 1098B . 4.64 10C . 4.6410746.4 107?,估量到 (A)流感患者的同一车厢乘客进行医学检查.&以方程组A .第一象限B .第二象限C .第三象限D .第四象限9.如图,1、4是五边形ABCD 的外角,且 12 3A . 1100B . 10801050 D . 1000(D)2215.甲、乙、丙三名射击手的20次测试的平均成绩差不多上8环,方差分不是S 甲 0.4(环)2 2 2 2s 已3.2(环),s 丙 1.6(环),那么成绩比较稳固的是______________________________________________________________ .〔填甲,乙,丙中的一 个〕 16. 如图,在坡屋顶的设计图中, AB=AC ,屋顶的宽度I 为10米,坡角a 这35° 那么坡屋顶的高度 h为10、反比例函数ky —在第一象限的图象如下图,那么 x2 C .3 D . 4ABCD 中,对角线 AC 、BD 相交于点 的值可能是〔A . 1B . 11.如图,菱形连结OM 、ON 、MN ,那么以下表达正确的选项是 △ AOM^A AON 差不多上等边三角形 四边形 四边形 O , 〔M 、N 分不是边 〕A .B .C .D .四边形 MBON AMON MBCO 和四边形 和四边形 和四边形 MODN ABCD NDCO 差不多上菱形 差不多上位似图形差不多上等腰梯形 12.如图,点A 、B 、C 、D 在一次函数 y 2x m 的图象上,它们的横坐标依次为-1、1、 阴影部分的面积这和是2,分不过这些点作 〔〕 x 轴与y 轴的垂线,那么图中 C . 3(m 1)D .3(m 2) 2-I 0(5512®13. 填空题〔每题 3分,共 实数8的立方根是— 18分〕14.不等式组 X 6 0的解是x 2 0(第9题) I 第1!题AB 、AD 的中点,_________________________________________________________米.〔结果精确到0. 1米〕17. 如图,梯形ABCD 中,AD// BC / B=70°,Z C=40°, 作DE// AB交BC于点E,假设AD=3BC=1Q那么CD的长是_18. ___________________________________ 如图,O A、O B的圆心A、B在直线l上,两圆半径都为1cm,开始时圆心距AB=4cm,现O A、O B同时沿直线l以每秒2cm的速度相向移动,那么当两圆相切时,O A运动的时刻为_______ 秒三、解答题〔第19〜21题各题6分,第22题20分,第23〜24题各题8分,第25题10分,第26题12分,共66分〕19•先化简,再求值:(a 2)(a 2) a(a 2),其中a 12x 220. 如图,点A , B在数轴上,它们所对应的数分不是-4, ,且点A、B到原点的距3x 5离相等,求x的值AB-4 0(第20題)21. 〔1〕如图1,把等边三角形的各边三等分,分不以居中那条线段为一边向外作等边三角形,并去掉居中的那条线段,得到一个六角星,那么那个六角星的边数是_________ 〔2〕如图2 ,在5 5的网格中有一个正方形,把正方形的各边三等分,分不以居中那条线段为一边向外作正方形,去掉居中的那条线段,请把得到的图画在图3中,并写出那个图形的边数〔3〕现有一个正五边形,把正五边形的各边三等分,分不以居中的那条线段为边向外作正五边形,并去掉居中的那条线段,得到的图的边数是多少?(图2〉(图3〉(第21题)22. 2018年宁波市初中毕业生升学体育集中测试项目包括体能〔耐力〕类项目和速度〔跳跃、力量、技能〕类项目.体能类项目从游泳和中长跑中任选一项,速度类项目从立定跳远、50米跑等6项中任选一项.某校九年级共有200名女生在速度类项目中选择了立定跳远,现从这200名女生中随机抽取10名女生进行测试,下面是她们测试结果的条形图. 〔另附:九年级女生立定跳远的计分标准〕(1) 求这10名女生在本次测试中,立定跳远距离的极差,立定跳远得分的众数和平均数.成绩(cm)1971S9173由4 -1分值(分)10987号九年级女生立定跳远计分标准(注:不到上酿上]按下處计分,謁分为10奇)(2) 请你估量该校选择立定跳远的200名女生得总分值的人数.223.如图抛物线 y ax 5x 4a 与x 轴相交于点A 、E ,且过点c 〔5,4〕. (1) 求a 的值和该抛物线顶点 P 的坐标.(2) 请你设计一种平移的方法,使平移后抛物线的顶点落要第二象限,并写出平移后抛物线 的解析式.24. :如图,O O 的直径AB 与弦CD 相交于E,弧 的延长线相交于点 F . (1)求证:CD// BF .3⑵连结BC,假设O O 的半径为4,cos /BCD —,求线段AD CD 的长.425. 2009年4月7日,国务院公布了 ?医药卫生体制改革近期重点实施方案〔 2018〜2018〕 ?,某市政府决定 2018年投入6000万元用于改善医疗卫生服务,比例 2018年增加了 1250 万元•投入资金的服务对象包括”需方"〔患者等〕和”供方"〔医疗卫生气构等〕,估量2018年投入”需方"的资金将比 2018年提高30%,投入”供方"的资金将比 2018年提高 20%. 〔1〕该市政府2018年投入改善医疗卫生服务的资金是多少万元? 〔2〕该市政府2018年投入”需方'‘和”供方"的资金是多少万元? 〔3〕该市政府估量2018年将有7260万元投入改善医疗卫生服务, 假设从2018〜2018年每年的资金投入按相同的增长率递增,求2018〜2018年的年增长率.26. 如图1,在平面直角坐标系中, O 为坐标原点,点 A 的坐 标为〔—8, 0〕,直线BC 通过点B 〔— 8, 6〕,将四边形OABC 绕点O 按顺时针方向旋转a 度得到四边形 OA ' B ' C ',现在 声母OA 、直线B ' C'分不与直线 BC 相交于P 、Q . 〔1〕四边形的形状是 ____________,当a =90。
宁波市 初中毕业生学业考试数 学 试 题满分150分,考试时间120分钟一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求) 1. 6的相反数是A. -6B. 61C. 61- D. 6 2. 下列计算正确的是A. 633a a a =+B. 33=-a aC. 523)(a a = D. 32a a a =⋅3. 宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学计数法表示为A. 0.845×1010元B. 84.5×108元C. 8.45×109元D. 8.45×1010元 4. 使二次根式1-x 有意义的x 的取值范围是A. 1≠xB. 1>xC. 1≤xD. 1≥x 5. 如图所示的几何体的主视图为6. 一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外都相同。
从中任意摸出一个球,是红球的概率为 A.61 B. 31 C. 21 D. 327. 某班10名学生校服尺寸与对应人数如下表所示:尺寸(cm ) 160 165 170 175 180 学生人数(人)13222则这10名学生校服尺寸的众数和中位数分别为A. 165cm ,165cmB. 165cm ,170cmC. 170cm ,165cmD. 170cm ,170cm 8. 如图,在△ABC 中,∠ACB=90°,CD ∥AB ,∠ACD=40°,则∠B 的度数为A. 40°B. 50°C. 60°D. 70°9. 如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为A. 30πcm 2B. 48πcm 2C. 60πcm 2D. 80πcm 2 10. 能说明“对于任何实数a ,a a ->”是假命题的一个反例可以是A. 2-=aB. 31=a C. 1=a D. 2=a 11. 已知函数122--=ax ax y (a 是常数,a ≠0),下列结论正确的是A. 当1=a 时,函数图象过点(-1,1)B. 当2-=a 时,函数图象与x 轴没有交点C. 若0>a ,则当1≥x 时,y 随x 的增大而减小D. 若0<a ,则当1≤x 时,y 随x 的增大而增大12. 如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为A. 4S 1B. 4S 2C. 4S 2+S 3D. 3S 1+4S 3 二、填空题(每小题4分,共24分) 13. 实数 -27的立方根是 ▲ 14. 分解因式:xy x -2= ▲15. 下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,……,按此规律,图案⑦需 ▲ 根火柴棒16. 如图,在一次数学课外实践活动中,小聪在距离旗杆10m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1m ,则旗杆高BC 为 ▲ m (结果保留根号)17. 如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分面积为 ▲ 18. 如图,点A 为函数)0(9>=x x y 图象上一点,连结OA ,交函数)0(1>=x xy 的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为 ▲三、解答题(本大题有8小题,共78分)19.(本题6分)先化简,再求值:)3()1)(1(x x x x -+-+,其中2=x20.(本题8分)下列3×3网格都是由9个相同小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形;(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形。
