带电粒子在复合场中运动的实际应用(典例内容全)
- 格式:ppt
- 大小:606.50 KB
- 文档页数:20
带电粒子在复合场中的运动1、如图所示,在y > 0的空间中存在匀强电场,场强沿y 轴负方向;在y < 0的空间中,存在匀强磁场,磁场方向垂直xy 平面(纸面)向外.一电量为q 、质量为m 的带正电的运动粒子,经过y 轴上y = h 处的点P1时速率为v0,方向沿x 轴正方向,然后经过x 轴上x = 2h 处的P2点进入磁场,并经过y 轴上y = – 2h 处的P3点.不计粒子的重力,求 (1)电场强度的大小;(2)粒子到达P2时速度的大小和方向; (3)磁感应强度的大小. 2、如图所示的区域中,第二象限为垂直纸面向外的匀强磁场,磁感应强度为B ,第一、第四象限是一个电场强度大小未知的匀强电场,其方向如图。
一个质量为m ,电荷量为+q 的带电粒子从P 孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=30°,粒子恰好从y 轴上的C孔垂直于匀强电场射入匀强电场,经过x 轴的Q 点,已知OQ=OP ,不计粒子的重力,求:(1)粒子从P 运动到C 所用的时间t ; (2)电场强度E 的大小;(3)粒子到达Q 点的动能Ek 。
3、如图所示,半径分别为a 、b 的两同心虚线圆所围空间分别存在电场和磁场,中心O 处固定一个半径很小(可忽略)的金属球,在小圆空间内存在沿半径向内的辐向电场,小圆周与金属球间电势差为U ,两圆之间的空间存在垂直于纸面向里的匀强磁场,设有一个带负电的粒子从金属球表面沿+x 轴方向以很小的初速度逸出,粒子质量为m ,电量为q ,(不计粒子重力,忽略粒子初速度)求:(1)粒子到达小圆周上时的速度为多大?(2)粒子以(1)中的速度进入两圆间的磁场中,当磁感应强度超过某一临界值时,粒子将不能到达大圆周,求此最小值B 。
(3)若磁感应强度取(2)中最小值,且b =(2+1)a ,要粒子恰好第一次沿逸出方向的反方向回到原出发点,粒子需经过多少次回旋?并求粒子在磁场中运动的时间。
带电粒子在复合场中的运动·典型例题解析【例1】一带电量为+q、质量为m的小球从倾角为θ的光滑的斜面上由静止开始下滑.斜面处于磁感应强度为B的匀强磁场中,磁场方向如图16-83所示,求小球在斜面上滑行的速度范围和滑行的最大距离.【例2】空气电离后形成正负离子数相等、电性相反、呈现中性状态的等离子体,现有如图16-84所示的装置:P和Q为一对平行金属板,两板距离为d,内有磁感应强度为B的匀强磁场.此装置叫磁流体发电机.设等离子体垂直进入磁场,速度为v,电量为q,气体通过的横截面积(即PQ两板正对空间的横截面积)为S,等效内阻为r,负载电阻为R,求(1)磁流体发电机的电动势ε;(2)磁流体发电机的总功率P.【例3】如图16-85所示,在x轴上方有水平向左的匀强电场,电场强度为E,在x轴下方有垂直纸面向里的匀强磁场,磁感应强度为B.正离子从M 点垂直磁场方向,以速度v射入磁场区域,从N点以垂直于x轴的方向进入电场区域,然后到达y轴上P点,若OP=ON,则入射速度应多大?若正离子在磁场中运动时间为t1,在电场中运动时间为t2,则t1∶t2多大?【例4】如图16-86所示,套在很长的绝缘直棒上的小球,其质量为m、带电量是+q,小球可在棒上滑动,将此棒竖直放在互相垂直,且沿水平方向的匀强电场和匀强磁场中,电场强度是E,磁感强度是B,小球与棒的摩擦系数为μ,求小球由静止沿棒下落的最大加速度和最大速度.(设小球带电量不变)跟踪反馈1.如图16-87所示,一质量为m的带电液滴在相互垂直的匀强电场和匀强磁场中(电场竖直向下,磁场在水平方向)的竖直平面内作半径为R的匀速圆周运动,则这个液滴[ ] A.一定带正电,而且沿逆时针方向运动B.一定带负电,而且沿顺时针方向运动C.一定带负电,但绕行方向不能确定D.不能确定带电性质,也不能确定绕行方向2.图16-88中虚线所围的区域内,存在电场强度为E的匀强电场和磁感应强度为B的匀强磁场.已知从左方P点处以v水平射入的电子,穿过此区域未发生偏转,设重力可忽略不计,则在这区域中的E和B的方向可能是[ ] A.E和B都沿水平方向,并与v方向相同B.E和B都沿水平方向,并与v方向相反C.E竖直向上,B垂直纸面向外D.E竖直向上,B垂直纸面向里3.如图16-89所示,光滑的半圆形绝缘曲面半径为R,有一质量为m,带电量为q的带正电小球从与圆心等高的A位置由静止沿曲面下滑,整个装置处于匀强电场和匀强磁场中,磁场的磁感应强度为B,电场强度为E=mg/q.则小球第二次经过最低点时对曲面的压力为多大?4.如图16-90所示,相互垂直的匀强电场和匀强磁场,其电场强度和磁感应强度分别为E 和B ,一个质量为m ,带正电量为q 的油滴,以水平速度v 0从a 点射入,经一段时间后运动到b ,试计算(1)油滴刚进入叠加场a 点时的加速度.(2)若到达b 点时,偏离入射方向的距离为d ,此时速度大小为多大?参考答案[]1 B 2ABC 36mg 2Bq Rg 4跟踪反馈...-.①-+②+a Bqv mg Eq m v v Eq mg dm==+00202()()。
