第8章肿瘤遗传学(一)
- 格式:ppt
- 大小:16.45 MB
- 文档页数:122
肿瘤分子遗传学和治疗方法随着医学科技的不断发展,人们对于肿瘤分子遗传学的认识也越来越深入。
肿瘤分子遗传学是指利用分子生物学和遗传学的方法,研究肿瘤发生发展的分子水平的科学。
它是肿瘤研究的重要分支之一。
在肿瘤分子遗传学的研究中,研究人员可以通过解析声波和电子显微镜以及其他分析技术,来获取关于肿瘤 DNA 的信息。
这些信息可帮助医生确定肿瘤的种类、研究其生长方式、选择最佳治疗方案等等。
肿瘤分子遗传学的重要性不言而喻,它可以帮助医生了解肿瘤发生发展的各个阶段,进而选择针对性的治疗方法,提高治疗效果。
尤其在癌症治疗方面,肿瘤分子遗传学已经成为临床医生的重要工具。
近年来,人们对肿瘤分子遗传学的研究越来越深入。
研究发现,癌症的发生、发展、进化都与基因异常有关。
比如,一些基因的突变可能会导致肿瘤细胞出现爆发性增长;而某些基因的拷贝数变化也可能引发肿瘤发生。
因此,了解肿瘤基因变异才能更好地治疗肿瘤疾病。
肿瘤分子遗传学的发展也为肿瘤治疗带来了一些新的方法。
例如,普及化的基因测序技术让肿瘤的检测和分析更为精准。
而基于肿瘤分子遗传学开发出的靶向治疗药物,也成为了肿瘤治疗的新方向。
靶向治疗是一种相对传统的癌症治疗方法的新方向。
相比于传统的治疗方法(如放疗、化疗等),靶向治疗可以更明确地选择目标,只抑制癌细胞的生长和繁殖,从而达到最少对健康细胞的伤害,最大限度提高疗效的目的。
这一治疗方法的核心在于利用特定靶标设计针对性药物,使其只攻击癌细胞,最终达到治愈疾病的目的。
靶向治疗的研究一直是肿瘤治疗领域的热点。
靶向治疗药物的研发,是建立在肿瘤分子遗传学基础上的。
目前已有多种靶向治疗药物上市,能够有效的抑制肿瘤细胞生长,减轻病人的痛苦,延长病人的生存期。
以 EGFR 标志物为例,这种标志物是表皮生长因子受体(EGFR)的一种。
EGFR 是肺癌中最常见的突变标志物之一,近年来靶向治疗也有研究通过靶向 EGFR 来治疗肺癌。
例如,一种名为“Tarceva” 的药物,可以针对 EGFR 基因突变的肺癌进行治疗。
医学遗传学名词解释(肿瘤遗传学)1、癌家族(cancer family)癌家族是指一个家族中多个成员患有同一种遗传性恶性肿瘤。
2、家族性癌(familial cancer)家族性癌通常表示一个家族的多个成员患有恶性肿瘤,而不一定是遗传性的,所患肿瘤种类各异。
3、原癌基因(cellu1ar oncogene,c-onc)存在于正常细胞中,在适当环境下被激活可引起细胞恶性转化的基因。
4、干系与旁系(stemline and sideline )在肿瘤多克隆细胞群中,占主导数目的克隆构成肿瘤干系,占非主导数目的克隆称为旁系。
5、众数(model number)指肿瘤细胞干系的染色体数目称为众数。
6、二次突变假说(two-hit hypothesis)二次突变假说假设视网膜细胞瘤是由两个独立与连续的基因突变产生的,即二次突变事件引起的。
遗传性肿瘤病例中,第一次突变发生于生殖细胞,并且传递给胚胎发育的每一个体细胞,而第二次突变随机发生在体细胞中。
在这种情况下,双侧视网膜的细胞都有可能发生第二次突变井形成肿瘤。
相比之下,非遗传性视网膜母细胞瘤是同一个体细胞发生两次独立的突变,因而在双侧视网膜都发生二次突变的可能性较小。
7、特异性标记染色体(specificity marker chromosome)在肿瘤的发生发展过程中,由于细胞有丝分裂异常并产生部分染色体断裂与重接,形成了一些结构特殊的标志染色体,其中有一小部分能够在肿瘤细胞中稳定遗传,称为特异性标志染色体,与肿瘤的恶性程度及转移能力密切相关。
8、Ph染色体在慢性粒细胞性白血病(CML)中发现了一条比G组染色体还小的异常染色体,称为Ph染色体。
约95%的慢性粒细胞性白血病细胞携有Ph染色体,‘它可以作为CML的诊断依据。
9、多步骤致癌(multistep carcinogenesis)假说多步骤致癌假说又称多步骤损伤学说(multistep theory) ,细胞癌变往往需要多个癌相关基因的协同作用,要经过多阶段的演变,其中不同阶段涉及不同的癌相关基因的激活与失活。