2020年浙江省宁波市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A .15B .25C .625 D .1925 2.一个圆柱的侧面展开图是相邻边长分别为10和16的矩形,则该圆柱的底面圆半径是( ) A .π5 B .π8 C .π5或π8 D .π10或π163.下列图形中,既是中心对称图形,又是轴对称图形的是( ) A .等腰三角形 B .平行四边形 C .等边三角形 D .矩形 4.下列图形中,一定是轴对称图形的是( )A .直角三角形B .平行四边形C .梯形D .等腰三角形5.若2212m nn x y--与13218m m x y --是同类项,则2m n +值为( )A . -4B . 163-C .-2D .103-6.下列扑克牌中,以牌的对角线交点为旋转中心,旋转180O 后能与原图形重合的有( )A .4张B .3张C .2张7.下列说法中正确的个数有( ) ①全等i 角形对应角所对的边是对应边,对应边所夹的角是对应角②全等三角形对应边所对的角是对应角,对应边所夹的角是对应角 ③全等三角形中的公共边是对应边,公共角是对应角,对顶角是对应角 ④两个全等三角形中,相等的边是对应边,相等的角是对应角 A .1个 B 2个C .3个D .4个8.800 m 跑道上有两人在练长跑,甲的速度为320 m /min ,乙的速度为280 m /min ,两人同时同地同向出发t (min )后,甲、乙两人第一次相遇,则t 等于( )A .10 minB .15 minC .20 minD .30 min9.计算 18÷6÷2 时,下列各式中错误的是( )A .111862⨯⨯B . 18÷ (6÷2)C .18÷(6×2)D .(l8÷6)÷2二、填空题10.已知等腰直角三角形的外接圆半径为 5,则其内切圆的半径为 .11.如图,梯形 ABCD 中,AB ∥CD ,且 AB=2CD ,E 、F 分别是 AB 、BC 的中点,EF 与BD 相交于点 M. 若 DB=9,则BM= .解答题12.x 与 2 的和不大于 4,用不等式表示为 ,它的解集为 . 13.若某数的一个平方根是54,则这个数的另一个平方根是 . 14.在Rt △ABC 中,∠C=90°,∠A=41°,则∠B= .15.如图,当∠1 与∠3满足 时,1l ∥3l ;当2l ∥3l 时,∠2 与∠3 满足的关系式为 .16.一个搬运小组有 x 名工人,平均每名工人每小时搬运货物 1 吨、要在 14 小时内将y 吨货搬完.如果增加 2 名工人,恰好提前 2 小时完成任务;如果减少 4名工人,就要推迟10 小时完成. 则x= ,y= .17.下列方程组中,其中是二元一次方程组的有 (填序号). ①235571x y x y +=⎧⎨--=⎩,②123x y y x ⎧+=⎪⎨⎪-=⎩,③32027x y y z -=⎧⎨+=⎩,④304x y -=⎧⎨=⎩18.“红星”商场对商品进行清仓处理,全场商品一律八折,小亮在该商场购买了一双运动鞋,比按原价购买该鞋节省了16元,他购买该鞋实际用 元.19.某教室要换新桌椅,教室中共有(1n +)行桌椅,其中每行 7 人的有n 行,另有一行有 8 人,共需 套新桌椅;当6n =时,共需 套新桌椅. 20.比较大小:(1)13- 0;(2) 0.05 -1; (3)23- -0.6.三、解答题21.一个二次函数,其图象由抛物线212y x =向右平移 1 个单位,再向上平移k (k>0)个单位得到,平移后图象过点(2,1),求k 的值.22.如图,1l 反映了某个体服装老板的销售收入与销售量之间的关系,2l 反映了该老板的销售成本与销售量的关系,根据图象回答下列问题:(1)分别求出1l 、2l 对应的函数解析式(不要求写出自变量的取值范围); (2)当销售量为30件时,销售收入为 元,销售成本为 元; (3)当销售量为60件时,销售收入为 元,销售成本为 元; (4)当销售量为 件时,销售收入等于销售成本;(5)当销售量 件时,该老板赢利.当销售量 件时.该老板亏本.23.某礼堂共有30排座位,第1排共有20个座位,后面每一排比前一排多2个座位,则 (1)第5排、第10排分别有几个座位? (2)若某一排有54个座位,则应是第几排?(3)写出每排的座位数m 与这排的排数n 之间的关系式,并指出这个问题中的常量和变量.24.如图,AB ∥CD ,∠ABE=135°,∠EDC=30°,求∠BED 的度数.25.“5·12”汶川大地震后,灾区急需大量帐篷,某服装厂原有 4条成衣生产线和 5条童装生产线,工厂决定转产,计划用了天时间赶制 1000顶帐篷支援灾区,若启用 1条成衣生产线和 2条童装生产线,一天可以生产帐篷105顶;若启用 2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?26.为加快西都大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程. 如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过 6 个月才能完成. 现在甲、乙两队先共同施工 4个月,剩下的由乙队单独施工,则刚好如期完成. 问原来规定修好这条公路需多长时间?27.轮船在静水中每小时航行 a(m),水流速度是每小时 b(km),则该轮船在顺水中航行s(km)需要多少时间?sa b28.如图所示,两个大小不同的圆可以组成以下五种图形,请找出每个匿形的对称轴,并说说它们的对称轴有什么共同的特点.29.仿照1111123434==-⨯的方法计算:1111111112612203042567290++++++++.91030.据报道,我省农作物秸杆的资源巨大,但合理利用量十分有限,2006年的利用率只有30%,大部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2008年的利用率提高到60%,求每年的增长率.(取2≈1.41)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.D4.D5.A6.C7.D8.C9.B二、填空题10.511.312.x+2≤4,x ≤213.54-14. 49°15.∠l+∠3=180°,∠2+∠3=180°16.10,14417.①③18.6419.78n +,50 20.<,>,<三、解答题 21.∵抛物线12y x =向右平移 1 个单位,再向上平移k 个单位,, ∴2(1)y x k =--+,又∵过点(2,1),∴21(21)12k -+=,解得12k =22.(1)1l :100t x =,2l :751000t x =+; (2)3000,3250; (3)6000,5500; (4)40;(5)大于40,小于4023.(1)28个,38个;(2)18排;(3)m=20+2(n-1)(1≤n ≤30且n 为正整数);常量为20,2,1;变量为m ,n24.75°25.(1)凌每条成衣生产线和童装生产线平均每天生产帐篷分别为x 顶、y 顶.210523178x y x y +=⎧⎨+=⎩,解这个方程组4132x y =⎧⎨=⎩,经检验,这个解是原方程组的解,且符合题意. 答:每条成衣生产线和童装生产线平均每天生产帐篷分别为 41顶、32顶.(2)由 3×(4×41+5×32)=972<1000,可知即使工厂满负荷全面转产也不可能如期完成任务. 作为厂长可以安排加班生产、改进技术等,进一步挖掘自已厂的生产潜力,或动员其他厂家支援,想办法尽早完成生产任务,为灾区人民多作贡献.26.12 个月27.sa b+28. 对称轴均为过两圆圆心的直线29.91030. 解:设我省每年产出的农作物秸杆总量为a ,合理利用量的增长率是x ,由题意得: 30%a (1+x )2=60%a ,即(1+x )2=2∴x 1≈0.41,x 2≈-2.41(不合题意舍去),∴x ≈0.41 即我省每年秸秆合理利用量的增长率约为41% .。
2020年浙江省宁波市中考数学试卷一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)﹣3的相反数为( )A .﹣3B .−13C .13D .32.(4分)下列计算正确的是( )A .a 3•a 2=a 6B .(a 3)2=a 5C .a 6÷a 3=a 3D .a 2+a 3=a 53.(4分)2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为( )A .1.12×108B .1.12×109C .1.12×109D .0.112×10104.(4分)如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是( )A .B .C .D .5.(4分)一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为( )A .14B .13C .12D .23 6.(4分)二次根式√x −2中字母x 的取值范围是( )A .x >2B .x ≠2C .x ≥2D .x ≤27.(4分)如图,在Rt △ABC 中,∠ACB =90°,CD 为中线,延长CB 至点E ,使BE =BC ,连结DE ,F 为DE 中点,连结BF .若AC =8,BC =6,则BF 的长为( )A .2B .2.5C .3D .48.(4分)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳子长y 尺,那么可列方程组为( )A .{y =x +4.50.5y =x −1B .{y =x +4.5y =2x −1C .{y =x −4.50.5y =x +1D .{y =x −4.5y =2x −19.(4分)如图,二次函数y =ax 2+bx +c (a >0)的图象与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,它的对称轴为直线x =﹣1.则下列选项中正确的是( )A .abc <0B .4ac ﹣b 2>0C .c ﹣a >0D .当x =﹣n 2﹣2(n 为实数)时,y ≥c10.(4分)△BDE 和△FGH 是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC 内.若求五边形DECHF 的周长,则只需知道( )A .△ABC 的周长B .△AFH 的周长C.四边形FBGH的周长D.四边形ADEC的周长二、填空题(每小题5分,共30分)11.(5分)实数8的立方根是.12.(5分)分解因式:2a2﹣18=.13.(5分)今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙x454542S2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.14.