高中物理-带电粒子在复合场中运动的应用实例一、速度选择器如图所示,粒子经加速电场后得到一定的速度v 0,进入正交的电场和磁场,受到的电场力与洛伦兹力方向相反,若使粒子沿直线从右边孔中飞出,则有q v 0B =qE ,v 0=E B ,若v =v 0=EB,粒子做直线运动,与粒子电荷量、电性、质量无关.若v <EB,电场力大于洛伦兹力,粒子向电场力方向偏转,电场力做正功,动能增加.若v >EB,洛伦兹力大于电场力,粒子向洛伦兹力方向偏转,电场力做负功,动能减少.如图所示的装置,左半部为速度选择器,右半部为匀强的偏转电场.一束同位素离子流从狭缝S 1射入速度选择器,能够沿直线通过速度选择器并从狭缝S 2射出的离子,又沿着与电场垂直的方向,立即进入场强大小为E 的偏转电场,最后打在照相底片D 上.已知同位素离子的电荷量为q (q >0),速度选择器内部存在着相互垂直的场强大小为E 0的匀强电场和磁感应强度大小为B 0的匀强磁场,照相底片D 与狭缝S 1、S 2的连线平行且距离为L ,忽略重力的影响.(1)求从狭缝S 2射出的离子速度v 0的大小;(2)若打在照相底片上的离子在偏转电场中沿速度v 0方向飞行的距离为x ,求出x 与离子质量m 之间的关系式(用E 0、B 0、E 、q 、m 、L 表示).[解析] (1)能从速度选择器射出的离子满足 qE 0=q v 0B 0①v 0=E 0B 0.②(2)离子进入匀强偏转电场E 后做类平抛运动,则 x =v 0t ③L =12at 2④由牛顿第二定律得qE =ma ⑤由②③④⑤解得x =E 0B 0 2mLqE.[答案] (1)E 0B 0 (2)E 0B 0 2mLqE二、磁流体发电机与电磁流量计磁流体发电机:如图甲所示,正、负离子(等离子体)以速度v 进入匀强磁场B 中,在洛伦兹力作用下,正、负离子分别向上、下极板偏转、积累,从而在板间形成一个向下的电场,两板间形成一定的电势差.当q v B =qUd时电势差稳定,U =d v B ,这就相当于一个可以对外供电的电源.电磁流量计:如图乙所示,一圆形导管直径为d ,用非磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电荷(正、负离子)在洛伦兹力作用下纵向偏转,a 、b 间出现电势差.当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定.由Bq v =Eq =Uq d ,可得v =UBd.流量Q =S v =πUd4B.两者应用的都是霍尔效应原理,当达到稳定时,出现的是一种受力的动态平衡现象.(2014·高考福建卷)如图,某一新型发电装置的发电管是横截面为矩形的水平管道,管道的长为L 、宽为d 、高为h ,上下两面是绝缘板,前后两侧面M 、N 是电阻可忽略的导体板,两导体板与开关S 和定值电阻R 相连.整个管道置于磁感应强度大小为B ,方向沿z 轴正方向的匀强磁场中.管道内始终充满电阻率为ρ的导电液体(有大量的正、负离子),且开关闭合前后,液体在管道进、出口两端压强差的作用下,均以恒定速率v 0沿x 轴正向流动,液体所受的摩擦阻力不变.(1)求开关闭合前,M 、N 两板间的电势差大小U 0; (2)求开关闭合前后,管道两端压强差的变化Δp ;(3)调整矩形管道的宽和高,但保持其他量和矩形管道的横截面积S =dh 不变,求电阻R 可获得的最大功率P m 及相应的宽高比d /h 的值.[解析] (1)设带电离子所带的电荷量为q ,当其所受的洛伦兹力与电场力平衡时,U 0保持恒定,有q v 0B =q U 0d①得U 0=Bd v 0.②(2)设开关闭合前后,管道两端压强差分别为p 1、p 2,液体所受的摩擦阻力均为f ,开关闭合后管道内液体受到的安培力为F 安,有p 1hd =f ③p 2hd =f +F 安④ F 安=BId根据欧姆定律,有⑤I =U 0R +r⑥ 两导体板间液体的电阻r =ρd Lh⑦由②③④⑤⑥⑦式得Δp =p 2-p 1=Ld v 0B 2LhR +dρ.(3)电阻R 获得的功率为P =I 2RP =⎝ ⎛⎭⎪⎪⎫L v 0B LR d +ρh 2R当d h =LRρ时,电阻R 获得最大功率P m =LS v 20B 24ρ. [答案] (1)Bd v 0 (2)Ld v 0B 2LhR +dρ(3)LS v 20B24ρ LR ρ三、质谱仪组成:如图所示,离子源O ,加速电场U ,速度选择器(E 、B 1),偏转磁场B 2,胶片.