蛋白质电泳实验
- 格式:doc
- 大小:24.00 KB
- 文档页数:3
SDS-PAGE电泳操作步骤:试剂配制:(实验中采用均为分析纯)(1)丙烯酰胺贮液(4℃下棕色瓶中储存,试剂尽量勿存储过久)丙烯酰胺贮液(T=30%,C=3%)称取29.1 g丙烯酰胺和0.9 g甲叉双丙烯酰胺,用双蒸水溶解,定容至100 ml,过滤备用。
(试剂有毒,操作中注意防护)(2)浓缩胶缓冲液(1 mol/L Tris-HCl,pH 6.8)(4℃下棕色瓶中储存,试剂尽量勿存储过久)6.06 g Tris溶解于35 ml双蒸水中,用浓盐酸调节pH至6.8,再用双蒸水定容至50 ml。
(3)分离胶缓冲液(1.5 mol/L Tris-HCl,pH 8.8)(4℃下棕色瓶中储存,试剂尽量勿存储过久)18.16 g Tris溶解于75 ml双蒸水中,用浓盐酸调节pH至8.8,再用双蒸水定容至100 ml。
(4)10% SDS(5)10% 过硫酸铵(APS):使用前新鲜配制,低浓度APS一般当天用当天配制,勿过夜使用。
(6)尿素(7)TEMED(N,N,N’,N’-四甲基乙二胺)(8)电极缓冲液(1×) (棕色瓶中4℃储存,一般使用3-4次)0.025 mol/L Tris,0.192 mol/L甘氨酸,0.1% SDS,pH 8.3(9)电极缓冲液(2×) (棕色瓶中4℃储存,一般使用3-4次)0.050 mol/L Tris,0.384 mol/L甘氨酸,0.1% SDS,pH 8.3(10)样品缓冲液(pH 6.8)(4℃下棕色瓶中储存,试剂尽量勿存储过久)1.6 ml浓缩胶缓冲液(pH 6.8)+ 4 ml 10% SDS + 0.6 g二硫苏糖醇(DTT) +2.5 ml 87%甘油+0.1 mg溴酚蓝,用双蒸水稀释到20 ml.(11)考玛斯亮蓝R-250染色方法:a.固定液20%三氯乙酸b.脱色液250 ml乙醇,80 ml冰醋酸,加水稀释至1000 ml。
c.染色液称取0.29 g考玛斯亮蓝R-250溶于250 ml上述脱色液中样品处理:处理完样品应尽快使用,若存储,须于-20℃下。
SDS-PAGE电泳实验步骤垂直板聚丙烯酰胺凝胶电泳分离蛋⽩质⼀、实验⽬的学习SDS-聚丙烯酰胺凝胶电泳法(SDS—PAGE)测定蛋⽩质的分⼦量的原理和基本操作技术。
⼆、实验原理蛋⽩质是两性电解质,在⼀定的pH条件下解离⽽带电荷。
当溶液的pH⼤于蛋⽩质的等电点(pI)时,蛋⽩质本⾝带负电,在电场中将向正极移动;当溶液的pH⼩于蛋⽩质的等电点时,蛋⽩质带正电,在电场中将向负极移动;蛋⽩质在特定电场中移动的速度取决于其本⾝所带的净电荷的多少、蛋⽩质颗粒的⼤⼩和分⼦形状、电场强度等。
聚丙烯酰胺凝胶是由⼀定量的丙烯酰胺和双丙烯酰胺聚合⽽成的三维⽹状孔结构。
本实验采⽤不连续凝胶系统,调整双丙烯酰胺⽤量的多少,可制成不同孔径的两层凝胶;这样,当含有不同分⼦量的蛋⽩质溶液通过这两层凝胶时,受阻滞的程度不同⽽表现出不同的迁移率。
由于上层胶的孔径较⼤,不同⼤⼩的蛋⽩质分⼦在通过⼤孔胶时,受到的阻滞基本相同,因此以相同的速率移动;当进⼊⼩孔胶时,分⼦量⼤的蛋⽩质移动速度减慢,因⽽在两层凝胶的界⾯处,样品被压缩成很窄的区带。
这就是常说的浓缩效应和分⼦筛效应。