(5分)如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中AB̂的长为cm (结果保留π).15.(5分)如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O 的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为.16.(5分)如图,经过原点O的直线与反比例函数y=ax(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=bx(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为,ba的值为.三、解答题(本大题有8小题,共80分)17.(8分)(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).18.(8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)19.(8分)图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)20.(10分)如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.21.(10分)某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?22.(10分)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?23.(12分)【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=12∠BAD,AE=2,DF=5,求菱形ABCD的边长.24.(14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,AD̂=BD̂,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.2020年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)﹣3的相反数为()A.﹣3B.−13C.13D.3【解答】解:﹣3的相反数是3.故选:D.2.(4分)下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.a6÷a3=a3D.a2+a3=a5【解答】解:A、a3•a2=a5,故此选项错误;B、(a3)2=a6,故此选项错误;C、a6÷a3=a3,正确;D、a2+a3,不是同类项,不能合并,故此选项错误;故选:C.3.(4分)2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为()A.1.12×108B.1.12×109C.1.12×109D.0.112×1010【解答】解:1120000000=1.12×109,故选:B.4.(4分)如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A.B.C .D .【解答】解:根据主视图的意义可知,从正面看物体所得到的图形,选项B 符合题意, 故选:B .5.(4分)一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为( )A .14B .13C .12D .23 【解答】解:从袋中任意摸出一个球是红球的概率=44+2=23. 故选:D .6.(4分)二次根式√x −2中字母x 的取值范围是( )A .x >2B .x ≠2C .x ≥2D .x ≤2【解答】解:由题意得,x ﹣2≥0,解得x ≥2.故选:C .7.(4分)如图,在Rt △ABC 中,∠ACB =90°,CD 为中线,延长CB 至点E ,使BE =BC ,连结DE ,F 为DE 中点,连结BF .若AC =8,BC =6,则BF 的长为( )A .2B .2.5C .3D .4【解答】解:∵在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,∴AB =√AC 2+BC 2=√82+62=10.又∵CD 为中线,∴CD =12AB =5.∵F 为DE 中点,BE =BC 即点B 是EC 的中点,∴BF 是△CDE 的中位线,则BF =12CD =2.5.故选:B .8.(4分)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳子长y 尺,那么可列方程组为( )A .{y =x +4.50.5y =x −1B .{y =x +4.5y =2x −1C .{y =x −4.50.5y =x +1D .{y =x −4.5y =2x −1【解答】解:设木条长x 尺,绳子长y 尺,那么可列方程组为:{y =x +4.50.5y =x −1. 故选:A .9.(4分)如图,二次函数y =ax 2+bx +c (a >0)的图象与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,它的对称轴为直线x =﹣1.则下列选项中正确的是( )A .abc <0B .4ac ﹣b 2>0C .c ﹣a >0D .当x =﹣n 2﹣2(n 为实数)时,y ≥c【解答】解:由图象开口向上,可知a >0,与y 轴的交点在x 轴的上方,可知c >0,又对称轴方程为x =﹣1,所以−b 2a <0,所以b >0,∴abc >0,故A 错误∵;∴一次函数y =ax 2+bx +c (a >0)的图象与x 轴交于A ,B 两点,∴b2﹣4ac>0,∴4ac﹣b2<0,故B错误;∵−b2a=−1,∴b=2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣2a+c<0,∴c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,∵a>0,n2≥0,n2+2>0,∴y=an2(n2+2)+c≥c,故D正确,故选:D.10.(4分)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【解答】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.二、填空题(每小题5分,共30分)11.(5分)实数8的立方根是2.【解答】解:实数8的立方根是:3=2.√8故答案为:2.12.(5分)分解因式:2a2﹣18=2(a+3)(a﹣3).【解答】解:2a2﹣18=2(a2﹣9)=2(a+3)(a﹣3).故答案为:2(a+3)(a﹣3).13.(5分)今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙x454542S2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲.【解答】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.̂的长为18π14.(5分)如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中ABcm(结果保留π).【解答】解:∵折扇的骨柄长为27cm ,折扇张开的角度为120°, ∴AB̂的长=120⋅π×27180=18π(cm ), 故答案为:18π.15.(5分)如图,⊙O 的半径OA =2,B 是⊙O 上的动点(不与点A 重合),过点B 作⊙O 的切线BC ,BC =OA ,连结OC ,AC .当△OAC 是直角三角形时,其斜边长为 2√3 .【解答】解:∵BC 是⊙O 的切线, ∴∠OBC =90°, ∵BC =OA , ∴OB =BC =2,∴△OBC 是等腰直角三角形, ∴∠BCO =45°, ∴∠ACO ≤45°,∵当△OAC 是直角三角形时,①∠AOC =90°,连接OB , ∴OC =√2OB =2√2,∴AC =√OA 2+OC 2=√22+(2√2)2=2√3;②当△OAC 是直角三角形时,①∠OAC =90°,此时,点A ,B 重合(不合题意舍去), 故答案为:2√3.16.(5分)如图,经过原点O的直线与反比例函数y=ax(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=bx(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为24,b a 的值为−13.【解答】解:如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x 轴于K.由题意A,D关于原点对称,∴A,D的纵坐标的绝对值相等,∵AE∥CD,∴E,C的纵坐标的绝对值相等,∵E,C在反比例函数y=bx的图象上,∴E,C关于原点对称,∴E,O,C共线,∵OE=OC,OA=OD,∴四边形ACDE是平行四边形,∴S △ADE =S △ADC =S 五边形ABCDE ﹣S 四边形ABCD =56﹣32=24, ∴S △AOE =S △DEO =12, ∴12a −12b =12,∴a ﹣b =24,∵S △AOC =S △AOB =12, ∴BC ∥AD , ∴BC AD=TB TA,∵S △ACB =32﹣24=8,∴S △ADC :S △ABC =24:8=1:3, ∴BC :AD =1:3,∴TB :TA =1:3,设BT =a ,则AT =3a ,AK =TK =1.5k ,BK =0.5k , ∴AK :BK =3:1, ∴S △AOK S △BKO =12a −12b =13,∴a b=−13. 故答案为24,−13.三、解答题(本大题有8小题,共80分) 17.(8分)(1)计算:(a +1)2+a (2﹣a ). (2)解不等式:3x ﹣5<2(2+3x ). 【解答】解:(1)(a +1)2+a (2﹣a ) =a 2+2a +1+2a ﹣a 2 =4a +1;(2)3x ﹣5<2(2+3x ) 3x ﹣5<4+6x , 移项得:3x ﹣6x <4+5,合并同类项,系数化1得:x >﹣3.18.