原理:加速电场中qU =12m v 2,速度选择器中v =EB 1,偏转磁场中d =2r ,q v B 2=m v2r .可得比荷q m =2E B 1B 2d ,质量m =B 1B 2dq2E.对铀235的进一步研究在核能的开发和利用中具有重要意义.如图所示,质量为m 、电荷量为q 的铀235离子,从容器A 下方的小孔S 1不断飘入加速电场,其初速度可视为零,然后经过小孔S 2垂直于磁场方向进入磁感应强度为B 的匀强磁场中,做半径为R 的匀速圆周运动.离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I .不考虑离子重力及离子间的相互作用.(1)求加速电场的电压U ;(2)求出在离子被收集的过程中任意时间t 内收集到离子的质量M ; (3)实际上加速电压的大小会在U ±ΔU 范围内微小变化.若容器A 中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,ΔUU应小于多少?(结果用百分数表示,保留两位有效数字) [解析] (1)设离子经电场加速后进入磁场时的速度为v ,由动能定理得qU =12m v 2①离子在磁场中做匀速圆周运动,所受洛伦兹力充当向心力,即q v B =m v 2R②由①②式解得U =qB 2R 22m.③(2)设在任意时间t 内收集到的离子个数为N ,总电荷量为Q ,则 Q =It ④N =Q q⑤M =Nm ⑥由④⑤⑥式解得M =mItq .⑦(3)由③式有R =1B 2mUq⑧设m ′为铀238离子质量,由于电压在U ±ΔU 之间有微小变化,铀235离子在磁场中最大半径为R max =1B 2m (U +ΔU )q⑨铀238离子在磁场中最小半径为R ′min =1B 2m ′(U -ΔU )q⑩这两种离子在磁场中运动的轨迹不发生交叠的条件为 R max <R ′min ⑪即1B 2m (U +ΔU )q <1B 2m ′(U -ΔU )q 则有m (U +ΔU )<m ′(U -ΔU )⑫ ΔU U <m ′-m m ′+m⑬ 其中铀235离子的质量m =235 u(u 为原子质量单位),铀238离子的质量m ′=238 u ,故ΔU U <238 u -235 u 238 u +235 u解得ΔUU<0.63%.[答案] (1)qB 2R 22m (2)mItq(3)0.63%四、回旋加速器1.组成:如图所示,两个D 形盒(静电屏蔽作用),大型电磁铁,高频振荡交变电压,两缝间可形成电场.2.作用:电场用来对粒子(质子、α粒子等)加速,磁场用来使粒子回旋从而能反复加速.3.加速原理(1)回旋加速器中所加交变电压的频率f ,与带电粒子做匀速圆周运动的频率相等,f =1T =qB2πm;(2)回旋加速器最后使粒子得到的能量,可由公式E k =12m v 2=q 2B 2R 22m来计算,在粒子电荷量、质量m 和磁感应强度B 一定的情况下,回旋加速器的半径R 越大,粒子的能量就越大.而粒子最终得到的能量与加速电压的大小无关.电压大,粒子在盒中回旋的次数少;电压小,粒子回旋次数多,但最后获得的能量一定.(3)粒子在磁场中运动的总时间:粒子运动一个周期,被电场加速两次,并且加速次数由加速电压决定,n =E km Uq ,则运动的总时间t =n 2T =E km 2Uq ·2πmBq=πBR 22U.(忽略电场中被加速的时间.) (2014·高考天津卷)同步加速器在粒子物理研究中有重要的应用,其基本原理简化为如图所示的模型.M 、N 为两块中心开有小孔的平行金属板.质量为m 、电荷量为+q 的粒子A (不计重力)从M 板小孔飘入板间,初速度可视为零.每当A 进入板间,两板的电势差变为U ,粒子得到加速,当A 离开N 板时,两板的电荷量均立即变为零.两板外部存在垂直纸面向里的匀强磁场,A 在磁场作用下做半径为R 的圆周运动,R 远大于板间距离.A 经电场多次加速,动能不断增大,为使R 保持不变,磁场必须相应地变化.不计粒子加速时间及其做圆周运动产生的电磁辐射,不考虑磁场变化对粒子速度的影响及相对论效应.求:(1)A 运动第1周时磁场的磁感应强度B 1的大小;(2)在A 运动第n 周的时间内电场力做功的平均功率P n ;(3)若有一个质量也为m 、电荷量为+kq (k 为大于1的整数)的粒子B (不计重力)与A 同时从M 板小孔飘入板间,A 、B 初速度均可视为零,不计两者间的相互作用,除此之外,其他条件均不变.下图中虚线、实线分别表示A 、B 的运动轨迹.在B 的轨迹半径远大于板间距离的前提下,请指出哪个图能定性地反映A 、B 的运动轨迹,并经推导说明理由.