空调温度传感器工作原理及故障分析
- 格式:doc
- 大小:27.00 KB
- 文档页数:2
空调温度传感器阻值对照表随着科技的不断发展,空调作为人们生活中不可或缺的电器设备之一,广泛应用于家庭、商业和工业等领域。
而空调温度传感器作为空调中的关键组成部分之一,起着感知室内温度并根据设定的温度值对空调系统进行控制的作用。
了解空调温度传感器的工作原理及其阻值与温度的关系是非常重要的,本文将介绍空调温度传感器阻值对照表,以方便用户使用和故障排查。
1. NTC热敏电阻的工作原理NTC热敏电阻(Negative Temperature Coefficient Thermistor)是一种温度敏感元件,其电阻值随温度的变化而变化。
当环境温度升高,NTC电阻的阻值下降;当环境温度降低,NTC电阻的阻值增加。
这种阻值与温度之间的负相关关系使得NTC热敏电阻被广泛应用于温度测量和控制领域。
2. 空调温度传感器阻值对照表下表为常见的空调温度传感器阻值对照表,仅供参考。
温度(摄氏度) NTC电阻阻值(千欧姆)-40 11.39-38 10.60-36 9.90-34 9.25-30 8.13 -28 7.64 -26 7.19 -24 6.79 -22 6.43 -20 6.11 -18 5.82 -16 5.56 -14 5.32 -12 5.10 -10 4.91 -8 4.73 -6 4.58 -4 4.44 -2 4.31 0 4.20 2 4.11 4 4.038 3.8910 3.8312 3.7814 3.7316 3.6818 3.6420 3.6022 3.5724 3.5326 3.5028 3.4730 3.443. 使用注意事项在使用空调温度传感器阻值对照表时,需要注意以下几点:(1)由于不同的空调厂家可能采用不同的温度传感器型号和相关电路设计,实际应用中的电阻阻值可能略有差异,因此在使用对照表时需要结合空调设备的具体情况进行参考。
(2)温度传感器的阻值通常由空调系统内部的控制电路测量和校准,一般用户无需直接操作和调整。
空调感温探头工作原理
空调感温探头的工作原理是基于温度传感器的原理,主要包括以下几个步骤:
1. 感温元件:空调感温探头内含有温度传感器,常见的有热电阻和热敏电阻。
热电阻是根据材料的电阻随温度的变化而变化,而热敏电阻则是根据材料的电阻随温度的变化呈正比例变化。
2. 温度测量:当空调感温探头接触到或被暴露在温度环境中时,感温元件的电阻值会随着温度的变化而发生相应的变化。
温度传感器会测量电阻值的变化,并将其转化为电信号。
3. 信号转换:电信号会经过信号转换电路,将电阻值的变化转换为与温度成线性关系的电压或电流信号。
这个信号将被传递给空调系统的控制单元。
4. 温度控制:控制单元接收到温度信号后,会根据设定的温度目标与实际温度进行比较。
如果实际温度高于设定温度,控制单元将启动空调系统的制冷功能,通过控制制冷剂的流动来降低温度。
如果实际温度低于设定温度,则控制单元会停止制冷功能。
总之,空调感温探头通过测量温度传感器的电阻值变化,并将其转换为与温度成线性关系的电压或电流信号,从而实现温度的测量和控制。
空调温度传感器的应用原理1. 概述空调温度传感器是空调系统中非常重要的一个部件,用于测量环境的温度,并根据测量结果调节空调系统的运行模式,以达到室内温度的控制和调节。
本文将介绍空调温度传感器的应用原理以及其在空调系统中的作用。
2. 应用原理空调温度传感器的应用原理主要基于热敏电阻的特性。
热敏电阻是一种随温度变化而改变电阻值的元件。
空调温度传感器中常用的热敏电阻有负温度系数(NTC)热敏电阻和正温度系数(PTC)热敏电阻。
2.1 NTC热敏电阻NTC热敏电阻的电阻值会随温度的升高而下降。
当温度上升时,电阻值会急剧下降;当温度下降时,电阻值会逐渐上升。