同时,在制备上层胶(浓缩胶)和下层胶(分离胶)时,采⽤两种缓冲体系;上层胶pH=6.7—6.8,下层胶pH=8.9;Tris —HCI缓冲液中的Tris⽤于维持溶液的电中性及pH,是缓冲配对离⼦;CI-是前导离⼦。
在pH6.8时,缓冲液中的Gly-为尾随离⼦,⽽在pH=8.9时,Gly的解离度增加;这样浓缩胶和分离胶之间pH的不连续性,控制了慢离⼦的解离度,进⽽达到控制其有效迁移率之⽬的。
不同蛋⽩质具有不同的等电点,在进⼊分离胶后,各种蛋⽩质由于所带的静电荷不同,⽽有不同的迁移率。
由于在聚丙烯酰胺凝胶电泳中存在的浓缩效应,分⼦筛效应及电荷效应,使不同的蛋⽩质在同⼀电场中达到有效的分离。
如果在聚丙烯酰胺凝胶中加⼊⼀定浓度的⼗⼆烷基硫酸钠(SDS),由于SDS带有⼤量的负电荷,且这种阴离⼦表⾯活性剂能使蛋⽩质变性,特别是在强还原剂如巯基⼄醇存在下,蛋⽩质分⼦内的⼆硫键被还原,肽链完全伸展,使蛋⽩质分⼦与SDS充分结合,形成带负电性的蛋⽩质—SDS复合物;此时,蛋⽩质分⼦上所带的负电荷量远远超过蛋⽩质分⼦原有的电荷量,掩盖了不同蛋⽩质间所带电荷上的差异。
westernblot电泳原理及步骤一、概述西方印迹(w es te rnb l ot)是一种重要的蛋白质分析技术,广泛应用于分子生物学和生物化学研究中。
它通过将待检蛋白质进行SD S-P AG E电泳分离,再转移到聚合物膜上,利用特异性抗原与抗体结合的原理,检测目标蛋白质的存在与表达水平。
二、原理1.SD S-PA GE电泳分离-准备样品:将待检蛋白质样品加入去离子水、蛋白质缓冲液和还原剂混合,使蛋白质变性和解聚。
-加载样品:将样品加入聚丙烯酰胺凝胶(p ol ya cr yl am id eg e l)孔上。
-电泳分离:将准备好的凝胶置于电泳槽中,通电使蛋白质在凝胶中由负极向正极运动分离。
2.转膜-准备转膜装置:将P V DF或N C膜与吸水性纸张浸泡后,叠放在转膜装置中,并按压缩成一整体。
-预处理转膜:将转膜装置放入转渍缓冲液中浸泡,使其湿润。
-转移:将电泳完的凝胶与转膜装置层叠,加上固定层叠板,施加压力进行转膜。
3.免疫检测-封闭:将转膜后的膜置于封闭液中,阻断非特异性结合位点,减少背景信号。
-孵育:将膜与目标蛋白对应的一抗抗体孵育,使其与目标蛋白特异性结合。
-洗涤:用洗涤缓冲液洗去非特异性结合的抗体。
-二抗检测:将膜与与一抗相应的辣根过氧化物酶标记的二抗孵育,二抗与一抗结合形成复合物。
-显示:加入发色底物,与酶催化反应,生成可视化的蛋白质带谱。
三、操作步骤1.准备样品-将待检蛋白质样品加入适量去离子水、蛋白质缓冲液和还原剂混合。
-完全溶解样品,可加热至95°C处理。
2.SD S-PA GE电泳分离-准备分离凝胶:根据目标蛋白质的分子量选择合适浓度的凝胶。
-加载样品:用自动吸管或微量注射器将样品均匀地加载到聚丙烯酰胺凝胶孔上。
-启动电泳:将准备好的凝胶放入电泳槽中,加入电泳缓冲液,通电进行电泳。
3.转膜-准备转膜装置:按照转膜装置的说明书操作,准备好转膜膜和膜瓶。
-预处理转膜:将PVD F或N C膜与吸水性纸张浸泡,并放入转膜缓冲液中浸泡片刻。
蛋白质双向电泳实验流程一.样品制备1.研磨研磨时间要尽量短,并需及时补充液氮,研磨要充分,同时要保证损失少。
2.重新加入8mltris饱和状态酚(ph8.8)和8ml裂解液,在通风橱内研磨30s。
先加8mltris饱和状态酚,tris饱和状态酚会变为液态,此时需以研磨碓将液态的tris饱和状态酚研磨变成小块。