[解析] (1)设A 经电场第1次加速后速度为v 1,由动能定理得qU =12m v 21-0①A 在磁场中做匀速圆周运动,所受洛伦兹力充当向心力q v 1B 1=m v 21R②由①②式得B 1=1R 2mUq.③(2)设A 经n 次加速后的速度为v n ,由动能定理得nqU =12m v 2n-0④设A 做第n 次圆周运动的周期为T n ,有T n =2πRv n⑤设在A 运动第n 周的时间内电场力做功为W n ,则 W n =qU ⑥在该段时间内电场力做功的平均功率为P n =W nT n⑦由④⑤⑥⑦式解得P n =qU πR nqU2m.(3)A 图能定性地反映A 、B 运动的轨迹.A 经过n 次加速后,设其对应的磁感应强度为B n ,A 、B 的周期分别为T n 、T ′,综合②⑤式并分别应用A 、B 的数据得T n =2πm qB nT ′=2πm kqB n =T nk由上式可知,T n 是T ′的k 倍,所以A 每绕行1周,B 就绕行k 周.由于电场只在A 通过时存在,故B 仅在与A 同时进入电场时才被加速.经n 次加速后,A 、B 的速度分别为v n 和v ′n ,考虑到④式v n =2nqUmv ′n =2nkqUm=k v n由题设条件并考虑到⑤式,对A 有T n v n =2πR 设B 的轨迹半径为R ′,有T ′v n ′=2πR ′比较上述两式得R ′=Rk上式表明,运动过程中B的轨迹半径始终不变.由以上分析可知,两粒子运动的轨迹如图A所示.[答案](1)1R 2mUq(2)qUπRnqU2m(3)A理由见解析1.(多选)(2016·成都月考)如图所示,a、b是一对平行金属板,分别接到直流电源两极上,右边有一挡板,正中间开有一小孔d,在较大空间范围内存在着匀强磁场,磁感应强度大小为B,方向垂直纸面向里,在a、b两板间还存在着匀强电场E.从两板左侧中点c处射入一束负离子(不计重力),这些负离子都沿直线运动到右侧,从d孔射出后分成3束.则下列判断正确的是()A.这三束负离子的速度一定不相同B.这三束负离子的比荷一定不相同C.a、b两板间的匀强电场方向一定由a指向bD.若这三束离子改为带正电而其他条件不变,则仍能从d孔射出解析:选BCD.离子在复合场中运动情况相同,即沿水平方向做直线运动,故有qE=q v B,所以v=EB,故三束负离子的速度一定相同,故A错误.三束离子在磁场中有q v B=mv2r,故r=m vqB=mq×EB2,由于三束负离子在磁场中做圆周运动的轨道半径不同,故比荷一定不相同,故B正确.由于在复合场中洛伦兹力竖直向下,则电场力一定竖直向上,故匀强电场方向一定竖直向下,即由a指向b,故C正确.若将三束离子改为带正电后,电场力和洛伦兹力方向都发生改变,由于其他条件不变,故合力仍为0,所以仍能从d孔射出,故D正确.2.(多选)(2016·河南省实验中学模拟)如图是医用回旋加速器示意图,其核心部分是两个D形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连.现分别加速氘核(21H)和氦核(42He).下列说法中正确的是()A.它们的最大速度相同B.它们的最大动能相同C .它们在D 形盒中运动的周期相同D .仅增大高频电源的频率可增大粒子的最大动能解析:选AC.因为21H 和42He 的比荷相同,由T =2πm qB可得它们在D 形盒中运动的周期相同,C 正确;根据R =m v qB ,粒子的最大速度v =qBRm,所以它们的最大速度相同,A 正确;由粒子的最大动能E k =q 2B 2R 22m知,最大动能与电源的频率f 无关,且它们的最大动能也不同,所以B 、D 错误.3.(多选)如图所示为一种质谱仪示意图,由加速电场、静电分析器和磁分析器组成.若静电分析器通道中心线的半径为R ,通道内均匀辐射电场在中心线处的电场强度大小为E ,磁分析器有范围足够大的有界匀强磁场,磁感应强度大小为B 、方向垂直纸面向外.一质量为m 、电荷量为q 的粒子从静止开始经加速电场加速后沿中心线通过静电分析器,由P 点垂直边界进入磁分析器,最终打到胶片上的Q 点.不计粒子重力.下列说法正确的是( )A .粒子一定带正电B .加速电场的电压U =12ERC .直径PQ =2BqmERD .若一群离子从静止开始经过上述过程都落在胶片上同一点,则该群离子具有相同的比荷解析:选ABD.在磁分析器中由左手定则可知,粒子带正电,故A 正确;根据电场力提供向心力,则有qE =m v 2R,又由加速电场加速,则有qU=12m v 2,从而解得U =ER2,故B 正确;根据洛伦兹力提供向心力,则在磁分析器中有q v B =m v 2r ,故PQ =2ER B ·mq,故C 错误;由上式易知,若一群离子从静止开始经过上述过程都落在胶片上同一点,说明运动的直径相同,由于磁场、电场与静电分析器的半径不变,则该群离子具有相同的比荷,故D 正确.4.