空调温度传感器通过测量NTC热敏电阻的电阻值来确定环境的温度。
2.2 PTC热敏电阻PTC热敏电阻与NTC热敏电阻相反,其电阻值会随温度的升高而上升。
空调系统中较少使用PTC热敏电阻作为温度传感器,因为其特性不适合用于温度测量。
3. 空调温度传感器的工作原理空调温度传感器一般由一个热敏电阻和一个电路组成。
热敏电阻负责感知环境的温度变化,而电路则负责将热敏电阻的电阻值转换成与温度相对应的电信号。
具体的工作原理如下:1.当空调温度传感器暴露在环境中时,热敏电阻会受到环境温度的影响,其电阻值会随温度变化而改变。
2.通过测量热敏电阻的电阻值,空调温度传感器可以得知当前环境的温度。
3.空调温度传感器的电路会将热敏电阻的电阻值转换成与温度相对应的电信号。
这个电信号可以是模拟信号,也可以是数字信号。
根据不同的传感器和空调系统设计,电信号的处理方式可能会有所不同。
4.空调系统会根据接收到的电信号来调节空调的工作模式和参数,以控制室内的温度。
4. 空调温度传感器的应用•温度检测和控制:空调温度传感器广泛应用于空调系统中的温度检测和控制。
通过测量室内的温度,空调系统可以根据预设的温度范围来控制空调的开关和风速,从而实现对室内温度的控制和调节。
•温度补偿:在某些特殊的空调系统中,空调温度传感器还可以用于温度补偿。
温度检测电路工作原理及各器件的参数在空调整机上,常用到温度传感器检测室内、外环境温度和两器盘管温度,下面根据常用温度检测电路介绍其工作原理及注意事项。
1.电路原理图2. 工作原理简介温度传感器RT1(相当于可变电阻)与电阻R9形成分压,则T端电压为:5×R9/(RT1+R9);温度传感器RT1的电阻值随外界温度的变化而变化,T端的电压相应变化。
RT1在不同的温度有相应的阻值,对应T端有相应的电压值,外界温度与T端电压形成一一对应的关系,将此对应关系制成表格,单片机通过A/D采样端口采集信号,根据不同的A/D值判断外界温度。
3. 各元器件作用及注意事项3.1 RT1与R9组成分压电路,R9又称标准取样电阻,该电阻不可随意替换,否则会影响控温精度。
3.2 D7与D8为钳位二极管,确保输入T端电压不大于+5V、不小于0V;但并不是所有情况下均需要这两个二极管,当RT1引线较短时可根据实际情况不使用这两个二极管。
3.3 E5起到平滑波形的作用, 一般选10uF/16V电解电容,当RT1引线较长时,要求使用100uF/16V电解电容;若E5漏电,T端电压就会被拉低,导致:制冷时压缩机不工作,制热时压缩机不停机。
3.4 R11和C7形成RC滤波电路,滤除电路中的尖脉冲;C7同样会出现E5故障现象。
3.5 电路中,RT1就是我们常说的感温头,实际上它是一个负温度系数热敏电阻,当温度升高时它的阻值下降,温度降低时阻值变大。
50℃时,阻值为3.45KΩ。
25℃时,为10KΩ;0℃时,为35.2KΩ 。
具体温度与阻值的关系见附表。
若RT1开路或短路,空调器不工作,并显示故障代码;若RT1阻值发生漂移(大于或小于标准阻值)则空调器压缩机或关或常开或出现保护代码。
空调温度传感器原理及故障分析空调温度传感器为负温度系数热敏电阻,简称NTC,其阻值随温度升高而降低,随温度降低而增大。
25℃时的阻值为标称值。
NTC常见的故障为阻值变大、开路、受潮霉变阻值变化、短路、插头及座接触不好或漏电等,引起空调CPU检测端子电压异常引起空调故障。
温度传感器探头型号介绍温度传感器原理分析温度传感器想必大家应该不陌生,如今它已渗入到我们生活的方方面面,那么关于它的探头你了解多少呢?关于它的工作原理你又了解多少呢?本文为你介绍的就是温度传感器探头以及温度传感器的原理分析。
温度传感器探头型号根据测量环境以及介质的不同,温度传感器的测温探头主要有以下几种类型:1.浸入式探头;主要用于测量液体及固体的温度,探头的前段设计为针状或杆状。
