一维扩散方程数值解法
- 格式:pdf
- 大小:2.38 MB
- 文档页数:5
扩散方程的数值差分解法作者:刘浩庭来源:《价值工程》2019年第29期摘要:扩散现象是其初始密度不均匀分布引起的,它会对物质粒子的分布状态产生影响,最终达到物质在空间均匀分布状态。
本研究通过分离变量法对给定条件的粒子浓度在一维空间分布下的扩散现象的解析解进行计算,同时结合使用欧拉法利用计算物理的方法对扩散过程进行了数值模拟。
通过对比理论数据与模拟实验数据对等离子体一维扩散现象进行阐释与讨论。
Abstract: The diffusion phenomenon is caused by the difference of the initial density. It affects the motion of the particles and finally make all the particles into the uniformly distribution. In this study, the analytical solution of the diffusion phenomenon of a given particle concentration in a one-dimensional space is calculated by using the method of separation of variables, and the diffusion process is simulated numerically by using the computational physics method combined with Euler's polygonal arc method. The one-dimensional plasma diffusion phenomenon is explained by comparing the theoretical data with the simulated experimental data.關键词:一维扩散;分离变量法;欧拉法Key words: one-dimensional diffusion;the method of separation of variables;Euler's polygonal arc method中图分类号:O122.2; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;文献标识码:A; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 文章编号:1006-4311(2019)29-0272-041; 简介受控热核聚变是受世人瞩目的前沿重要课题,其目的便是探索清洁可持续的新能源。
一维对流扩散方程的数值解法对流-扩散方程是守恒定律控制方程的一种模型方程,它既是能量方程的表示形式,同时也可以认为是把压力梯度项隐含到了源项中去的动量方程的代表。
因此,以对流-扩散方程为例,来研究数值求解偏微分方程的相容性、收敛性和稳定性具有代表性的意义。
1 数学模型本作业从最简单的模型方程,即一维、稳态、无源项的对流扩散方程出发,方程如下: 22, 02f f fU D x t x x∂∂∂+=≤≤∂∂∂ (1)初始条件 (),0sin(2)f x t A kx π==(2)解析解()()()224,sin 2Dk tf x t eA k x Ut ππ-=-(3)式中,1,0.05,0.5,1U D A k ====函数(3)描述的是一个衰减波的图像,如图1所示t=0 t=0.5 t=1图1 函数()()()224,sin 2Dk tf x t ek x Ut ππ-=- 的图像(U=1,D=0.05,k=1)2 数值解法2.1 数值误差分析在网格点(),i n 上差分方程的数值解ni f 偏离该点上相应的偏微分方程的精确解(),f i n 的值,称为网格节点上的数值误差。
当取定网格节点数21N =时,观察差分方程的解与微分方程的解在不同时间步长下的趋近程度,其中时间步长分别取值0.05,0.025,0.0125,0.0005t ∆=。
(a )21,0.05N t =∆= (b )21,0.025N t =∆=(c )21,0.0125N t =∆= (d )201,0.0005N t =∆=图2 数值误差随步长的变化情况从图2的(a)~(d)可以定性的看出,数值误差与步长的大小有关。
在满足稳定性条件的前提下,数值误差随着时间步长的减小而减小,同时,图(d )表示增大网格的分辨率也有助于减小网格误差。
为了对数值误差有一个定量的认识,接下来取定时间步长为0.0005t ∆=,分别算出11,21,41,61,81,101,121,161N =时,指标E =1所示。
一维扩散偏微分方程一维扩散偏微分方程(PDE)是一类常见的微分方程,它表达了某种物理现象的变化。