接着重新加入8ml裂解液,也须要将液态的裂解液研磨变成小块。
等三者搅匀后,将粉末迁移至45mltube。
3.振荡30min。
室温静置,等待tube中液态变为液体后,已经开始震荡。
震荡须要持续30min,每震荡1min,放在冰上加热1min。
4.10000g,4℃,10min。
将酚相(topphase)转移至45mltube。
酚相(topphase)可置于冰上。
酚二者必须就是绿色的,水相必须就是淡黄色的。
5.取6ml的抽提液和6ml饱和酚加入水相,蜗旋振荡30min。
振荡需持续30min,每振荡1min,置于冰上冷却1min。
6.10000g,4℃,10min。
将酚二者(topphase)迁移至45mltube。
7.沉淀酚相。
取一定体积(是酚相的5倍)的0.1m乙酸铵/甲醇溶液(c20℃保存)于酚相(45mltube)。
振荡30s,c20℃培育1h或过夜。
8.冲洗结晶①15min,20,000g,4℃。
弃上清。
②提10ml0.1m乙酸铵/甲醇溶液,用移液器吸打。
c20℃结晶30min。
③15min,20,000g,4℃。
弃上清。
④重新加入10ml乙酸铵/甲醇溶液,用移液器吸打。
c20℃结晶30min。
⑤15min,20,000g,4℃。
弃上清。
⑥提10ml80%丙酮(ice-cold),用移液器吸打。
c20℃结晶30min。
⑦15min,20,000g,4℃。
弃上清。
⑧重新加入10ml80%丙酮(ice-cold),用移液器吸打。
c20℃结晶30min。
⑨15min,20,000g,4℃。
弃上清。
血清蛋白的电泳的实验报告
血清蛋白的电泳实验报告
血清蛋白是人体血液中最主要的蛋白质成分之一,它们在维持血液渗透压、运
输营养物质和调节免疫功能等方面发挥着重要作用。
电泳是一种常用的实验技术,可以通过电场作用下将蛋白质分离成不同的带状,从而对血清蛋白进行分
析和鉴定。
在本次实验中,我们使用了聚丙烯酰胺凝胶电泳技术对血清蛋白进行了分离。
首先,我们将血清样品加入到电泳凝胶槽中,然后施加电场使蛋白质在凝胶中
移动。
由于不同蛋白质的大小、电荷和形状不同,它们在电场作用下会以不同
的速度移动,最终形成不同的带状。
通过观察电泳结果,我们可以看到血清蛋白在凝胶上形成了多个明显的带状。
根据已知的标准蛋白质的电泳迁移率,我们可以对这些带状进行鉴定和定量分析。
通过比较实验样品的电泳图谱和标准样品的电泳图谱,我们可以确定血清
中不同蛋白质的含量和种类。
在实验中,我们发现血清蛋白主要可以分为白蛋白、球蛋白、转铁蛋白等多个
带状,它们在电泳图谱上呈现出清晰的分离和特征性的迁移率。
这些结果为我
们进一步了解血清蛋白的组成和功能提供了重要的参考。
总的来说,血清蛋白的电泳实验为我们提供了一种快速、准确地分析血清蛋白
的方法,对于临床诊断和疾病治疗具有重要意义。
通过对血清蛋白的电泳分析,我们可以更好地了解人体内蛋白质的组成和功能,为疾病的诊断和治疗提供科
学依据。
希望通过我们的努力,可以为医学科研和临床实践带来更多的启发和
突破。
血清蛋白的电泳的实验报告血清蛋白的电泳实验报告引言:血清蛋白是人体内重要的生物分子之一,它在维持体内稳态、免疫防御和营养输送等方面发挥着重要作用。
了解血清蛋白的组成及其分布情况对于疾病的诊断和治疗具有重要意义。