(8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【解答】解:(1)轴对称图形如图1所示.(2)中心对称图形如图2所示.19.(8分)图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)【解答】解:(1)过点A作AH⊥BC于点H,∵AB=AC,∴BH=HC,在Rt△ABH中,∠B=47°,AB=50,∴BH=AB cos B=50cos47°≈50×0.68=34,∴BC=2BH=68cm.(2)在Rt△ABH中,∴AH=AB sin B=50sin47°≈50×0.73=36.5,∴36.5>30,∴当车位锁上锁时,这辆汽车不能进入该车位.20.(10分)如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.【解答】解:(1)把B(1,0)代入y=ax2+4x﹣3,得0=a+4﹣3,解得a=﹣1,∴y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴A(2,1),∵对称轴x=1,B,C关于x=2对称,∴C(3,0),∴当y>0时,1<x<3.(2)∵D(0,﹣3),∴点D平移的A,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y=﹣(x﹣4)2+5.21.(10分)某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?【解答】解:(1)30÷15%=200(人),200﹣30﹣80﹣40=50(人),直方图如图所示:(2)“良好”所对应的扇形圆心角的度数=360°×80200=144°.(3)这次测试成绩的中位数是良好.(4)1500×40200=300(人),答:估计该校获得优秀的学生有300人.22.(10分)A ,B 两地相距200千米.早上8:00货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B 地.两辆货车离开各自出发地的路程y (千米)与时间x (小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式. (2)因实际需要,要求货车乙到达B 地的时间比货车甲按原来的速度正常到达B 地的时间最多晚1个小时,问货车乙返回B 地的速度至少为每小时多少千米?【解答】解:(1)设函数表达式为y =kx +b (k ≠0), 把(1.6,0),(2.6,80)代入y =kx +b ,得{0=1.6k +b 80=2.6k +b ,解得:{k =80b =−128,∴y 关于x 的函数表达式为y =80x ﹣128(1.6≤x ≤3.1); (2)当y =200﹣80=120时, 120=80x ﹣128, 解得x =3.1,货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时), 设货车乙返回B 地的车速为v 千米/小时, ∴1.6v ≥120,解得v ≥75.答:货车乙返回B 地的车速至少为75千米/小时. 23.(12分)【基础巩固】(1)如图1,在△ABC 中,D 为AB 上一点,∠ACD =∠B .求证:AC 2=AD •AB . 【尝试应用】(2)如图2,在▱ABCD 中,E 为BC 上一点,F 为CD 延长线上一点,∠BFE =∠A .若BF =4,BE =3,求AD 的长. 【拓展提高】(3)如图3,在菱形ABCD 中,E 是AB 上一点,F 是△ABC 内一点,EF ∥AC ,AC =2EF ,∠EDF =12∠BAD ,AE =2,DF =5,求菱形ABCD 的边长.【解答】解:(1)证明:∵∠ACD =∠B ,∠A =∠A , ∴△ADC ∽△ACB , ∴AD AC=AC AB,∴AC 2=AD •AB .(2)∵四边形ABCD 是平行四边形, ∴AD =BC ,∠A =∠C , 又∵∠BFE =∠A , ∴∠BFE =∠C , 又∵∠FBE =∠CBF , ∴△BFE ∽△BCF , ∴BF BC=BE BF,∴BF 2=BE •BC ,∴BC =BF 2BE =423=163,∴AD =163. (3)如图,分别延长EF ,DC 相交于点G ,∵四边形ABCD 是菱形,∴AB ∥DC ,∠BAC =12∠BAD ,∵AC ∥EF ,∴四边形AEGC 为平行四边形,∴AC =EG ,CG =AE ,∠EAC =∠G ,∵∠EDF =12∠BAD ,∴∠EDF =∠BAC ,∴∠EDF =∠G ,又∵∠DEF =∠GED ,∴△EDF ∽△EGD ,∴ED EG =EF DE ,∴DE 2=EF •EG ,又∵EG =AC =2EF ,∴DE 2=2EF 2,∴DE =√2EF ,又∵DG DF =DE EF ,∴DG =√2DF =5√2,∴DC =DG ﹣CG =5√2−2.24.(14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,AD̂=BD̂,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC 的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.【解答】解:(1)∵BE平分∠ABC,CE平分∠ACD,∴∠E=∠ECD﹣∠EBD=12(∠ACD﹣∠ABC)=12∠A=12α,(2)如图1,延长BC到点T,∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,̂=BD̂,∵AD∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠F AD,∴∠BEC=∠F AD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED +∠DAE =90°,∴∠AED =∠DAE =45°,②如图3,过点A 作AG ⊥BE 于点G ,过点F 作FM ⊥CE 于点M ,∵AC 是⊙O 的直径,∴∠ABC =90°,∵BE 平分∠ABC ,∴∠F AC =∠EBC =12∠ABC =45°,∵∠AED =45°,∴∠AED =∠F AC ,∵∠FED =∠F AD ,∴∠AED ﹣∠FED =∠F AC ﹣∠F AD ,∴∠AEG =∠CAD ,∵∠EGA =∠ADC =90°,∴△EGA ∽△ADC ,∴AE AC =AG CD ,∵在Rt △ABG 中,AG =√22AB =4√2,在Rt △ADE 中,AE =√2AD ,∴AD AC =45, 在Rt △ADC 中,AD 2+DC 2=AC 2,∴设AD =4x ,AC =5x ,则有(4x )2+52=(5x )2,∴x =53,∴ED =AD =203,∴CE=CD+DE=35 3,∵∠BEC=∠FCE,∴FC=FE,∵FM⊥CE,∴EM=12CE=356,∴DM=DE﹣EM=5 6,∵∠FDM=45°,∴FM=DM=5 6,∴S△DEF=12DE•FM=259.。
2020年浙江省宁波市中考数学试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)在店,1, 0, -2这四个数中,为无理数的是()乙A. A/3B. —C. 0D. - 2122.(4分)下列计算正确的是()A. a2+a -a'B. (2a) MaC. a— a-aD. (a~) -a53.(4分)2020年2月13 0,宁波舟山港45万吨原油码头首次挂靠全球最大油轮-- “泰欧”轮,其中45万吨用科学记数法表示为()A. 0.45X10"吨B. 4. 5X105吨 c. 45乂10」吨口. 4. 5X10,吨4.(4分)要使二次根式G有意义,则x的取值范围是()A. x#3B. x>3C. xW3D. x235.(4分)如图所示的几何体的俯视图为()声^^见方向6.(4分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率7.(4分)已知直线m〃n,将一块含30°角的直角三角板ABC按如图方式放置(NABC=30° ),其中A, B两点分别落在直线叫n上,若Nl=20° ,则N2的度数为()A. 20°B. 30°C. 45°D. 50°8.(4分)若一组数据2, 3, x, 5, 7的众数为7,则这组数据的中位数为()A. 2B. 3C. 5D. 79.(4 分)如图,在RtZiABC 中,ZA=90° , BC=2五,以BC 的中点0为圆心分别与AB, AC相切于D, E两点,则前的长为()A. 2LB.—C. JID. 2兀 4 210.(4分)抛物线y=x2-2x+m2+2 (m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限11. (4分)如图,四边形ABCD是边长为6的正方形,点E在边AB 上,BE=4,过点E作EF〃BC,分别交BD, CD于G, F两点.若M, N 分别是DG, CE的中点,则MN的长为()A. 3B. 273C. V13D- 412. (4分)一个大矩形按如图方式分割成九个小矩形,且只有标号 为①和②的两个小矩形为正方形,在满足条件的所有分割中.若知 道九个小矩形中n 个小矩形的周长,就一定能算出这个大矩形的面 积,则n 的最小值是(A. 3B. 4C. 5D. 6二、填空题(每题4分,满分24分,将答案填在答题纸上)13. (4分)实数-8的立方根是.14. (4分)分式方程2二反的解是 3-x 2 -15. (4分)如图,用同样大小的 黑色棋子按如图所示的 规律摆放: 则第⑦个图案有 个黑色棋子.• • • ・ • • ••• ••• • ♦ ・ • • • ① ② ③ ®16. (4分)如图,一名滑雪运动员沿着倾斜角为34。