举个例子,它可以用来描述热的传导、浓度的变化、电场的强度以及气体的压力等等。
PDES 的形式可以用更抽象的方法表达,可以为应用程序设计者提供更多的自由度。
一维扩散偏微分方程的形式可以用通用的微积分方式来描述,其基本形式可以表述为:u_t=k(u_xx),其中u表示变量,t表示时间,x表示空间,k表示扩散系数。
该方程描述了当变量因扩散作用而随时间发生变化时,随着空间单位变化量的变化率,变量会发生变化。
一维扩散偏微分方程有几个典型的形式,具体可以分为以下几类:一、静态扩散型方程:这种方程的形式为:u_t=k(u_xx),其中u表示变量,t表示时间,x表示空间,k表示扩散系数。
它描述了由于变量的扩散作用而发生变化的系统,而不考虑任何外部影响因素。
二、动态扩散型方程:它的形式为:u_t=k(u_xx)+f(u,x,t),其中f(u,x,t)表示变量受外部影响因素的作用,由外部影响决定变量的波动。
三、热扩散型方程:这种方程的形式为:u_t=a(u_xx)+b(u_xxxx),其中a和b分别表示传热系数和热容系数。
当变量受到外部热源的影响时,可以使用这种方程来描述。
四、声学扩散型方程:它的形式为:u_t=c(u_xx)+v(u_xxxx),其中c和v分别表示声学场的传播速度和声学场的波动速度。
它通常用来描述声音在空间上的传播。
五、湍流扩散型方程:它的形式为:u_t=p(u_xxx)+q(u_xxxx),其中p和q分别表示湍流的传播速度和湍流的波动速度。
它通常用来描述边界层的湍流场的变化。
一维扩散偏微分方程在物理上反映了某些物理现象的变化,是一类经典的微分方程,广泛应用于物理,工程和数学领域,如工程热力学、传热学、流体动力学等。
值得一提的是,一维扩散偏微分方程也可以用一般的微分方法来求解,求解过程相对简单,求解结果可靠,值得我们学习和应用。
一维对流扩散方程的数值解法对流-扩散方程是守恒定律控制方程的一种模型方程,它既是能量方程的表示形式,同时也可以认为是把压力梯度项隐含到了源项中去的动量方程的代表。
因此,以对流-扩散方程为例,来研究数值求解偏微分方程的相容性、收敛性和稳定性具有代表性的意义。
1 数学模型本作业从最简单的模型方程,即一维、稳态、无源项的对流扩散方程出发,方程如下: 22, 02f f fU D x t x x∂∂∂+=≤≤∂∂∂ (1)初始条件 (),0sin(2)f x t A kx π==(2)解析解()()()224,sin 2Dk tf x t eA k x Ut ππ-=-(3)式中,1,0.05,0.5,1U D A k ====函数(3)描述的是一个衰减波的图像,如图1所示t=0 t=0.5 t=1图1 函数()()()224,sin 2Dk tf x t ek x Ut ππ-=- 的图像(U=1,D=0.05,k=1)2 数值解法2.1 数值误差分析在网格点(),i n 上差分方程的数值解ni f 偏离该点上相应的偏微分方程的精确解(),f i n 的值,称为网格节点上的数值误差。
当取定网格节点数21N =时,观察差分方程的解与微分方程的解在不同时间步长下的趋近程度,其中时间步长分别取值0.05,0.025,0.0125,0.0005t ∆=。
(a )21,0.05N t =∆= (b )21,0.025N t =∆=(c )21,0.0125N t =∆= (d )201,0.0005N t =∆=图2 数值误差随步长的变化情况从图2的(a)~(d)可以定性的看出,数值误差与步长的大小有关。
在满足稳定性条件的前提下,数值误差随着时间步长的减小而减小,同时,图(d )表示增大网格的分辨率也有助于减小网格误差。
为了对数值误差有一个定量的认识,接下来取定时间步长为0.0005t ∆=,分别算出11,21,41,61,81,101,121,161N =时,指标E =1所示。
扩散方程引言扩散方程是描述物质扩散现象的方程之一。
在自然界中,扩散是一种常见的物理现象,例如气体的自由扩散、液体中的溶质扩散以及热量的传导等都可以通过扩散方程来描述。
扩散方程在物理学、化学、工程学等领域都有广泛的应用。
扩散方程的基本概念扩散是指物质由高浓度区域朝向低浓度区域的自发运动。
在数学上,扩散过程可以用扩散方程来描述。
扩散方程是一个偏微分方程,一般形式可以写为:$$ \\frac{{\\partial u}}{{\\partial t}} = D \\cdot \ abla^2 u $$其中,u是描述扩散物质浓度的函数,u是时间,u是扩散系数,uuuu2表示拉普拉斯算子。
上述方程可以解释为:物质的浓度随时间的变化率等于扩散系数和浓度分布的二阶导数之积。
扩散方程的求解方法扩散方程是一个偏微分方程,通常需要采用数值方法来求解。
以下介绍几种常见的求解方法。
有限差分法有限差分法是求解偏微分方程的常用方法之一。
基本思想是将求解区域离散化为有限个点,并通过近似求解偏微分方程的导数。