本实验旨在通过电泳技术对血清蛋白进行分离和鉴定,为进一步研究血清蛋白的功能和相关疾病提供基础数据。
材料与方法:1. 实验仪器:电泳槽、电源、电泳胶、电泳板等。
2. 实验试剂:血清样品、电泳缓冲液、蛋白质标记物等。
3. 实验操作:将电泳胶浸泡于电泳缓冲液中,待其均匀吸收后放置于电泳槽中。
将血清样品与蛋白质标记物混合后,加入电泳槽中的样品孔。
调节电源参数,进行电泳分离。
分离结束后,将电泳板取出,进行染色和成像。
结果与分析:通过电泳实验,我们成功地将血清蛋白分离出不同的带状图谱。
根据电泳胶上的带状图谱,我们可以初步判断血清蛋白的分布情况。
一般来说,血清蛋白主要分为白蛋白、球蛋白和β-球蛋白三个主要部分。
在电泳胶上,白蛋白通常位于最上方,形成一条明亮的窄带。
白蛋白是血浆中含量最高的蛋白质,其主要功能是维持渗透压和输送营养物质。
球蛋白则位于白蛋白下方,呈现为一系列较宽的带状图谱。
球蛋白包含多种免疫球蛋白,对于机体的免疫防御具有重要作用。
β-球蛋白则位于球蛋白的下方,它是一组具有多样性的蛋白质,包括一些激素、运输蛋白和凝血因子等。
除了上述主要蛋白质成分外,电泳图谱中还可能出现一些其他蛋白带。
这些带状图谱可能代表了疾病或炎症状态下的特定蛋白质增加或减少。
通过对这些带状图谱的分析,可以提供疾病诊断和治疗的线索。
结论:通过电泳技术对血清蛋白进行分离和鉴定,我们可以初步了解血清蛋白的组成和分布情况。
血清蛋白的电泳图谱可以为疾病的诊断和治疗提供重要参考。
未来,我们可以进一步研究血清蛋白的功能和相关疾病机制,为临床应用和新药研发提供更多的信息。
值得注意的是,电泳实验是一种初步的分离方法,对于复杂的蛋白质组成和相互作用等问题,还需要结合其他技术手段进行深入研究。
实验报告蛋白质电泳分析实验报告:蛋白质电泳分析一、实验目的蛋白质电泳是一种常用的生物化学技术,用于分离和分析蛋白质混合物。
本次实验的目的是通过聚丙烯酰胺凝胶电泳(PAGE)技术,对给定的蛋白质样品进行分离和鉴定,以了解其分子量大小、纯度和组成等特性。
二、实验原理蛋白质电泳基于蛋白质在电场中的迁移率差异来实现分离。
在聚丙烯酰胺凝胶中,蛋白质分子受到凝胶的分子筛作用和电场的驱动力。
较小的蛋白质分子能够更容易地在凝胶孔隙中移动,从而迁移速度较快;较大的蛋白质分子则受到更多的阻力,迁移速度较慢。
此外,蛋白质通常带有电荷,其电荷性质和数量也会影响在电场中的迁移。
通过在凝胶中加入十二烷基硫酸钠(SDS),可以使蛋白质分子带上大量负电荷,并消除其天然电荷和结构的影响,仅根据分子量大小进行分离。
三、实验材料与设备1、实验材料蛋白质样品:待分析的未知蛋白质混合物。
标准蛋白质分子量Marker:已知分子量的蛋白质混合物,用于校准电泳结果。
丙烯酰胺储备液:用于制备凝胶。
过硫酸铵(APS):引发丙烯酰胺聚合。
N,N,N',N'四甲基乙二胺(TEMED):加速聚合反应。
SDS:使蛋白质变性并带上负电荷。
电泳缓冲液:提供稳定的电场环境。
染色液:如考马斯亮蓝,用于染色蛋白质。
脱色液:用于去除多余的染色剂,使蛋白质条带清晰可见。
2、实验设备垂直电泳槽:用于容纳凝胶和进行电泳。
电源:提供稳定的直流电源。
移液器:准确量取样品和试剂。
离心机:用于离心样品。
微波炉:用于加热溶解试剂。
凝胶成像系统:用于观察和记录电泳结果。
四、实验步骤1、凝胶的制备装配电泳槽:将两块玻璃板洗净、擦干,安装在电泳槽中,确保密封良好,无渗漏。