第八章遗传与变异一、本章教材分析:生物世代相传,其性状的传递保持着相对稳定。
性状传递有序地按规律进行。
在第六章探讨过遗传信息的传递和表达、第七章了解生殖方式和细胞分裂过程中遗传物质传递规律的基础上,本章继续研究遗传规律。
了解遗传规律,有助于人们对生命的认识,并指导生产实践和预防遗传病。
本章从遗传规律、伴性遗传、变异、人类遗传病和遗传病的预防四个方面阐述了生命遗传与变异的最基本规律。
基因的分离和自由组合规律是孟德尔首先发现的,孟德尔的实验过程和科学方法是学生学习科学探究方法和精神的良好教材。
通过模拟实验能帮助学生进一步了解性状与基因组合之间的关系,从而使学生更好理解基因的两大遗传规律。
对于“伴性遗传”的内容,教材以人类伴性遗传的典型例子如红绿色盲、抗维生素D佝偻病、毛耳性状的遗传等,说明伴随着X、Y染色体遗传的特点,方便学生理解伴性遗传的相关知识。
“变异”是生物多样性和进化的来源。
教材通过举例说明变异在生物界无处不在,然后简要介绍基因重组、基因突变、染色体畸变等概念,并指出这些变化是导致遗传物质发生变异的主要原因。
变异可以自发产生也可以在人工条件下发生。
人类可通过物理、化学、太空育种等方法实施人工诱变获得需要的品种。
但某些人工诱变可可能导致人体细胞的癌变,是生活中需要避免的。
通过实验“探究化学因子对蚕豆根尖细胞变异的影响”,学生可以直观地了解化学、物理因子引起细胞染色体发生变异实例。
第4节介绍常见的遗传病种类及病因,并从遗传学角度分析探讨人类优生与遗传病的预防关系,体现STS教学理念。
二、课题:第八章遗传和变异第1节遗传规律三、本节教材分析:遗传与变异是生命的基本特征之一,遗传现象普遍存在,遗传规律的揭示是建立在实验基础上的。
孟德尔是近代遗传学的奠基人,本节首先介绍孟德尔的研究轶事,突出他的研究思路、方法及科学研究的精神。
通过让学生读出孟德尔的研究获得成功的原因,让学生思考成功的科学研究包含的要素,鼓励学生积极运用科学知识、树立正确的态度解决自己学生和生活中遇到的问题。
肿瘤的表观遗传学研究肿瘤的表观遗传学研究是近年来在肿瘤学领域中崭露头角的研究方向。
它覆盖了一系列与基因表达和染色质状态相关的修饰,包括DNA 甲基化、组蛋白修饰、非编码RNA等。
这些修饰可以影响基因表达,从而促进肿瘤的发生和发展。
下面将对肿瘤的表观遗传学研究进行详细介绍。
首先,我们来了解一下肿瘤的表观遗传学在肿瘤发生发展中的重要性。
肿瘤是由一系列致癌基因的异常激活和抑癌基因的失活所致。
除了基因突变之外,肿瘤细胞还出现了染色体异常、DNA甲基化和组蛋白修饰的改变,这些都属于表观遗传学的范畴。
肿瘤细胞的表观遗传学改变可以导致DNA序列的变化,从而改变基因的正常功能,促进肿瘤的发生和发展。
其次,我们来具体了解肿瘤的表观遗传学修饰。
DNA甲基化是最为常见的表观遗传学修饰之一。
在正常细胞中,DNA甲基化主要发生在CpG位点上,通过DNA甲基转移酶将甲基基团添加到CpG位点上的胞嘧啶上。
然而,在肿瘤细胞中,DNA甲基化状态发生了改变,表现为全基因组或某些特定基因区域的甲基化程度的增加或减少。
这些甲基化的变化可以影响到基因的转录以及染色质的结构和稳定性。
除了DNA甲基化外,组蛋白的修饰也是肿瘤中常见的表观遗传学修饰。
组蛋白是一种包裹DNA的蛋白质,在细胞中具有调控基因表达的重要作用。
组蛋白修饰通常包括乙酰化、甲基化、磷酸化和泛素化等。
在肿瘤细胞中,组蛋白修饰的模式发生了改变,导致某些基因的表达受到抑制或激活。
例如,H3K27me3修饰的增加可以抑制肿瘤抑制基因的表达,从而促进肿瘤的发展。
此外,非编码RNA(non-coding RNA)在肿瘤的表观遗传学中也扮演着重要的角色。
非编码RNA是指不能编码蛋白质的RNA分子,其中包括长链非编码RNA(lncRNA)和微小RNA(miRNA)。
近年来的研究发现,非编码RNA可以通过与DNA、RNA或蛋白质相互作用,调控基因的表达和功能。