具体步骤如下:1.将求解区域网格化,并给出相应初始条件和边界条件;2.将扩散方程转化为差分格式,例如中心差分格式;3.迭代计算网格中的节点的值,直到达到收敛条件。
有限差分法的优点是简单易行,适用于一维、二维以及三维空间的扩散问题。
但是其精度较低,对网格尺寸和时间步长的选择敏感。
有限元法有限元法是一种广泛应用于求解偏微分方程的数值方法。
其基本思想是将求解区域分割为有限个单元,并在每个单元内逼近解的形式,然后通过拼接所有单元的解来得到整体的解。
具体步骤如下:1.将求解区域分割为有限个单元,并给出相应初始条件和边界条件;2.在每个单元内选择适当的插值函数形式,建立单元内的近似解;3.将各个单元的近似解拼接起来,形成整体的解;4.通过求解线性方程组得到近似解的系数。
有限元法的优点是适用于复杂几何形状的求解区域,精度较高,并且对网格尺寸的选择相对灵活。
一维扩散方程差分格式的数值计算∂u/∂t=D∂²u/∂x²其中,u(x,t)是在位置x和时间t的扩散现象的浓度,D是扩散系数。
为了对一维扩散方程进行数值计算,可以使用差分格式。
最常用的差分格式是向前差分和中心差分。
1.向前差分格式:使用向前差分格式将时间t和位置x分别离散化,差分步长分别为Δt和Δx。
将扩散方程中的偏导数用有限差分近似替代,可以得到近似方程:(u_i(t+Δt)-u_i(t))/Δt=D(u_i-1(t)-2u_i(t)+u_i+1(t))/Δx²其中,u_i(t)表示在位置x_i和时间t的解,u_i(t+Δt)和u_i(t)是上一时刻和当前时刻的浓度,u_i-1(t)和u_i+1(t)分别是x_i左右两侧位置的解。
这样,一维扩散方程就被转化为一个差分方程。
根据初始条件u(x,0)和边界条件u(0,t)和u(L,t),L表示空间区域的长度,可以得到差分方程的初始条件。
使用向前差分格式可以得到一个显式迭代公式:u_i(t+Δt)=u_i(t)+DΔt(u_i-1(t)-2u_i(t)+u_i+1(t))/Δx²这个公式可以用来逐步推进时间t的步骤,从而获得扩散过程中的浓度分布。
2.中心差分格式:使用中心差分格式将时间t和位置x分别离散化,差分步长分别为Δt和Δx。
将扩散方程中的偏导数用有限差分近似替代,可以得到近似方程:(u_i(t+Δt)-u_i(t))/Δt=D(u_i-1(t)-2u_i(t)+u_i+1(t))/Δx²与向前差分格式不同的是,在右侧位置x_i+1处使用u_i+1(t)近似。
这个差分方程可以进一步简化为一个稳定的隐式迭代公式:u_i(t+Δt)=u_i(t)+DΔt(u_i-1(t+Δt)-2u_i(t+Δt)+u_i+1(t+Δt))/Δx²这个公式可以通过求解线性方程组来计算下一个时间步长的解。
以上是一维扩散方程差分格式的数值计算的基本原理和方法。
一维对流扩散方程是描述物质传输和扩散现象的重要数学模型,对于工程、地质、生物等领域具有重要的理论和应用价值。
在科学研究和工程实践中,人们经常需要利用计算机软件对一维对流扩散方程进行数值求解,以获得物质传输和扩散的详细信息。
MATLAB作为一种强大的科学计算软件,提供了丰富的数学工具和编程接口,可以方便地对一维对流扩散方程进行数值求解。
本文将介绍利用MATLAB对一维对流扩散方程进行数值求解的基本方法和步骤。
一、一维对流扩散方程的数学模型一维对流扩散方程是描述物质在一维空间中传输和扩散的数学模型,通常可以写成如下的形式:∂c/∂t + u∂c/∂x = D∂^2c/∂x^2其中,c是物质浓度,t是时间,x是空间坐标,u是对流速度,D是扩散系数。
该方程的求解可以得到物质浓度随时间和空间的变化规律,对于理解物质传输和扩散过程具有重要意义。
二、MATLAB求解一维对流扩散方程的基本步骤在MATLAB中,可以利用偏微分方程求解工具箱(Partial Differential Equation Toolbox)来对一维对流扩散方程进行数值求解。
求解的基本步骤如下:1. 网格的生成首先需要在空间上生成一个网格,将一维空间离散化为有限个网格点。
可以利用MATLAB中的linspace函数或者自定义函数来实现网格的生成。
2. 边界条件和初始条件的设定根据具体问题的边界条件和初始条件,需要在MATLAB中对边界条件和初始条件进行设定。
3. 偏微分方程的建立利用MATLAB中的偏微分方程建立工具箱,可以方便地将一维对流扩散方程建立为MATLAB中的偏微分方程对象。
4. 方程的数值求解利用MATLAB中的求解器对建立的偏微分方程进行数值求解,可以获得一维对流扩散方程的数值解。
5. 结果的可视化可以利用MATLAB中丰富的绘图函数,对求解得到的数值解进行可视化,以便对物质传输和扩散过程进行直观的理解。
三、MATLAB求解一维对流扩散方程的举例为了进一步说明MATLAB求解一维对流扩散方程的方法,下面举一个简单的例子进行说明。