这种温度传感器探头的原理是能量守恒,当测量探头的温度比介质低时,热能从被测介质转移到探头;当探头温度高于介质时,热能从探头转移到介质。
在此测量情况,探头与介质的比值越好,越能更精准的测得物体获取的能量,由于能量转移的原因会导致测量时产生误差。
此测量误差可以通过以下方式减小:刺入或浸入的深度10或15倍于探头的直径;当测量液体时,尽量何持液体的流动可以有效减少误差。
2.空气温度探头,用来测量空气温度,例如冷库、冷柜、空调室(调温)、通风场所(通风/排风)等,空气探头的温度传感器裸露,因此示值很容易受气流所影响,最佳的解决方法是在气流为2-3m/s时,顺流轻移探头,使温度达成平衡稳定。
3.表面探头,用来测量物体的表面温度。
空气温度探头和表面探头使用进行表面温度测量时,探头的前端必须垂直于被测物体,与被测物体充分完全的接触。
必须注意的是探头与被测物的接触面必须平坦,否则在温度传感器测量时则会影响测量结果。
温度传感器定义温度传感器是指能感受温度并转换成可用输出信号的传感器。
温度传感器是温度测量仪表的核心部分,品种繁多。
温度传感器对于环境温度的测量非常准确,广泛应用于农业、工业、车间、库房等领域。
温度传感器工作原理基于温度传感器的不同种类,它们的原理也不尽相同,下面拣选几款常见的种类给大家介绍。
1、热电偶传感器哦工作原理当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端或冷端,。
众有教你识别空调温度传感器故障及检修方法温度传感器是指能感受温度并转换成可用输出信号的传感器。
温度传感器是温度测量仪表的核心部分,品种繁多。
按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。
众有在实修中发现,因温度传感器变值或性能不良而产生的故障较为多见,下面是温度传感器异常后的故障现象与检修方法。
恒温恒湿空调一、主要参数1.CPU检温引脚电压CPU检测室温、室内管温、室外管温脚的电压值,正常时一般为1.6V~3.6V.如电压过低或过高,应检查该脚所接的传感器是否变值,以及串接的+5V或+3.3V分压电阻、电容是否击穿漏电,感温线是否断路或接插不良。
2.负温度系数的传感器在25℃时,传感器阻值一般为5kΩ、l5kΩ、20kΩ、50kΩ。
同一机型的室内外传感器参数一般相同,如传感器变值,可参照本机其他传感器,也可检测与传感器串联的分压电阻的阻值得出其近似阻值。
传感器的检测:传!器的标称阻值是以25℃为准,具体阻值与温度有关,温度升高,阻值变小,温度降低,阻值增大。
检测传感器感温性能通常是将其放入开水中.用万用表Rx1k拌测阻值变化是否灵敏。
另外,变值后的传感器,如敲击后恢复正常值可视为性能不位,应予以更换。
检修中应常备各种型号的传感器,以方便检则参照。
传感器二、常见故障现象故障现象1:制热模式下吹冷风,室外机不启动,或启动一下即停。
多为室内管温传感器变值,如果阻值变小,在温度尚未达到要求的情况下,CPU误认为蒸发器已升至30℃,随即开始送风,即吹冷风;如阻值变大,则会造成室内机长时间不送风。
故障现象2:制热模式下,室内机风速很低,室内管根变值或感源性能不良均会引发上述现象。
当管温阻值变大时.压缩机工作不久就停机。
在蒸发器温度未达到30℃时,室内风机就以微风挡工作;当温度达到30℃时,室内风机以设定风速正常工作。
故障现象3:制冷模式下,开始制冷正常,过一会室外机停止工作,随后,频繁启动。
空调温度传感器原理及故障分析温度传感器, 空调, 故障, 原理空调温度传感器为负温度系数热敏电阻,简称NTC,其阻值随温度升高而降低,随温度降低而增大。
25℃时的阻值为标称值。