在肿瘤中,非编码RNA的表达也发生了改变,从而影响肿瘤细胞的增殖、转移和耐药性等特性。
医学遗传学名词解释(肿瘤遗传学)1、癌家族(cancer family)癌家族是指一个家族中多个成员患有同一种遗传性恶性肿瘤。
2、家族性癌(familial cancer)家族性癌通常表示一个家族的多个成员患有恶性肿瘤,而不一定是遗传性的,所患肿瘤种类各异。
3、原癌基因(cellu1ar oncogene,c-onc)存在于正常细胞中,在适当环境下被激活可引起细胞恶性转化的基因。
4、干系与旁系(stemline and sideline )在肿瘤多克隆细胞群中,占主导数目的克隆构成肿瘤干系,占非主导数目的克隆称为旁系。
5、众数(model number)指肿瘤细胞干系的染色体数目称为众数。
6、二次突变假说(two-hit hypothesis)二次突变假说假设视网膜细胞瘤是由两个独立与连续的基因突变产生的,即二次突变事件引起的。
遗传性肿瘤病例中,第一次突变发生于生殖细胞,并且传递给胚胎发育的每一个体细胞,而第二次突变随机发生在体细胞中。
在这种情况下,双侧视网膜的细胞都有可能发生第二次突变井形成肿瘤。
相比之下,非遗传性视网膜母细胞瘤是同一个体细胞发生两次独立的突变,因而在双侧视网膜都发生二次突变的可能性较小。
7、特异性标记染色体(specificity marker chromosome)在肿瘤的发生发展过程中,由于细胞有丝分裂异常并产生部分染色体断裂与重接,形成了一些结构特殊的标志染色体,其中有一小部分能够在肿瘤细胞中稳定遗传,称为特异性标志染色体,与肿瘤的恶性程度及转移能力密切相关。
8、Ph染色体在慢性粒细胞性白血病(CML)中发现了一条比G组染色体还小的异常染色体,称为Ph染色体。
约95%的慢性粒细胞性白血病细胞携有Ph染色体,‘它可以作为CML的诊断依据。
9、多步骤致癌(multistep carcinogenesis)假说多步骤致癌假说又称多步骤损伤学说(multistep theory) ,细胞癌变往往需要多个癌相关基因的协同作用,要经过多阶段的演变,其中不同阶段涉及不同的癌相关基因的激活与失活。
医学遗传学名词解释第一章绪论1.medical genetics(医学遗传学)是用人类遗传学的理论和方法研究遗传病从亲代到子代的特点和规律、起源和发生、病理机制、病变过程及其与临床关系(诊断、治疗和预防)的一门综合性学科。
2.genetic disease(遗传病)细胞内的遗传物质在数量、结构和功能方面发生改变所引起的疾病。
其发生需要有一定的遗传基础;通过这种基础,能按一定方式传给后代。
在现代医学中,遗传病的概念有所扩大,逐渐强调环境因素所起的作用。
3.somatic cell genetic disorder(体细胞遗传病)是指只能在特异的体细胞中发生的遗传病,不能在世代间垂直传递。
体细胞基因突变是此类疾病发生的基础。
主要包括恶性肿瘤、白血病、自身免疫缺陷病、衰老等。
在经典的遗传病的概念中,并不包括此类疾病。
4.recurrence risk(再发风险率)是指病人所患的遗传病在家系亲属中再次发生的风险率。
第二章人类基因1.gene(基因)是DNA(或RNA)分子上具有遗传效应的特定核苷酸序列,是细胞内遗传物质的结构和功能单位,可以通过细胞内RNA和蛋白质的合成,决定生物的性状。
2.genome(基因组)是指包含在该生物的DNA(部分病毒是RNA)中的全部遗传信息的总和,也就是单倍体细胞中的全部基因的总和。
人类基因组包括核基因组和线粒体基因组。
3.solitary gene(单一基因)也称单一序列。
是指在一个单倍体基因组中只有一个拷贝的基因。
4.gene family(基因家族)许多基因不是完全单拷贝,属于若干个相似基因的家族,它们进化来源相同,结构、功能相似,称基因家族。
它们可以紧密排列在一起,形成一个基因簇;也可以分散在同一染色体的不同位置,或者存在于不同的染色体上的,各自具有不同的表达调控模式。
5.pseudogene(假基因)是一种畸变基因,其核苷酸序列和有正常功能的基因有很大的同源性;但由于突变而不能表达,因而没有功能。