(2014·高考浙江卷)离子推进器是太空飞行器常用的动力系统.某种推进器设计的简化原理如图甲所示,截面半径为R 的圆柱腔分为两个工作区.Ⅰ为电离区,将氙气电离获得1价正离子;Ⅱ为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.Ⅰ区产生的正离子以接近0的初速度进入Ⅱ区,被加速后以速度v M 从右侧喷出.Ⅰ区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出一定速率范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图乙所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α≤90°).推进器工作时,向Ⅰ区注入稀薄的氙气.电子使氙气电离的最小速度为v 0,电子在Ⅰ区内不与器壁相碰且能到达的区域越大,电离效果越好.已知离子质量为M ;电子质量为m ,电量为e .(电子碰到器壁即被吸收,不考虑电子间的碰撞)(1)求Ⅱ区的加速电压及离子的加速度大小; (2)为取得好的电离效果,请判断Ⅰ区中的磁场方向(按图乙说明是“垂直纸面向里”或“垂直纸面向外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围; (4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系.解析:(1)由动能定理得12M v 2M=eU ①U =M v 2M 2e ②a =eE M =e U ML =v 2M2L .③(2)垂直纸面向外.(3)设电子运动的最大半径为r2r =32R ④eB v =m v 2r⑤所以有v 0≤v <3eBR4m⑥要使⑥式有解,则磁感应强度B >4m v 03eR.⑦(4)如图所示,OA =R -r ,OC =R2,AC =r根据几何关系可知:cos ⎝⎛⎭⎫π2-α=r 2+⎝⎛⎭⎫R 22-(R -r )22r ·R 2(余弦定理),解得r =3R4(2-sin α)⑧由⑤⑧式得v max =3eBR4m (2-sin α).答案:(1)M v 2M 2e v 2M2L (2)垂直纸面向外(3)v 0≤v <3eBR 4m (4)v max =3eBR4m (2-sin α)。
带电粒子在复合场中运动的典型应用首先介绍复合场:是指电场、磁场、重力场并存,或其中某两种场并存的场。
带电粒子在这些复合场中运动时,必须同时考虑电场力、洛伦兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要。
研究复合场主要是从两个方面:力的特点、功和能的特点。
说明:①电子、质子、α粒子、离子等微观粒子在叠加场中运动时,一般不计重力;但质量较大的质点(如油滴、小球等)在叠加场中运动时,不能忽略重力。
②如题中未加说明不能直接判断是否考虑重力的,要根据题中物体所处的状态或运动过程来具体分析、具体判断。
带电粒子在复合场中的重要应用,主要包括速度选择器、回旋加速器、磁流体发电机、质谱仪和霍尔效应等。
一、速度选择器1.平行板中电场强度E和磁感应强度B相互垂直。
这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器。
2.带电粒子能够匀速沿直线通过速度选择器的条件是qe=qvB即v=E/B,因此可通过调节E、B的大小来筛选不同速度的粒子。
二、回旋加速器1.基本构造:回旋加速器的核心部件是放置在磁场中的两个D形的金属扁盒,其基本组成为:粒子源、两个D形金属盒、匀强磁场、高频电源、粒子引出装置、真空容器。
2.工作原理:①电场加速:qU=△Ek。
②磁场约束偏转:qvB=mv2/r,v=qBr/m 即v∝r。
③加速条件:高频电源的周期与带电粒子在D形盒中运动的周期相同,即T电场=T回旋=2πm/qB。
3.粒子能量:粒子在回旋加速器旋转射出时具有的能量EK可由qvB=mvn2/rn 得EKn=q2B2rn2。
由此可见,粒子获得的能量与回旋加速器的半径有关,半径越大,粒子获得的能量就越大,而与加速电场无关。
三、霍尔效应如图,厚度为h、宽度为d的导体板放在垂直于它的磁感应强度为B的均匀磁场中,当电流通过导体板时,在导体板的上侧面A和下侧面A′之间会产生电势差,这种现象称为霍尔效应。
实验表明,当磁场不太强时,电势差U、电流I 和B的关系为U=kIB/h,式中的比例系数k称为霍尔系数。