2020年浙江省宁波市中考数学试卷一、选择题(本大题共10小题,共40.0分) 1. −3的相反数是( )A. −3B. −13 C. 13D. 32. 下列计算正确的是( )A. a 3⋅a 2=a 6B. (a 3)2=a 5C. a 6÷a 3=a 3D. a 2+a 3=a 53. 2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为( )A. 1.12×108B. 1.12×109C. 1.12×109D. 0.112×10104. 如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是( )A.B.C.5. 一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为( )A. 14B. 13C. 12D. 236. 在二次根式√x −2中,字母x 的取值范围是( )A. x >2B. x <2C. x ≥2D. x ≤2 7. 如图,在Rt △ABC 中,∠ACB =90°,CD 为中线,延长CB 至点E ,使BE =BC ,连结DE ,F 为DE 中点,连结BF.若AC =8,BC =6,则BF 的长为( ) A. 2 B. 2.5 C. 3 D. 48. 我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳子长y 尺,那么可列方程组为( )A. {y =x +4.50.5y =x −1B. {y =x +4.5y =2x −1C. {y =x −4.50.5y =x +1D. {y =x −4.5y =2x −19. 如图,二次函数y =ax 2+bx +c(a >0)的图象与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,它的对称轴为直线x =−1.则下列选项中正确的是( )A. abc <0B. 4ac −b 2>0C. c −a >0D. 当x =−n 2−2(n 为实数)时,y ≥c10. △BDE 和△FGH 是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC 内.若求五边形DECHF 的周长,则只需知道( )A. △ABC的周长B. △AFH的周长C. 四边形FBGH的周长D. 四边形ADEC的周长二、填空题(本大题共6小题,共30.0分)11.实数8的立方根是______.12.分解因式:2a2−18=______.13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x−(22甲乙丙x−454542S2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是______.14.如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中AB⏜的长为______cm(结果保留π).15.如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为______.(a>0)16.如图,经过原点O的直线与反比例函数y=ax的图象交于A,D两点(点A在第一象限),点B,C,(b<0)的图象上,AB//y轴,E在反比例函数y=bxAE//CD//x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a−b的值为______,b的值为a______.三、计算题(本大题共1小题,共10.0分)17.A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?四、解答题(本大题共7小题,共70.0分)18.(1)计算:(a+1)2+a(2−a).(2)解不等式:3x−5<2(2+3x).19.图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)20.图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)21.如图,在平面直角坐标系中,二次函数y=ax2+4x−3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.22.某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?23.【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD⋅AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF//AC,AC=2EF,∠EDF=1∠BAD,AE=2,DF=5,求菱形ABCD的边长.224.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,AD⏜=BD⏜,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC 的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.答案和解析1.【答案】D【解析】解:−3的相反数是3.故选:D.根据只有符号不同的两个数互为相反数解答.本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.【答案】C【解析】解:A、a3⋅a2=a5,故此选项错误;B、(a3)2=a6,故此选项错误;C、a6÷a3=a3,正确;D、a2+a3,不是同类项,不能合并,故此选项错误;故选:C.直接利用同底数幂的乘除运算法则、幂的乘方运算法则、合并同类项法则分别化简得出答案.此题主要考查了同底数幂的乘除运算、幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.3.【答案】B【解析】解:1120000000=1.12×109,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:根据主视图的意义可知,从正面看物体所得到的图形,选项B符合题意,故选:B.根据主视图的意义和画法可以得出答案.考查简单几何体的三视图的画法,主视图就是从正面看物体所得到的图形.5.【答案】D【解析】解:从袋中任意摸出一个球是红球的概率=44+2=23.故选:D.根据概率公式计算.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.6.【答案】C【解析】解:由题意得,x−2≥0,解得x≥2.故选:C.根据被开方数大于等于0列不等式求解即可.本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.7.【答案】B【解析】解:∵在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,∴AB =√AC 2+BC 2=√82+62=10. 又∵CD 为中线, ∴CD =12AB =5.∵F 为DE 中点,BE =BC 即点B 是EC 的中点, ∴BF 是△CDE 的中位线,则BF =12CD =2.5.故选:B .利用勾股定理求得AB =10;然后由直角三角形斜边上的中线等于斜边的一半求得CD 的长度;结合题意知线段BF 是△CDE 的中位线,则BF =12CD .本题主要考查了勾股定理,三角形中位线定理,直角三角形斜边上的中线,此题的突破口是推知线段CD 的长度和线段BF 是△CDE 的中位线.8.【答案】A【解析】解:设木条长x 尺,绳子长y 尺,那么可列方程组为: {y =x +4.50.5y =x −1. 故选:A .直接利用“绳长=木条+4.5;12绳子=木条−1”分别得出等式求出答案.此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.9.【答案】D【解析】解:由图象开口向上,可知a >0, 与y 轴的交点在x 轴的上方,可知c >0,又对称轴方程为x =−1,所以−b 2a <0,所以b >0,∴abc >0,故A 错误∵;∴一次函数y =ax 2+bx +c(a >0)的图象与x 轴交于A ,B 两点, ∴b 2−4ac >0,∴4ac −b 2<0,故B 错误; ∵−b2a =−1,∴b =2a ,∵当x =−1时,y =a −b +c <0, ∴a −2a +c <0,∴c −a <0,故C 错误; 当x =−n 2−2(n 为实数)时,y =ax 2+bx +c =a(−n 2−2)+b(−n 2−2)=an 2(n 2+2)+c,∵a>0,n2≥0,n2+2>0,∴y=an2(n2+2)+c≥c,故D正确,故选:D.由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,根据对称轴方程得到b>0,于是得到abc>0,故A错误;根据一次函数y=ax2+bx+c(a>0)的图象与x轴的交点,得到b2−4ac>0,求得4ac−b2<0,故B错误;根据对称轴方程得到b=2a,当x=−1时,y=a−b+c<0,于是得到c−a<0,故C错误;当x=−n2−2(n为实数)时,代入解析式得到y=ax2+bx+c=a(−n2−2)+b(−n2−2)=an2(n2+2)+c,于是得到y=an2(n2+2)+c≥c,故D正确.本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.10.【答案】A【解析】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF 的周长=AB+BC,则可得出答案.本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.11.【答案】2【解析】解:实数8的立方根是:3=2.√8故答案为:2.根据立方根的性质和求法,求出实数8的立方根是多少即可.此题主要考查了立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.12.【答案】2(a+3)(a−3)【解析】解:2a2−18=2(a2−9)=2(a+3)(a−3).故答案为:2(a+3)(a−3).首先提取公因式2,再利用平方差公式分解因式得出答案.此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.13.