NTC常见的故障为阻值变大、开路、受潮霉变阻值变化、短路、插头及座接触不好或漏电等,引起空调CPU检测端子电压异常引起空调故障。
空调常用的NTC有室内环温NTC、室内盘管NTC、室外盘管NTC等三个,较高档的空调还应用外环温NTC、压缩机吸气、排气NTC等。
NTC在电路中主要有如图一所示两种用法,温度变化使NTC阻值变化,CPU端子的电压也随之变化,CPU根据电压的变化来决定空调的工作状态。
本文附表为几种空调的NTC参数。
室内环温NTC作用:室内环温NTC根据设定的工作状态,检测室内环境的温度自动开停机或变频。
定频空调使室内温度温差变化范围为设定值+1℃,即若制冷设定24℃时,当温度降到23℃压缩机停机,当温度回升到25℃压缩机工作;若制热设定24℃时,当温度升到25℃压缩机停机,当温度回落到23℃压缩机工作。
值得说明的是温度的设定范围一般为15℃—30℃之间,因此低于15℃的环温下制冷不工作,高于30℃的环温下制热不工作。
变频空调根据设定的工作温度和室内温度的差值进行变频调速,差值越大压缩机工作频率越高,因此,压缩机启动以后转速很快提升。
室内盘管NTC 室内盘管制冷过冷(低于+3℃)保护检测、制冷缺氟检测;制热防冷风吹出、过热保护检测。
空调制冷30分钟自动检查室内盘管的温度,若降温达不到20℃则自动诊断为缺氟而保护。
若因某些原因室内盘管温度降到+3℃以下为防结霜也停机(过冷)制热时室内盘管温度底于32℃内风机不吹风(防冷风),高于52℃外风机停转,高于58℃压缩机停转(过热);有的空调制热自动控制内风机风速;有的空调自动切换电辅热变频空调转速控制等。
室外盘管NTC 制热化霜温度检测,制冷冷凝温度检测。
制热化霜是热泵机一个重要的功能,第一次化霜为CPU定时(一般在50分钟),以后化霜则由室外盘管NTC控制(一般为—11℃要化霜,+9℃则制热)。
温度传感器的原理及应用大全1. 引言温度传感器是一种电子设备,用于测量和监测环境或物体的温度。
它们在各种工业和商业应用中广泛使用,包括自动化控制系统、物流和供应链管理、电子设备等。
本文将介绍温度传感器的原理以及它在不同领域中的应用。
2. 温度传感器的工作原理温度传感器基于不同的原理来测量温度。
以下是常见的温度传感器和它们的工作原理:2.1 热电传感器热电传感器利用热电效应测量温度。
其工作原理基于两个不同材料之间的热电势差。
常见的热电传感器包括热电偶和热电阻。
•热电偶:热电偶由两种不同材料的导线组成,当它们的连接点处于不同温度时,会产生热电势差。
通过测量热电势差,可以确定温度变化。
•热电阻:热电阻的电阻值随温度变化而变化。
最常用的热电阻是铂热电阻,它的电阻值与温度呈线性关系。
2.2 热敏电阻热敏电阻是一种根据温度变化而改变其电阻值的传感器。
主要有两种热敏电阻:正温度系数(PTC)和负温度系数(NTC)热敏电阻。
•PTC热敏电阻:其电阻值随温度升高而增加。
PTC热敏电阻可用于过热保护、温度控制等应用。
•NTC热敏电阻:其电阻值随温度升高而减小。
NTC热敏电阻常用于测量环境温度。
2.3 热敏二极管热敏二极管是一种PN结构的二极管,其电阻值随温度变化而变化。
通过测量热敏二极管的电阻值,可以确定温度变化。
3. 温度传感器的应用3.1 工业自动化在工业自动化系统中,温度传感器用于监测和控制各种设备和过程。
以下是几个常见的应用场景: - 温度控制:温度传感器可以测量设备或工艺中的温度,并根据预定的温度范围自动控制设备的运行,确保温度维持在安全和稳定的范围内。
- 物料监测:温度传感器可用于检测和监测物料的温度,例如液体、气体等。
这对于生产线上的工艺控制和质量监控至关重要。
- 环境监测:温度传感器可用于监测工厂、仓库、办公室等环境中的温度变化,以确保工作环境的舒适性和安全性。
3.2 环境气象在气象领域,温度传感器用于测量空气和土壤的温度。