⼀维热传导⽅程求数值解⼀维热传到⽅程求数值解本⽂主要利⽤泰勒展开将⽅程中的⼀阶还有⼆阶偏导数进⾏离散化,推导出⼀种可以⽤程序求解的形式求解原理⼀维热传导⽅程\begin{align} \begin{cases} \frac{\partial u}{\partial x} \left ( x,t \right ) &=a^{2} \frac{\partial^{2}u}{\partial x^2}u(x,t)+f(x,t)\\ u(x,0)&=\varphi({x})\\u(a,t)&=\gamma_{1}(t)\\ u(b,t)&=\gamma_2(t) \end{cases} \end{align}由于热传导⽅程较为复杂,只能将⽅程中的⼀阶和⼆阶偏导进⾏离散化。
和欧拉法采⽤相同的思路,下⾯进⾏推导:将x与t分别在横坐标与纵坐标上进⾏划分x步长: \Delta{x}= \frac{b-a}{N},得到关于x_j与t_n的表达式:\begin{aligned} x_j &= a + (j-1)\Delta{x} \\ t_n &= 0 + (n-1)\Delta{t} \\ \end{aligned}将函数进⾏近似替换u_j^n\approx u(x_j,t_n)根据泰勒展开将公式进⾏代换对于任意⼀个x_j对t进⾏展开:u(x_j,t_n+\Delta{t})=u(x_j,t_n)+\frac{\partial u}{\partial t} (x_j,t_n)\Delta{t}+···由于很难求出函数的偏导,所以需要将其所有偏导形式转换成容易求解出来的离散形式⾸先⽤⼀维热传导⽅程进⾏替换\frac{\partial u}{\partial t} (x_j,t_n) = a^2 \frac{\partial^{2}u}{\partial x^2}(x_j,t_n)+f(x_j,t_n)利⽤上式联⽴下⾯两个式⼦\begin{aligned} u(x_j+\Delta{x},t_n) &= u(x_j,t_n)+\frac{\partial u}{\partial x} (x_j,t_n)\Delta{x}+1/2\frac{\partial^{2}u}{\partial x^2}(x_j,t_n)\Delta{x}^2+···\\u(x_j-\Delta{x},t_n) &= u(x_j,t_n)-\frac{\partial u}{\partial x} (x_j,t_n)\Delta{x}+1/2\frac{\partial^{2}u}{\partial x^2}(x_j,t_n)\Delta{x}^2-··· \\ \frac{\partial^{2}u} {\partial x^2}(x_j,t_n) &\approx \frac{u_{j+1}^n+u_{j-1}^n-2u_j^n}{\Delta{x}^2} \end{aligned}最后得到递推关系式u_j^{n+1}=u_j^n+[a^2\frac{u_{j+1}^n+u_{j-1}^n-2u_j^n}{\Delta{x}^2}+f_j^n]\Delta{t}化成易于⽤程序求解的形式在时间维度上进⾏递推⾸先设置两个时间向量,将所有的位置包括其中u^n= \begin{pmatrix}u_1^n \\\vdots \\\vdots \\u_{N+1}^n \end{pmatrix}\qquad u^{n+1}= \begin{pmatrix}u_1^{n+1} \\\vdots \\\vdots \\u_{N+1}^{n+1}\end{pmatrix}建⽴系数矩阵\begin{pmatrix} \phi \\ 第⼀取值 \\ \vdots \\ 第N取值 \\ \phi \end{pmatrix}= \begin{pmatrix}-2\quad1\quad0\quad0\quad··· \\1\quad-2\quad1\quad0\quad···\\\vdots \\···\quad0\quad1\quad-2\quad1 \\···\quad0\quad0\quad1\quad-2 \end{pmatrix} \begin{pmatrix}u_1^n \\u_2^n \\\vdots \\\vdots \\u_{N+1}^n\end{pmatrix}为何矩阵要这么建⽴,系数矩阵A的第⼆⾏为例,与右边的列向量相乘得到结果u_1^n - 2u_2^n + u_3^n将结果表⽰成以下列向量。
一维时间分数阶扩散方程的数值解法一维时间分数阶扩散方程是一种常见的微分方程,常用于描述扩散过程的动态变化。
一维时间分数阶扩散方程的数值解法可以使用不同的数值求解方法来解决。
一种常见的一维时间分数阶扩散方程数值解法是使用时间分步法(Time Step Method)。
时间分步法是通过将时间划分为若干个等间隔的时间步,然后利用前一个时间步的解来计算下一个时间步的解的方法。
时间分步法的基本流程如下:
1.选择合适的时间步间隔Δt。
2.对于第i个时间步,计算出对应的解x[i]。
3.根据所使用的时间分步法,利用前一个时间步的解
x[i-1]来计算当前时间步的解x[i]。
4.重复步骤2和3,直到求出结果。