【答案】甲【解析】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.14.【答案】18π【解析】解:∵折扇的骨柄长为27cm,折扇张开的角度为120°,=18π(cm),∴AB⏜的长=120⋅π×27180故答案为:18π.根据弧长公式即可得到结论.本题考查了弧长的计算,熟练掌握弧长公式是解题的关键.15.【答案】2√2或2√3【解析】解:∵BC是⊙O的切线,∴∠OBC=90°,∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°,∵当△OAC是直角三角形时,①∠AOC=90°,连接OB,∴OC=√2OB=2√2,∴AC=√OA2+OC2=√22+(2√2)2=2√3;②当∠OAC=90°时,点A与B重合,∴OC=2√2,综上所述,其斜边长为2√2或2√3,故答案为:2√2或2√3.当∠AOC=90°时,连接OB,根据切线的性质得到∠OBC=90°,根据勾股定理得到AC=√OA2+OC2=√22+(2√2)2=2√3;当∠OAC=90°时,点A与B重合,求得OC=2√2.本题考查了切线的性质.勾股定理,正确的理解题意是解题的关键.16.【答案】24 −13【解析】解:如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.由题意A,D关于原点对称,∴A,D的纵坐标的绝对值相等,∵AE//CD,∴E,C的纵坐标的绝对值相等,∵E,C在反比例函数y=bx的图象上,∴E,C关于原点对称,∴E,O,C共线,∵OE=OC,OA=OD,∴四边形ACDE是平行四边形,∴S△ADE=S△ADC=S五边形ABCDE −S四边形ABCD=56−32=24,∴S△AOE=S△DEO=12,∴12a−12b=12,∴a−b=24,∵S△AOC=S△AOB=12,∴BC//AD,∴BCAD =TBTA,∵S△ACB=32−24=8,∴S△ADC:S△ABC=24:8=1:3,∴BC:AD=1:3,∴TB:TA=1:3,设BT=a,则AT=3a,AK=TK=1.5k,BK=0.5k,∴AK:BK=3:1,∴S△AOKS△BKP =12a−12b=13,∴ab =−13.故答案为24,−13.如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.求出证明四边形ACDE是平行四边形,推出S△ADE=S△ADC=S五边形ABCDE−S四边形ABCD=56−32=24,推出S△AOE=S△DEO=12,可得12a−12b=12,推出a−b=24.再证明BC//AD ,证明AD =3BC ,推出AT =3BT ,再证明AK =3BK 即可解决问题.本题考查了反比例函数与一次函数的交点问题,平行四边形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考填空题中的压轴题.17.【答案】解:(1)设函数表达式为y =kx +b(k ≠0),把(1.6,0),(2.6,80)代入y =kx +b ,得{0=1.6k +b 80=2.6k +b, 解得:{k =80b =−128, ∴y 关于x 的函数表达式为y =80x −128(1.6≤x ≤3.1);(2)当y =200−80=120时,120=80x −128,解得x =3.1,货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5−3.1−0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时,∴1.6v ≥120,解得v ≥75.答:货车乙返回B 地的车速至少为75千米/小时.【解析】(1)由待定系数法可求出函数解析式;(2)根据图中的信息求出乙返回B 地所需的时间,由题意可列出不等式1.6v ≥120,解不等式即可得出答案.本题考查了一次函数的应用;待定系数法求函数的解析式,根据数形结合得到甲乙相应的速度以及相应的时间是解决本题的关键.18.【答案】解:(1)(a +1)2+a(2−a)=a 2+2a +1+2a −a 2=4a +1;(2)3x −5<2(2+3x)3x −5<4+6x ,移项得:3x −6x <4+5,合并同类项,系数化1得:x >−3.【解析】(1)直接利用单项式乘以多项式以及完全平方公式分别计算得出答案;(2)直接利用一元一次不等式的解法进而计算即可.此题主要考查了一元一次不等式的解法以及单项式乘以多项式,正确掌握相关运算法则是解题关键.19.【答案】解:(1)轴对称图形如图1所示.(2)中心对称图形如图2所示.【解析】(1)根据轴对称图形的定义画出图形即可(答案不唯一).(2)根据中心对称图形的定义画出图形即可(答案不唯一).本题考查利用旋转设计图案,利用轴对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.20.【答案】解:(1)过点A作AH⊥BC于点H,∵AB=AC,∴BH=HC,在Rt△ABH中,∠B=47°,AB=50,∴BH=ABcosB=50cos47°≈50×0.68=34,∴BC=2BH=68cm.(2)在Rt△ABH中,∴AH=ABsinB=50sin47°≈50×0.73=36.5,∴36.5>30,∴当车位锁上锁时,这辆汽车不能进入该车位.【解析】(1)过点A作AH⊥BC于点H,根据锐角三角函数的定义即可求出答案.(2)根据锐角三角函数的定义求出AH的长度即可判断.本题考查解直角三角形,解题的关键是熟练运用锐角函数的定义,本题属于基础题型.21.【答案】解:(1)把B(1,0)代入y=ax2+4x−3,得0=a+4−3,解得a=−1,∴y=−x2+4x−3=−(x−2)2+1,∴A(2,1),∵对称轴x=1,B,C关于x=2对称,∴C(3,0),∴当y>0时,1<x<3.(2)∵D(0,−3),∴点D平移的A,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y=−(x−4)2+5.【解析】(1)利用待定系数法求出a,再求出点C的坐标即可解决问题.(2)由题意点D平移的A,抛物线向右平移2个单位,向上平移4个单位,由此可得抛物线的解析式.本题考查抛物线与x轴的交点,二次函数的性质,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:(1)30÷15%=200(人),200−30−80−40=50(人),直方图如图所示:(2)“良好”所对应的扇形圆心角的度数=360°×80200=144°.(3)这次测试成绩的中位数是良好.(4)1500×40200=300(人),答:估计该校获得优秀的学生有300人.【解析】(1)根据基本合格人数已经百分比求出总人数即可解决问题.(2)根据圆心角=360°×百分比计算即可.(3)根据中位数的定义判断即可.(4)利用样本估计总体的思想解决问题即可.本题考查频数分布直方图,样本估计总体,扇形统计图,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.【答案】解:(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴ADAC =ACAB,∴AC2=AD⋅AB.(2)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵∠BFE=∠A,∴∠BFE=∠C,又∵∠FBE=∠CBF,∴△BFE∽△BCF,∴BFBC =BEBF,∴BF2=BE⋅BC,∴BC=BF2BE =423=163,∴AD=163.(3)如图,分别延长EF,DC相交于点G,∵四边形ABCD是菱形,∴AB//DC,∠BAC=12∠BAD,∵AC//EF,∴四边形AEGC为平行四边形,∴AC=EG,CG=AE,∠EAC=∠G,∵∠EDF=12∠BAD,∴∠EDF=∠BAC,∴∠EDF=∠G,又∵∠DEF=∠GED,∴△EDF∽△EGD,∴EDEG =EFDE,∴DE2=EF⋅EG,又∵EG=AC=2EF,∴DE2=2EF2,∴DE=√2EF,又∵DGDF =DEEF,∴DG=√2DF=5√2,∴DC=DG−CG=5√2−2.【解析】(1)证明△ADC∽△ACB,得出ADAC =ACAB,则可得出结论;(2)证明△BFE∽△BCF,得出比例线段BFBC =BEBF,则BF2=BE⋅BC,求出BC,则可求出AD.(3)分别延长EF,DC相交于点G,证得四边形AEGC为平行四边形,得出AC=EG,CG=AE,∠EAC=∠G,证明△EDF∽△EGD,得出比例线段EDEG =EFDE,则DE=√2EF,可求出DG,则答案可求出.此题是相似形综合题,主要考查了相似三角形的判定与性质,平行四边形的判定与性质,菱形的性质等知识,正确掌握相似三角形的判定方法是解题关键.24.【答案】解:(1)∵BE平分∠ABC,CE平分∠ACD,∴∠E=∠ECD−∠EBD=12(∠ACD−∠ABC)=12∠A=12α,(2)如图1,延长BC到点T,∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,∵AD⏜=BD⏜,∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠FAD,∴∠BEC=∠FAD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,②如图3,过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,∵AC是⊙O的直径,∴∠ABC=90°,∵BE平分∠ABC,∴∠FAC=∠EBC=12∠ABC=45°,∵∠AED=45°,∴∠AED=∠FAC,∵∠FED=∠FAD,∴∠AED−∠FED=∠FAC−∠FAD,∴∠AEG=∠CAD,∵∠EGA=∠ADC=90°,∴△EGA∽△ADC,∴AEAC =AGCD,∵在Rt△ABG中,AG=√22AB=4√2,在Rt△ADE中,AE=√2AD,∴ADAC =45,在Rt△ADC中,AD2+DC2=AC2,∴设AD=4x,AC=5x,则有(4x)2+52=(5x)2,∴x=53,∴ED=AD=203,∴CE=CD+DE=353,∵∠BEC=∠FCE,∴FC=FE,∵FM⊥CE,∴EM=12CE=356,∴DM=DE−EM=56,∵∠FDM=45°,∴FM=DM=56,∴S△DEF=12DE⋅FM=259.【解析】(1)由角平分线的定义可得出结论;(2)由圆内接四边形的性质得出∠FDC+∠FBC=90°,得出∠FDE=∠FBC,证得∠ABF=∠FBC,证出∠ACD=∠DCT,则CE是△ABC的外角平分线,可得出结论;(3)①连接CF,由条件得出∠BFC=∠BAC,则∠BFC=2∠BEC,得出∠BEC=∠FAD,证明△FDE≌△FDA(AAS),由全等三角形的性质得出DE=DA,则∠AED=∠DAE,得出∠ADC=90°,则可求出答案;②过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,证得△EGA∽△ADC,得出AEAC=AG CD ,求出ADAC=45,设AD=4x,AC=5x,则有(4x)2+52=(5x)2,解得x=53,求出ED,CE的长,求出DM,由等腰直角三角形的性质求出FM,根据三角形的面积公式可得出答案.本题是圆的综合题,考查了角平分线的定义,圆周角定理,圆内接四边形的性质,相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,等腰直角三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.。