带电粒子在复合场中运动的应用实例1.质谱仪(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等构成.(2)原理:粒子由静止在加速电场中被加速,根据动能定理可得关系式qU =12m v 2.粒子在磁场中受洛伦兹力偏转,做匀速圆周运动,根据牛顿第二定律得关系式qvB =m v 2r由以上两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷.r =1B 2mU q ,m =qr 2B 22U ,q m =2U B 2r 22.回旋加速器1.构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒处于匀强磁场中,D 形盒的缝隙处接交流电源.2.原理:交流电周期和粒子做圆周运动的周期相等,使粒子每经过一次D 形盒缝隙,粒子被加速一次.3.粒子的最大速度:由q v B =mv 2R ,得v =BqR m ,粒子获得的最大速度由磁感应强度B 和盒半径R 决定,与加速电压无关.4.粒子在磁场中运动的总时间:粒子在磁场中运动一个周期,被电场加速两次,每次增加动能qU ,加速次数n =E km qU ,粒子在磁场中运动的总时间t =n 2T =E km 2qU ·2πm qB =πBR 22U .3.速度选择器(如图所示)(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =E B .4.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能.(2)根据左手定则,如图中的B 是发电机正极.(3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =q U L =qvB 得两极板间能达到的最大电势差U =BLv .5.电磁流量计工作原理:如图所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在洛伦兹力的作用下发生偏转,a 、b 间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定,即:qvB =qE =q U d ,所以v =U Bd ,因此液体流量Q =Sv =πd 24·U Bd =πdU 4B .6.霍尔效应:1. 霍尔效应:应如图,厚度为h ,宽度为d 的导体板放在垂直于它的磁感强度为B 的匀强磁场中,当电流通过导体板时,在导体板的上侧面A 和下侧面A '之间会产生电势差,这种现象称为霍尔效应,所产生的电势差称为霍尔电势差,其原理如图所示.实验表明,当磁场不太强时,电势差U 、电流I 和磁感应强度B 的关系为hIB k U ,式中的比例系数k 称为霍尔系数,霍尔效应可解释为外部磁场产生的洛伦兹力使运动的电子聚集在导体板的一侧,在导体板的另一侧出现多余的正电荷,从而形成横向电场,横向电场对电子施加与洛伦兹力方向相反的静电力,当静电力与洛伦兹力达到平衡时,导体板上下两侧之间会形成稳定的电势差.2.霍尔电压的正负判断及应用(1)金属导体或N型半导体中自由运动的电荷是自由电子,在洛伦兹力作用下侧向移动产生霍尔电压的电荷是电子,不是正电荷,如上图上表面A积累负电荷(自由电子),下表面A'积累正电荷,形成的霍尔电压.注意:通常出现的错误是用左手定则直接判断出正电荷受力向上,其原因是忽视了相对于磁场运动的电荷是自由电子,而不是正电荷.(2)P型半导体形成电流的多数载流子是空穴(相当于正电荷),在上图中产生的霍尔电压应该是.可见用霍尔效应可以区分P型还是N型半导体.题型一、速度选择器例题1. 如图所示,两平行金属板水平放置,开始开关S合上使平行板电容器带电.板间存在垂直纸面向里的匀强磁场.一个不计重力的带电粒子恰能以水平向右的速度沿直线通过两板.在以下方法中,能使带电粒子仍沿水平直线通过两板的是()A.将两板的距离增大一倍,同时将磁感应强度增大一倍B.将两板的距离减小一半,同时将磁感应强度增大一倍C.将开关S断开,两板间的正对面积减小一半,同时将板间磁场的磁感应强度减小一半D.将开关S断开,两板间的正对面积减小一半,同时将板间磁场的磁感应强度增大一倍【答案】BD【解析】A、电容器处于通电状态,把两板间距离增大一倍,由U=可知,电Ed场强度变为原来的一半,根据Eq qvB=可知,要使粒子匀速通过,同时将磁感应强度减小一倍,故A 错误;B 、电容器处于通电状态,把两板间距离减小一倍,由U E d=可知,则电场强度增加一倍,根据Eq qvB =可知,要使粒子匀速通过,磁场应该增大一倍,故B 正确;CD 、如果把开关S 断开,根据4U Q k Q E d Cd s πε===,因两极间的电量不变,当两板间的正对面积减小一半,则两极板之间的电场强度增强一倍,因此根据Eq qvB =可知,要使粒子匀速通过,磁场强度增大一倍,故C 错误,D 正确.故选:BD【总结升华】装置是否构成速度选择器使运动电荷匀速直线穿过复合场,取决于电场力与洛伦兹力的大小,即电场、磁场和速度三者之间的关系,与电荷的电性以及比荷无关.跟踪训练:如图所示,充电的两平行金属板间有场强为E 的匀强电场,和方向与电场垂直(垂直纸面向里)的匀强磁场,磁感应强度为B ,构成了速度选择器。