配制分离胶:根据所需浓度,计算并量取丙烯酰胺储备液、APS、TEMED 和电泳缓冲液,迅速混合均匀后,用移液器将其注入两块玻璃板之间,至一定高度,然后在胶面上覆盖一层水,以促使胶面平整并防止氧气进入影响聚合。
垂直板聚丙烯酰胺凝胶电泳分离蛋白质一、实验目得学习SDS—聚丙烯酰胺凝胶电泳法(SDS—PAGE)测定蛋白质得分子量得原理与基本操作技术、二、实验原理蛋白质就是两性电解质,在一定得pH条件下解离而带电荷。
当溶液得pH大于蛋白质得等电点(pI)时,蛋白质本身带负电,在电场中将向正极移动;当溶液得pH小于蛋白质得等电点时,蛋白质带正电,在电场中将向负极移动;蛋白质在特定电场中移动得速度取决于其本身所带得净电荷得多少、蛋白质颗粒得大小与分子形状、电场强度等。
聚丙烯酰胺凝胶就是由一定量得丙烯酰胺与双丙烯酰胺聚合而成得三维网状孔结构、本实验采用不连续凝胶系统,调整双丙烯酰胺用量得多少,可制成不同孔径得两层凝胶;这样,当含有不同分子量得蛋白质溶液通过这两层凝胶时,受阻滞得程度不同而表现出不同得迁移率。
由于上层胶得孔径较大,不同大小得蛋白质分子在通过大孔胶时,受到得阻滞基本相同,因此以相同得速率移动;当进入小孔胶时,分子量大得蛋白质移动速度减慢,因而在两层凝胶得界面处,样品被压缩成很窄得区带。
这就就是常说得浓缩效应与分子筛效应。
同时,在制备上层胶(浓缩胶)与下层胶(分离胶)时,采用两种缓冲体系;上层胶pH=6、7—6。
8,下层胶pH=8.9;Tris—HCI缓冲液中得Tris用于维持溶液得电中性及pH,就是缓冲配对离子;CI-就是前导离子。
在pH6.8时,缓冲液中得Gly—为尾随离子,而在pH=8、9时,Gly得解离度增加;这样浓缩胶与分离胶之间pH得不连续性,控制了慢离子得解离度,进而达到控制其有效迁移率之目得。
不同蛋白质具有不同得等电点,在进入分离胶后,各种蛋白质由于所带得静电荷不同,而有不同得迁移率、由于在聚丙烯酰胺凝胶电泳中存在得浓缩效应,分子筛效应及电荷效应,使不同得蛋白质在同一电场中达到有效得分离。
如果在聚丙烯酰胺凝胶中加入一定浓度得十二烷基硫酸钠(SDS),由于SDS带有大量得负电荷,且这种阴离子表面活性剂能使蛋白质变性,特别就是在强还原剂如巯基乙醇存在下,蛋白质分子内得二硫键被还原,肽链完全伸展,使蛋白质分子与SDS充分结合,形成带负电性得蛋白质—SDS复合物;此时,蛋白质分子上所带得负电荷量远远超过蛋白质分子原有得电荷量,掩盖了不同蛋白质间所带电荷上得差异、蛋白质分子量愈小,在电场中移动得愈快;反之,愈慢。
在进行SDS-PAGE蛋白凝胶电泳原理的讨论之前,我们首先需要了解蛋白质和电泳技术的基本概念。
蛋白质是生物体内功能最丰富的大分子化合物,它们参与了生命的方方面面,包括结构、酶活性、信号传导等。
而电泳技术则是一种基于电场作用将带电粒子分离的方法,它在生命科学研究中有着广泛的应用。
SDS-PAGE蛋白凝胶电泳原理是一种常用于分离和鉴定蛋白质的技术,其原理基于蛋白质在电场中的迁移速度与其分子质量成反比的关系。
现在让我们深入探讨SDS-PAGE蛋白凝胶电泳的原理和相关细节。
1. SDS-PAGE蛋白凝胶电泳的基本步骤在进行SDS-PAGE蛋白凝胶电泳实验时,首先需要将待测样品中的蛋白质在含有SDS(十二烷基硫酸钠)的缓冲液中进行变性处理,使得蛋白质呈线性结构并且带有负电荷。