2020年浙江省宁波市中考数学试题(含参考答案及评分标准,word 版)一、选择题〔每题3分,共36分,在每题给出的四个选项中,只有一项符合要求〕 1.以下四个数中,比0小的数是 〔 〕 A .23B .3C .πD .1- 2.等腰直角三角形的一个底角的度数是 〔 〕 A .030 B .045 C .060 D .0903.一个不透亮的布袋装有4个只有颜色的球,其中2个红色,1个白色,1个黑色,搅匀后从布袋里摸出1个球,摸到红球的概率是 〔 〕 A .12 B .13 C .14 D .164.据«宁波市休闲基地和商务会议基地建设五年行动打算»,估量到2019年,宁波市接待游客容量将达到4640万人,其中4640万用科学记数法可表示为 〔 〕 A .90.46410⨯ B .84.6410⨯ C .74.6410⨯ D .746.410⨯ 5.使二次根式2x -有意义的x 的取值范畴是 〔 〕A .B .C .D .A .2x ≠B .2x >C .2x ≤D .2x ≥6.如图是由4来个立方块组成的立体图形,它的俯视图是 〔 〕7.以下调查适合作普查的是 〔 〕 A .了解在校大学生的要紧娱乐方式. B .了解宁波市居民对废电池的处理情形. C .日光灯管厂要检测一批灯管的使用寿命.D .对甲型H1N1流感患者的同一车厢乘客进行医学检查. 8.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是〔 〕A .第一象限B .第二象限C .第三象限D .第四象限9.如图,1∠、2∠、3∠、4∠是五边形ABCD 的外角,且0123470∠=∠=∠=∠=, 那么AED ∠的度数是 〔 〕A .0110 B .0108 C .0105 D .010010、反比例函数ky x=在第一象限的图象如下图,那么k 的值可能是〔 〕 A .1 B .2 C .3 D .411.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分不是边AB 、AD 的中点,连结OM 、ON 、MN ,那么以下表达正确的选项是 〔 〕 A .△AOM 和△AON 差不多上等边三角形B .四边形MBON 和四边形MODN 差不多上菱形C .四边形AMON 和四边形ABCD 差不多上位似图形 D .四边形MBCO 和四边形NDCO 差不多上等腰梯形12.如图,点A 、B 、C 、D 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1、1、2,分不过这些点作x 轴与y 轴的垂线,那么图中阴影部分的面积这和是 〔 〕 A .1 B .3 C .3(1)m - D .3(2)2m - 二、填空题〔每题3分,共18分〕 13.实数8的立方根是 .14.不等式组6020x x -<⎧⎨->⎩的解是 .15.甲、乙、丙三名射击手的20次测试的平均成绩差不多上8环,方差分不是220.4()s =甲环 223.2()s =已环,221.6()s =丙环,那么成绩比较稳固的是 .〔填甲,乙,丙中的一个〕16.如图,在坡屋顶的设计图中,AB=AC ,屋顶的宽度l 为10米,坡角α这35°,那么坡屋顶的高度h 为 米.〔结果精确到0.1米〕17.如图,梯形ABCD 中,A D ∥BC ,∠B=70°,∠C=40°,作DE ∥AB 交BC 于点E ,假设AD=3,BC=10,那么CD 的长是 18.如图,⊙A 、⊙B 的圆心A 、B 在直线l 上,两圆半径都为1cm ,开始时圆心距AB=4cm ,现⊙A 、⊙B 同时沿直线l 以每秒2cm 的速度相向移动,那么当两圆相切时,⊙A 运动的时刻为 秒三、解答题〔第19~21题各题6分,第22题20分,第23~24题各题8分,第25题10分,第26题12分,共66分〕 19.先化简,再求值:(2)(2)(2)a a a a -+--,其中1a =- 20.如图,点A ,B 在数轴上,它们所对应的数分不是-4,2235x x +-,且点A 、B 到原点的距离相等,求x 的值21.〔1〕如图1,把等边三角形的各边三等分,分不以居中那条线段为一边向外作等边三角形,并去掉居中的那条线段,得到一个六角星,那么那个六角星的边数是 〔2〕如图2 ,在55⨯的网格中有一个正方形,把正方形的各边三等分,分不以居中那条线段为一边向外作正方形,去掉居中的那条线段,请把得到的图画在图3中,并写出那个图形的边数〔3〕现有一个正五边形,把正五边形的各边三等分,分不以居中的那条线段为边向外作正五边形,并去掉居中的那条线段,得到的图的边数是多少?22.2018年宁波市初中毕业生升学体育集中测试项目包括体能〔耐力〕类项目和速度〔跳跃、力量、技能〕类项目.体能类项目从游泳和中长跑中任选一项,速度类项目从立定跳远、50米跑等6项中任选一项.某校九年级共有200名女生在速度类项目中选择了立定跳远,现从这200名女生中随机抽取10名女生进行测试,下面是她们测试结果的条形图.〔另附:九年级女生立定跳远的计分标准〕(1)求这10名女生在本次测试中,立定跳远距离..的极差,立定跳远得..分的众数和平均数. (2)请你估量该校选择立定跳远的200名女生得总分值的人数.23.如图抛物线254y ax x a =-+与x轴相交于点A、B,且过点C〔5,4〕. (1)求a 的值和该抛物线顶点P 的坐标. (2)请你设计一种..平移的方法,使平移后抛物线的顶点落要第二象限,并写出平移后抛物线的解析式.24.:如图,⊙O 的直径AB 与弦CD 相交于E,弧BC =弧BD ,⊙O 的切线BF 与弦AD 的延长线相交于点F . (1)求证:C D ∥BF .(2)连结BC,假设⊙O 的半径为4,co s ∠BCD=34,求线段AD 、CD 的长.25.2009年4月7日,国务院公布了«医药卫生体制改革近期重点实施方案〔2018~2018〕»,某市政府决定2018年投入6000万元用于改善医疗卫生服务,比例2018年增加了1250万元.投入资金的服务对象包括〝需方〞〔患者等〕和〝供方〞〔医疗卫生气构等〕,估量2018年投入〝需方〞的资金将比2018年提高30%,投入〝供方〞的资金将比2018年提高20%.〔1〕该市政府2018年投入改善医疗卫生服务的资金是多少万元? 〔2〕该市政府2018年投入〝需方〞和〝供方〞的资金是多少万元? 〔3〕该市政府估量2018年将有7260万元投入改善医疗卫生服务,假设从2018~2018年每年的资金投入按相同的增长率递增,求2018~2018年的年增长率.26.如图1,在平面直角坐标系中,O 为坐标原点,点A 的坐标为〔-8,0〕,直线BC 通过点B 〔-8,6〕,将四边形OABC 绕点O 按顺时针方向旋转α度得到四边形OA ′B ′C ′,现在声母OA ′、直线B ′C ′分不与直线BC 相交于P 、Q . 〔1〕四边形的形状是 ,当α=90°时,BPPQ的值是 . 〔2〕①如图2,当四边形OA ′B ′C ′的顶点B ′落在y 轴正半轴上时,求BPPQ的值; ②如图3,当四边形OA ′B ′C ′的顶点B ′落在直线BC 上时,求ΔOPB ′的面积. 〔3〕在四边形OA B C 旋转过程中,当00180α<≤时,是否存在如此的点P 和点Q ,使BP=12BQ ?假设存在,请直截了当写出点P 的坐标;基不存在,请讲明理由.宁波市2018年初中毕业生学业考试 数学试题参考答案及评分标准题号 123456 7 8 9 10 11 12 答案D B A C DB D AD CC B题号 13 1415 16 17 18答案226x <<甲3.57 12或32〔对一个得三、解答题〔共66分〕注:1.阅卷时应按步计分,每步只设整分;2.如有其它解法,只要正确,都可参照评分标准,各步相应给分.19.解:原式2242a a a =--+ ········································································ 2分24a =-. ················································································· 4分 当1a =-时, 原式2(1)4=⨯--6=- ····································································································· 6分 20.解:由题意得,22435x x +=-, ································································································ 3分 解得115x =. ································································································ 5分经检验,115x =是原方程的解.