第3讲带电粒子在复合场中的运动及应用实例一、复合场复合场是指电场、磁场和重力场并存,或其中某两场并存.从场的复合形式上一般可分为如下两种情况:1.组合场2.叠加场二、带电粒子在复合场中的运动分类1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或匀速直线运动状态.2.匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一条直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.三、电场、磁场分区域应用实例1.质谱仪(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等构成.(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式12mv2=qU①粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式qvB=m v2 r②由①②两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷.r=1B2mUq,m=qr2B22U,qm=2UB2r2.2.回旋加速器(1)构造:如图所示,D1、D2是半圆金属盒,D形盒的缝隙处接交流电源.D形盒处于匀强磁场中.(2)原理①在电场中加速:qU=12m(v2n-v2n-1)=ΔE k.②在磁场中旋转:qvB=m v2R,得R=mvqB.③回旋加速条件:高频电源的周期T电场与带电粒子在D形盒中运动的周期T回旋相同,即T电场=T回旋=2πmqB.④最大动能的计算:由R=mvqB=2mEkqB知,被加速粒子的最大动能为E k=q2B2R22m,由此可知,在带电粒子质量、电荷量被确定的情况下,粒子所获得的最大动能只与回旋加速器的半径R和磁感应强度B有关,与加速电压无关.四、带电粒子在叠加场中运动的实例分析1.速度选择器(如图)(1)平行板间电场强度E和磁感应强度B互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE=qvB,即v=E/B.2.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能.(2)根据左手定则,如图中的B板是发电机正极.(3)磁流体发电机两极板间的距离为d,等离子体速度为v,磁场磁感应强度为B,则两极板间能达到的最大电势差U=Bdv.3.电磁流量计(1)如图所示,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体流过导管;(2)原理:导电液体中的自由电荷(正、负离子)在洛伦兹力作用下横向偏转,a、b间出现电势差,形成电场.当自由电荷所受电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定.由Bqv =Eq =U d q ,可得v =UBd ,液体流量Q =S v =πd 24·U Bd =πdU 4B.1.如图所示,匀强电场方向竖直向上,匀强磁场方向水平指向纸外,有一电子(不计重力),恰能沿直线从左向右飞越此区域,若电子以相同的速率从右向左水平飞入该区域,则电子将( )A .沿直线飞越此区域B .向上偏转C .向下偏转D .向纸外偏转 答案: C 2.(2012·海南单科)如图,在两水平极板间存在匀强电场和匀强磁场,电场方向竖直向下,磁场方向垂直于纸面向里.一带电粒子以某一速度沿水平直线通过两极板.若不计重力.下列四个物理量中哪一个改变时,粒子运动轨迹不会改变( )A .粒子速度的大小B .粒子所带的电荷量C .电场强度D .磁感应强度解析: 粒子以某一速度沿水平直线通过两极板,其受力平衡有Eq =Bqv ,则知当粒子所带的电荷量改变时,粒子所受的合力仍为0,运动轨迹不会改变,故B 项正确.答案: B3.1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示.这台加速器由两个铜质D 形盒D 1、D 2构成,其间留有空隙.