医学遗传学复习思考题第1章1.名词:遗传病:由于遗传物质改变而引起的疾病家族性疾病:指表现出家族聚集现象的疾病先天性疾病:临床上将婴儿出生时就表现出来的疾病。
2.遗传病有哪些主要特征?分为哪5类?特征:基本特征:遗传物质改变其他特征:垂直传递、先天性和终生性、家族聚集性、遗传病在亲代和子代中按一定比例出现分类:单基因遗传病、多基因遗传病、染色体病、体细胞遗传病、线粒体遗传病3、分离律,自由组合律应用。
第2章1.名词:(第七章)核型:一个体细胞的全部染色体所构成的图像称核型核型分析:将待测细胞的全部染色体按照Denver(丹佛)体制经配对、排列,进行识别和判定的分析过程,成为核型分析Denver体制:指1960年人类染色体研究者在美国丹佛市聚会制定的人类有丝分裂染色体标准命名系统,Denver体制主要依据染色体大小和着丝粒位置等形态特点,将人类体细胞的46条染色体分为23对,7组,其中22对为男女所共有,称常染色体,以长度递减和着丝粒位置依次编号为1~22号,另外一对与性别有关,随性别而异,称性染色体。
Xx代表女性,而xy代表男性。
2.莱昂假说(1)雌性哺乳动物间期体细胞核内仅有一条染色体有活性,其他的X染色体高度螺旋化而呈异固缩状态的x染色质,在遗传上失去活性。
(2失活发生在胚胎发育的早期(人胚第16天);在此之前体细胞中所有的x染色体都具有活性。
(3)两条X染色体中哪一条失活是随机的,但是是恒定的。
3.染色质的基本结构染色质的基本结构单位为核小体;主要化学成分DNA 和组蛋白;分为常染色质、异染色质。
第3章1.名词:基因:基因组中携带遗传信息的最基本的物理和功能单位。
基因组:一个体细胞所含的所有遗传物质的总和,包括核基因组和线粒体基因组。
基因家族:指位于不同染色体上的同源基因。
2.断裂基因的结构特点,断裂基因如何进行转录真核生物结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因,一个断裂基因能够含有若干段编码序列,这些可以编码的序列称为外显子。
第一章绪论无第二章遗传的细胞学基础1.常染色质:间期核内纤维折叠盘曲程度小、分散度大、能活跃地进行转录的染色质。
2.异染色质:间期核内纤维折叠盘曲紧密、呈凝聚状态,一般无转录活性的染色质,又分为结构异染色质和兼性异染色质两大类。
3.兼性异染色质:是在特定细胞的某一发育阶段由原来的常染色质失去转录活性,转变成凝缩状态的异染色质,二者的转化可能与基因的表达调控有关。
4. Lyon假说:(1)雌性哺乳动物体细胞内仅有一条X染色体有活性,其他的X染色体在间期细胞核中螺旋化而呈异固缩状态的X染色质,在遗传上失去活性。
(2)失活发生在胚胎发育的早期(人胚第16天);在此之前所有体细胞中的X染色体都具有活性。
(3)X染色体的失活是随机的,但是是恒定的。
5.剂量补偿:由于正常女性体细胞中的1条X染色体发生了异固缩,失去了转录活性,这样就保证了男女性个体X染色体上的基因产物在数量上基本一致,这称为X染色体的剂量补偿。
第三章遗传的分子基础1.外显子和内含子:真核生物的基因为断裂基因,即结构基因是不连续排列的,中间被不编码的插入序列隔开,编码序列称为外显子,编码序列中间的插入序列称为内含子。
2.单一序列和高度重复序列:单一序列是在一个基因组中只出现一次或少数几次,大多数编码蛋白质和酶类的基因即结构基因为单一序列。
重复序列是指在基因组中有很多拷贝的DNA序列,有些重复序列与染色体的结构有关。
3.基因突变:是指基因在结构上发生碱基对组成或排列顺序的改变。
4.转换和颠换:转换是指一个嘌呤被另一个嘌呤所取代,或是一个嘧啶被另一个嘧啶所取代。
颠换指嘌呤取代嘧啶,或嘧啶取代嘌呤。
5.同义突变:是指碱基替换使某一密码子发生改变,但改变前后的密码子都编码同一氨基酸,实质上并不发生突变效应。
6.错义突变:是指碱基替换导致改变后的密码子编码另一种氨基酸,结果使多肽链氨基酸种类和顺序发生改变,产生异常的蛋白质分子。
7.无义突变:是指碱基替换使原来为某一个氨基酸编码的密码子变成终止密码子,导致多肽链合成提前终止。