Nastran动力分析1章
- 格式:ppt
- 大小:654.00 KB
- 文档页数:59
NASTRAN_动⼒分析指南第⼀章动⼒学分析⽅法及NX NASTRAN基本使⽤介绍1.1 有限元分析⽅法介绍计算机软硬件技术的迅猛发展,给⼯程分析、科学研究以⾄⼈类社会带来急剧的⾰命性变化,数值模拟即为这⼀技术⾰命在⼯程分析、设计和科学研究中的具体表现。
数值模拟技术通过汲取当今计算数学、⼒学、计算机图形学和计算机硬件发展的最新成果,根据不同⾏业的需求,不断扩充、更新和完善。
近三⼗年来,计算机计算能⼒的飞速提⾼和数值计算技术的长⾜进步,诞⽣了商业化的有限元数值分析软件,并发展成为⼀门专门的学科-计算机辅助⼯程CAE(Computer Aided Engineering)。
这些商品化的CAE软件具有越来越⼈性化的操作界⾯和易⽤性,使得这⼀⼯具的使⽤者由学校或研究所的专业⼈员逐步扩展到企业的产品设计⼈员或分析⼈员,CAE在各个⼯业领域的应⽤也得到不断普及并逐步向纵深发展,CAE⼯程仿真在⼯业设计中的作⽤变得⽇益重要。
许多⾏业中已经将CAE分析⽅法和计算要求设置在产品研发流程中,作为产品上市前必不可少的环节。
CAE仿真在产品开发、研制与设计及科学研究中已显⽰出明显的优越性:●CAE仿真可有效缩短新产品的开发研究周期;●虚拟样机的引⼊减少了实物样机的试验次数;●⼤幅度地降低产品研发成本;●在精确的分析结果指导下制造出⾼质量的产品;●能够快速的对设计变更作出反应;●能充分的和CAD模型相结合并对不同类型的问题进⾏分析;●能够精确的预测出产品的性能;●增加产品和⼯程的可靠性;●采⽤优化设计,降低材料的消耗或成本;●在产品制造或⼯程施⼯前预先发现潜在的问题;●模拟各种试验⽅案,减少试验时间和经费;●进⾏机械事故分析,查找事故原因;●等等当前流⾏的商业化CAE软件有很多种,国际上早20世纪在50年代末、60年代初就投⼊⼤量的⼈⼒和物⼒开发具有强⼤功能的有限元分析程序。
其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。
Nastran基础培训1_简介第一章 Nastran 简介一概述1 功能齐全的大型有限元软件a. 大型:有上百万条源程序语句b. 功能齐全:进行静力、动力分析,敏度,分析与优化设计c. 实用面广:航空、航天、船舶、汽车、机械、建筑、桥梁、水力、化工、海洋、能源、橡胶等2 通用性强a. NASTRAN输入/输出格式被许多行业公认为一种标准b. 几乎所有 CAD/CAM 系统都提供了与 NASTRAN 的接口c. NASTRAN 的计算结果经常作为评估其它有限元分析软件精度的参照标准3 经过严格的检验,高度可靠性a. 每一版本发行都要经过 4 个级别,5,000 多个测试题目的考核b. 30 多年的开发与不断改进c. 3、50,000 多个用户的长期工程应用验证d. NASTRAN 已成为许多工业部门法定结构分析软件。
4 强大的用户开发程序- DMAP关于 DMAP (Direct Matrix Abstraction Programming)a. 为用户提供由 DMAP 语言组成的固定分析流程b. 用户可以根据需要用 DMAP 语言修改与重组新的流程。
5 丰富的文献资料* NASTRAN 线性静力与模态分析指南( NASTRAN Linear Static and Normal Modes Analysis User’s Guide )* NASTRAN 基本动力分析指南( NASTRAN Basic Dynamic Analysis User’s Guide )* NASTRAN 数值方法指南( NASTRAN Nunerical Methods User’s Guide )* NASTRAN 设计敏度与优化指南( NASTRAN Design Sensitivity and Opotimization User’s Guide ) * NASTRAN 气弹分析指南( NASTRAN Aeroelastic Analysis User’s Guide )* NASTRAN 热分析指南( NASTRAN Thermal Analysis User’s Guide )* NASTRAN 超单元分析指南( NASTRAN Superelement Analysis User’s Guide )* NASTRAN DMAP和数据库应用指南(NASTRAN DMAP and Database Application User’s Guide) * NASTRAN 非线性分析指南( NASTRAN Nonlinear Analysis User’s Guide )6 主要缺点(1) Nastran 只是一个求解器,没有自己的前后处理。
MSCNASTRAN颤振分析模块使⽤说明1.MSC/NASTRAN 颤振分析模块使⽤说明1.1.颤振分析模块颤振分析模块考虑结构⽓动弹性问题的动⼒稳定性。
它可以分析亚⾳速或超⾳速流,提供五种不同的⽓动⼒理论,包括⽤于亚⾳速的Doublet Lattice理论、Strip 理论以及⽤于超⾳速的Machbox理论、Piston理论、ZONA理论等。
对于稳定性分析,系统提供三种不同的⽅法:⼆种美国⽅法(K法,KE法)和⼀种英国⽅法(PK 法),输出结果包括阻尼、频率和每个颤振模态的振型。
本说明仅以亚⾳速Doublet Lattice理论为例。