之后,将处理过的蛋白样品加载到聚丙烯酰胺凝胶中,并施加电场使得蛋白质开始迁移。
根据蛋白质的分子质量,它们将在凝胶中以不同的速率迁移,最终实现分离。
2. SDS的作用原理SDS是一种带有负电荷的表面活性剂,它的主要作用是使得蛋白质呈线性构象,并且使得蛋白质的带电量与其分子质量成正比。
这样一来,不同分子质量的蛋白质在电场中受到的阻力相对应也会不同,从而实现蛋白质的分离。
3. 凝胶电泳的原理凝胶电泳是利用凝胶作为分离介质的电泳方法。
凝胶可以是聚丙烯酰胺凝胶、琼脂糖凝胶或者琼脂糖琼脂糖凝胶。
在SDS-PAGE蛋白凝胶电泳中,聚丙烯酰胺凝胶是最常用的分离介质。
它的基本原理是利用凝胶的孔隙大小来实现对蛋白质的分离,分子质量较大的蛋白质会受到较大的阻力从而迁移较慢,分子质量较小的蛋白质则会迁移得更快。
4. 电泳条件的影响在进行SDS-PAGE蛋白凝胶电泳实验时,电泳条件的设定对分离结果有着重要影响。
电场强度的大小、电泳时间的长短、凝胶浓度等都会影响蛋白质的迁移速度和分离效果。
总结而言,SDS-PAGE蛋白凝胶电泳原理基于蛋白质在电场中的迁移速度与其分子质量成反比的关系,通过SDS的作用使得蛋白质呈现线性构象并且带有负电荷,再利用凝胶电泳对不同分子质量的蛋白质进行分离。
尿素-SDS聚丙烯酰胺凝胶电泳
1.试剂的配制
①30%凝胶母液
丙烯酰胺和N, N’-亚甲双丙烯酰胺。
以温热(利于溶解双丙烯酰胺)的去离子水配制含有29.2 %(w/v)丙烯酰胺和0.8 %(w/v)N, N’-亚甲双丙烯酰胺的贮存液,丙烯酰胺和双丙烯酰胺在贮存过程中缓慢转变为丙烯酸和双丙烯酸,这一脱氨基反应是光催化或碱催化的,故应核实溶液的pH值不超过7.0。
这一溶液置棕色瓶中贮存于室温,每隔几个月须重新配制。
小心:丙烯酰胺和双丙烯酰胺具有很强的神经毒性并容易吸附于皮肤。
②4倍SDS分离胶缓冲液(4×, pH 8.8) (200 ml)
称取SDS 0.8 g (4%),Tris 36.342 g (1.5mol/L),溶解(必要时加热),用盐酸调pH为8.8,定容至200 mL。
③4倍SDS浓缩胶(堆积胶或积层胶)缓冲液。
(4×,pH 6.8)(100 ml)
称取SDS 0.4 g (4%),Tris 6.051 g (0.5mol/L),溶解(必要时加热),用盐酸调pH为6.8,定容至100 mL。
④TEMED(N,N,N’,N’-四甲基乙二胺)。
TEMED通过催化过硫酸铵形成自由基而加速丙烯酰胺与双丙烯酰胺的聚合。
⑤10%过硫酸铵。
0.5 g过硫酸铵溶于5 mL去离子水中,可于4 ℃下存放数月
⑥Tris-甘氨酸电极缓冲液(1 L)
称取3g Tris (25 mmol/L),14.4 g甘氨酸(192 mmol/L),1 g SDS(0.1 %),溶解后定容至1L,pH应该在8.3左右。
也可以制成10×的储存液在室温下长期保存。
⑦样品处理液(5×样品缓冲液)(10 mL)
称取Tris 0.07266 g Tris (60 mmol/L), SDS 0.02 g (2%, W/V), 溶于4 mL水中, 用HCl小心调节pH为6.8,再加5 mL 50%的甘油(终浓度25%, V/V),0.5 mL 2-巯基乙醇(14.4 mmol/L),溴酚蓝0.01 g (终浓度0.1%), 加去离子水至10 mL。