∴x 的值为115. ··················································· 6分21.〔1〕12. ······················································ 1分 〔2〕那个图形的边数是20. ·········· 4分〔其中画图2分〕 〔3〕得到的图形的边数是30. ································ 6分22.〔1〕立定跳远距离的极差20517431(cm)=-=. ········································· 2分 立定跳远距离的中位数199197198(cm)2+==.·················································· 4分 依照计分标准,这10名女生的跳远距离得分分值分不是: 7,9,10,10,10,8,10,10,9. 因此立定跳远得分的众数是10〔分〕, ······························································· 6分 立定跳远得分的平均数是9.3〔分〕. ································································· 8分 〔2〕因为10名女生中有6名得总分值,因此估量200名女生中得总分值的人数是620012010⨯=〔人〕. ················································································ 10分 23.解:〔1〕把点(54)C ,代入抛物线254y ax ax a =-+得,252544a a a -+=, ····················································································· 1分 解得1a =. ·································································································· 2分∴该二次函数的解析式为254y x x =-+.22595424y x x x ⎛⎫=-+=-- ⎪⎝⎭∴顶点坐标为5924P ⎛⎫- ⎪⎝⎭,. ·············································································· 4分 〔2〕〔答案不唯独,合理即正确〕如先向左平移3个单位,再向上平移4个单位, ··················································· 6分 得到的二次函数解析式为225917342424y x x ⎛⎫⎛⎫=-+-+=++ ⎪ ⎪⎝⎭⎝⎭,即22y x x =++. ························································································· 8分 24.解:〔1〕直径AB 平分CD ,∴AB CD ⊥. ······························································································ 1分BF 与O ⊙相切,AB 是O ⊙的直径,AB BF ∴⊥. ······························································································ 2分 CD BF ∴∥. ······························································································ 3分 〔2〕连结BD ,AB 是O ⊙的直径, 90ADB ∴∠=°, 在Rt ADB △中,3cos cos 4A C ∠=∠=,428AB =⨯=.3cos 864AD AB A ∴=∠=⨯=. ····································································· 5分 AB CD ⊥于E , 在Rt AED △3cos cos 4A C ∠=∠=,sin A ∠=.sin 64DE AD A ∴=∠=⨯= ···························································· 7分 直径AB 平分CD ,2CD DE ∴== ··················································································· 8分25.解:〔1〕该市政府2018年投入改善医疗服务的资金是: 600012504750-=〔万元〕 ··········································································· 2分 〔2〕设市政府2018年投入〝需方〞x 万元,投入〝供方〞y 万元, 由题意得4750(130%)(120%)6000.x y x y +=⎧⎨+++=⎩,解得30001750.x y =⎧⎨=⎩,····························································································· 4分∴2018年投入〝需方〞资金为(130%) 1.330003900x +=⨯=〔万元〕,2018年投入〝供方〞资金为(120%) 1.217502100y +=⨯=〔万元〕.答:该市政府2018年投入〝需方〞3900万元,投入〝供方〞2100万元. ·················· 6分 〔3〕设年增长率为x ,由题意得26000(1)7260x +=, ··················································································· 8分解得10.1x =,2 1.1x =-〔不合实际,舍去〕答:从2018~2018年的年增长率是10%. ·························································· 10分 26.解:〔1〕矩形〔长方形〕; ······································································· 1分47BP BQ =. ···································································································· 3分 〔2〕①POC B OA ''∠=∠,PCO OA B ''∠=∠90=°,COP A OB ''∴△∽△. CP OC A B OA ∴=''',即668CP =,92CP ∴=,72BP BC CP =-=. ···································································· 4分 同理B CQ B C O '''△∽△,CQ B C C Q B C '∴=''',即10668CQ -=, 3CQ ∴=,11BQ BC CQ =+=. ··································································· 5分 722BP BQ ∴=. ······························································································· 6分 ②在OCP △和B A P ''△中,90OPC B PA OCP A OC B A ''∠=∠⎧⎪'∠=∠=⎨⎪''=⎩,°,, (AAS)OCP B A P ''∴△≌△. ·········································································· 7分OP B P '∴=. 设B P x '=,在Rt OCP △中, 222(8)6x x -+=,解得254x =. ··········································· 8分 125756244OPB S '∴=⨯⨯=△. ··········································································· 9分 〔3〕存在如此的点P 和点Q ,使12BP BQ =. ················································· 10分点P的坐标是19P ⎛⎫- ⎪⎝⎭,2764P ⎛⎫- ⎪⎝⎭,. ················································· 12分 关于第〔3〕题,我们提供如下详细解答,对学生无此要求. 过点Q 画QH OA '⊥于H ,连结OQ ,那么QH OC OC '==,12POQ S PQ OC =△,12POQ S OP QH =△, PQ OP ∴=.设BP x =,12BP BQ =, 2BQ x ∴=,① 如图1,当点P 在点B 左侧时,3OP PQ BQ BP x ==+=,在Rt PCO △中,222(8)6(3)x x ++=,解得11x =,21x =9PC BC BP ∴=+=19P ⎛⎫∴-- ⎪⎝⎭.②如图2,当点P 在点B 右侧时,OP PQ BQ BP x ∴==-=,8PC x =-.在Rt PCO △中,222(8)6x x -+=,解得254x =. PC BC BP ∴=-257844=-=, 2764P ⎛⎫∴- ⎪⎝⎭,.综上可知,存在点19P ⎛⎫--⎪⎝⎭,2764P⎛⎫-⎪⎝⎭,,使12BP BQ=.。