空调温度传感器为负温度系数热敏电阻,简称ntc,其阻值随温度升高而降低,随温度降低而增大。
25℃时的阻值为标称值。
空调常用的ntc有室内环温ntc、室内盘管ntc、室外盘管ntc等三个,较高档的空调还应用外环温ntc、压缩机吸气、排气ntc等。
温度变化使ntc阻值变化,cpu端子的电压也随之变化,cpu根据电压的变化来决定空调的工作状态。
1、室内环温ntc作用:室内环温ntc根据设定的工作状态,检测室内环境的温度自动开停机或变频。
定频空调使室内温度温差变化范围为设定值 +1℃,即若制冷设定24℃时,当温度降到23℃压缩机停机,当温度回升到25℃压缩机工作;若制热设定24℃时,当温度升到25℃压缩机停机,当温度回落到23℃压缩机工作。
值得说明的是温度的设定范围一般为15℃—30℃之间,因此低于15℃的环温下制冷不工作,高于30℃的环温下制热不工作。
变频空调根据设定的工作温度和室内温度的差值进行变频调速,差值越大压缩机工作频率越高,因此,压缩机启动以后转速很快提升。
2、室内盘管ntc 室内盘管制冷过冷(低于+3℃)保护检测、制冷缺氟检测;制热防冷风吹出、过热保护检测。
空调制冷30分钟自动检查室内盘管的温度,若降温达不到20℃则自动诊断为缺氟而保护。
若因某些原因室内盘管温度降到+3℃以下为防结霜也停机(过冷)制热时室内盘管温度底于32℃内风机不吹风(防冷风),高于52℃外风机停转,高于58℃压缩机停转(过热);有的空调制热自动控制内风机风速;有的空调自动切换电辅热变频空调转速控制等。
3、室外盘管ntc 制热化霜温度检测,制冷冷凝温度检测。
制热化霜是热泵机一个重要的功能,第一次化霜为cpu定时(一般在50分钟),以后化霜则由室外盘管ntc控制(一般为—11℃要化霜,+9℃则制热)。
制冷冷凝温度达68℃停压缩机,代替高压压力开关的作用;变频制冷则降频阻止盘管继续升温。
外环温ntc 控制室外风机的转速、冬季预热压缩机等。
4、排气ntc 使变频压缩机降频,避免外机过热,缺氟检测等。
5、吸气ntc 控制制冷剂流量,有步进电机控制节流阀实现。
故障分析
室内外盘管ntc损坏率最高,故障现象也各种各样。
室内外盘管ntc由于位处温度不断变化及结露或高温的环境,所以其损坏率较高。
主要表现在电源正常而整机不工作、工作短时间停机、制热时外机正常内风机不运转、外风机不工作或异常停转,压缩机不启动,变频效果差,变频不工作,制热不化霜等。
化霜故障可代换室外盘管ntc或室外化霜板。
在电源正常而空调不工作时也要查室内环温ntc;空调工作不停机或达不到设定温度停机,也要先查室内环温ntc;变频空调工作不正常也会和它有关。
因室内环温ntc若出现故障会使得cpu 错误地判断室内环温而引起误动作。
室内环温ntc损坏率不是很高。
三星高新空调器疑难故障维修一例
故障现象:三星kfr-72lw/bds柜式空调器制冷效果下降,高压压力偏低于正常值分析与检测:四通阀吸气管温度较高,阀体内制冷剂气流声增大,贮液器温度较高。
维修方法:更换四通阀后,试机正常。
温馨提示:四通阀的常见故障及检修方法
(1)电磁换向阀的常见故障为:电磁阀阀芯不动作,堵塞、滑块变形、漏造成滑块不动作或动作不到位。
(2)四通阀的更换方法及注意事项
在更换四通阀时,首先将制冷系统中的制冷剂放出,给制冷系统充注氮气,并焊下损坏的四通阀。
将新更换的四通阀线圈取下,采取降温措施,将阀体放入水槽中,把焊接管口留在水面上,注意不要让水分进入阀体。
或用水浸湿面纱后放在阀体上进行降温维修,以防止因烧
焊的时候,阀体温度升高,使滑块产生变形。
焊接阀接口时,应避免烧焊时间过长。
四通阀更换完毕,抽真空适量填充制冷剂,并检漏试机,检查制冷和制热运行情况。
注意:当制冷系统内制冷剂不足或无制冷剂时,就无法驱动阀体内的活塞动作,使四通阀无法进行换向。