可以在4℃下存放数周,或在-20℃下保存数月。
⑧考马斯亮蓝R250染色液(1000 mL)
0.1% 考马斯亮蓝R250
考马斯亮蓝R-250 1.0 g (0.1%, W/V)
无水乙醇450 mL (45%, V/V)
冰醋酸100 mL (10%, V/V)
加水定容至1000 mL
⑨脱色液(1000 mL)
无水乙醇100mL (10%, V/V)
冰醋酸100mL (10%, V/V)
加水定容至1000 mL
2.尿素-SDS聚丙烯酰胺凝胶的灌制
⑴根据厂家说明书安装玻璃板。
(琼脂封口)
⑵确定所需凝胶溶液体积,按下表给出的数值在一小烧杯中按所需丙烯酰胺浓度配制一定
体积的分离胶溶液。
(一旦加入TEMED,马上开始聚合,故应立即快速旋动混合物并进入下步操作。
)
配制Tris-甘氨酸SDS聚丙烯酰胺凝胶电泳15 %分离胶溶液(20mL/电泳板, pH8.8)
水 2.4mL
尿素7.2g
分离胶缓冲液5mL
30%凝胶母液 4. mL
混匀后, 加入10% AP 100 µL, TEMED 10 µL, 迅速混合。
⑶迅速在两玻璃板的间隙中灌注丙烯酰胺溶液,留出灌注浓缩胶所需空间(梳子的齿长再加
0.5cm)。
再在胶液面上小心注入一层水(约2~3 mm高),以阻止氧气进入凝胶溶液
⑷分离胶聚合完全后(约30~60分钟),倾出覆盖水层,再用滤纸吸净残留水。
⑸制备浓缩胶:按下表给出的数据,在另一小烧杯中制备一定体积及一定浓度的丙烯酰胺
溶液。
(一旦加入TEMED,马上开始聚合,故应立即快速旋动混合物并进入下步操作。
)配制Tris-甘氨酸SDS聚丙烯酰胺凝胶电泳5% 浓缩胶溶液(10 mL/电泳板,pH6.8)水 5.75 mL
浓缩胶缓冲液 2.5 mL
30%凝胶母液 1.75 mL
混匀后, 加入10% AP 66 µL, TEMED 10 µL, 迅速混合。
⑹聚合的分离胶上直接灌注浓缩胶,立即在浓缩胶溶液中插入干净的梳子。
小心避免混入气泡,再加入浓缩胶溶液以充满梳子之间的空隙,将凝胶垂直放置于室温下。
⑺在等待浓缩胶聚合时,可对样品进行处理,在样品中按4:1体积比加入样品处理液,在100℃加热3~4分钟以使蛋白质变性。
⑻浓缩胶聚合完全后(30~60分钟),小心移出梳子。
把凝胶固定于电泳装置上,上下槽各加入Tris-甘氨酸电极缓冲液。
必须设法排出凝胶底部两玻璃板之间的气泡。
⑼按预定顺序加样,加样量通常为10~25μL(1.5 mm厚的胶)。
⑽将电泳装置与电源相接,凝胶上所加恒电流为10 mA。
当染料前沿进入分离胶后,把电流提高到15 mA,继续电泳直至溴酚蓝到达分离胶底部上方约0.5 cm,然后关闭电源。
⑾从电泳装置上卸下玻璃板,轻轻撬开玻璃板。
紧靠最左边一孔(第一槽)凝胶下部切去
一角以标注凝胶的方位。
3.用考马斯亮蓝对SDS聚丙烯酰胺凝胶进行染色
经SDS聚丙烯酰胺凝胶电泳分离的蛋白质样品可用考马斯亮蓝R250染色
染色1~2小时或过夜。
脱色液:脱色需3~10小时,其间更换多次脱色液至背景清楚。
此方法检测灵敏度为0.2~1.0g。
脱色后,可将凝胶浸于水中,长期封装在塑料袋内而不降低染色强度。
为永久性记录,可对凝胶进行拍照,或将凝胶干燥成胶片。
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的配合和支持)。