1.2.建模的⼀般流程其中结构有限元建模技术较为普及,不予说明。
升⼒⾯建模和颤振分析⽂件以填卡较为实⽤,⼤致包括:1)建⽴⽓动坐标系;2)设定影响体;3)选择颤振解法;4)给出飞⾏环境;5)给出马赫数和减缩频率系列;6)设定求解参数,如参与耦合的频率范围或模态数;7)选择适当的⽓动理论,定义升⼒⾯⼏何及分⽹信息。
⾄此完成升⼒⾯建模,下⼀步定义结构结点与升⼒⾯单元的耦合,即选择适当的样条将升⼒⾯结点同结构结点联系起来。
其中升⼒⾯结点是在定义升⼒⾯后由系统⾃动⽣成的,定义样条时直接引⽤升⼒⾯单元号;所以我们需要做的是将参与耦合的结构结点定义为⼀个集合,以便在样条定义中引⽤。
1.3.数据⽂件组织形式颤振分析模型数据⽂件遵循固定格式:设定求解时间、标题等;设置求解采⽤的特征值解法和颤振解法;输⼊模型数据即结构刚度和质量数据,还有升⼒⾯模型数据。
结构模型和升⼒⾯模型可以分别是独⽴的数据⽂件,只在颤振分析⽂件中将其包括进来。
下⾯以⼀个简单的例⼦(HA145B)来实现上述过程,并对颤振分析常⽤的卡⽚做简略介绍。
1.3.1.升⼒⾯模型⽂件$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$定义⽓动坐标系,其X轴正向为来流⽅向(即将被AERO卡⽚引⽤)。
用MSC.Nastran进行流固耦合系统的动力学分析王安平刘兵山中国科学院光电研究院北京 100190摘要:本文用Nastran2005对一个流固耦合系统进行了模态分析,结合一个密闭的薄壁结构模型,给出了分析的一般过程和需要注意的问题,也给出了该薄壁结构的模态频率、空腔系统的声学模态频率,以及耦合系统中,结构和空腔的声学模态频率和振型的变化。
关键词:Nastran,流固耦合,声学Modal Analysis Using MSC.Nastran for CoupledFluid-Structure SystemWANG Anping, LIU BingshanAcademy of Opto-Electronics, Chinese Academy of Sciences, Beijing, 100190 ChinaAbstract:The paper introduced the modal analysis method for the coupled fluid-structure (CFS) system using MSC.Nastran2005. Combinedthe model of a sealed laminated structure, analytical approach andwatchful items are presented. And making use of the MSC software, thestructure modal analysis and the cavity acoustic modal analysis of the CFSsystem are simulated.Keywords: Nastran, Coupled fluid-structure, Acoustics0 前言流固耦合法广泛应用于声学和噪声控制领域,如发动机的噪声控制。
对空腔结构(比如汽车车室、宇宙飞船船舱)进行流固耦合分析,可以知道耦合作用对系统模态的影响,可为研究耦合系统的声学特性提供可靠的理论和试验依据。
第一章动力分析概述1.1动力分析过程1.2单自由度系统1.2.1动力学方程其中,m 为质量(惯性),b 为阻尼(能量耗散),k 为刚度(恢复力)n 为非线性恢复力p 为作用力u 为位移为加速度u̇̇为速度u̇通常,作用力p 、位移u 、速度、加速度为时间函数,m 、b 、k 为常数,非线性恢u̇u ̇̇复力n 为的函数。
uu,̇1.2.2单位1)基本单位长度L (inch,m),质量M (slug,kg ),时间T (second )2)基本与推导单位3)常用变量工程单位4)注意:(a)用一致的单位制(b)常见错误是质量与阻尼单位(c)Nastran 不检验单位,用户应该小心1.2.3单自由度系统无阻尼自由振动1)动力学方程2)解其中,3)初始条件最后解为1.2.3单自由度系统阻尼自由振动1)动力学方程临界阻尼临界阻尼比2)解a)欠阻尼情况ω其中,为阻尼固有频率db)临界阻尼情况(无振荡发生)c)过阻尼情况无振荡发生,系统逐渐回到平衡位置(至少不会扩散)。
d)通常分析欠阻尼情况,结构的粘性阻尼一般在0~10%范围内。
1.2.4单自由度系统无阻尼简谐振动1)动力学方程ω其中,为激励力频率2)解的形式其中,稳态解部分1.2.5单自由度系统阻尼简谐振动1)动力学方程2)解的形式a)瞬态解迅速衰减,可以不考虑b)稳态解为其中,为相位角θc)讨论i),放大因子(静态解),相位角(响应的相位为激励相位)1<<nωω0→0360→ii),放大因子(无响应),相位角(响应的相位与激励相位1>>nωω0→0180→相反)iii)(共振),放大因子,相位角(响应的相位为激励1≈n ωωζ2/1→0270→相位)1.3多自由度系统1.3.1概述动力学方程为其中,1.3.2动力学环境分类1)环境类型2)动态激励类型1.3.3有限元动力学建模需要考虑的问题1)结构分析的频率范围2)结点/约束/单元的分配方案及其相互关系3)线性与非线性行为的区别,问题的定性考虑4)整体系统与超单元模型的关系5)相邻介质的相互作用6)测试/或测量数据的综合考虑7)阻尼。