下列说法正确的是( )A .离子由加速器的中心附近进入加速器B .离子由加速器的边缘进入加速器C .离子从磁场中获得能量D .离子从电场中获得能量解析: 本题源于课本而又高于课本,既考查考生对回旋加速器的结构及工作原理的掌握情况,又能综合考查磁场和电场对带电粒子的作用规律.由R =mvqB 知,随着被加速离子的速度增大,离子在磁场中做圆周运动的轨道半径逐渐增大,所以离子必须由加速器中心附近进入加速器,A 项正确,B 项错误;离子在电场中被加速,使动能增加;在磁场中洛伦兹力不做功,离子做匀速圆周运动,动能不改变.磁场的作用是改变离子的速度方向,所以C项错误,D项正确.答案:AD4.质量为m的带电小球在正交的匀强电场、匀强磁场中做匀速圆周运动,轨道平面在竖直平面内,电场方向竖直向下,磁场方向垂直圆周所在平面向里,如图所示,由此可知() A.小球带正电,沿顺时针方向运动B.小球带负电,沿顺时针方向运动C.小球带正电,沿逆时针方向运动D.小球带负电,沿逆时针方向运动解析:带电小球在重力、电场力以及洛伦兹力作用下做匀速圆周运动,故应满足qE=mg,且电场力方向向上,故小球带负电.由于洛伦兹力提供向心力,指向圆心,所以小球沿顺时针方向运动,B正确.答案: B5.1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖.若速度相同的一束粒子由左端射入质谱仪后的运动轨迹如图所示,则下列相关说法中正确的是()A.该束带电粒子带负电B.速度选择器的P1极板带正电C.在B2磁场中运动半径越大的粒子,质量越大D.在B2磁场中运动半径越大的粒子,比荷qm越小解析:由粒子在B2中的运动轨迹可以判断粒子应带正电,A项错误;在电容器中粒子受到的洛伦兹力方向竖直向上,受到的电场力方向应竖直向下,则P1极板带正电,B项正确;在电容器中,根据速度选择器的原理可知v=EB1,在B2中粒子运动的轨道半径r=mEB1B2q,式中B1、B2、E不变,因此,在B2磁场中运动半径越大的粒子,其mq 越大,即比荷qm越小,C项错误,D项正确.答案:BD带电粒子在组合场中的运动1.复合场中粒子重力是否考虑的三种情况(1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等一般应当考虑其重力.(2)在题目中有明确说明是否要考虑重力的,这种情况按题目要求处理比较正规,也比较简单.(3)不能直接判断是否要考虑重力的,在进行受力分析与运动分析时,要结合运动状态确定是否要考虑重力.(2012·新课标全国卷)(18分)如图,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线在圆上的a 点射入柱形区域,在圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为35R .现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a 点射入柱形区域,也在b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.规范解答: 粒子在磁场中的轨迹如图所示.设圆周的半径为r ,由牛顿第二定律和洛伦兹力公式得qvB =mv 2r①(2分)式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 和d 点.由几何关系知,线段ac 、bc 和过a 、b 两点的圆弧轨迹的两条半径(未画出)围成一正方形.因此ac =bc =r ②(2分)设cd =x ,由几何关系得ac =45R +x ③(2分)bc =35R +R 2-x 2④(2分)联立②③④式得r =75R ⑤(2分)再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE =ma ⑥(2分)粒子在电场方向和直线方向所走的距离均为r ,由运动学公式得 r =12at 2⑦(2分) r =vt ⑧(2分)式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得E=14qRB25m.⑨(2分)答案:14qRB25m带电粒子在组合场中的运动问题的分析方法(1)带电粒子依次通过不同场区时,因其受力情况随区域而变化,故其运动规律在不同区域也有所不同.(2)(3)联系不同阶段的运动的物理量是速度,因此带电粒子在两场分界点上的速度是解决问题的关键.1-1:如图所示,一个质量为m 、电荷量为q 的正离子,在D 处沿图示方向以一定的速度射入磁感应强度为B 的匀强磁场中,磁场方向垂直纸面向里.结果离子正好从距A 点为d 的小孔C 沿垂直于电场方向进入匀强电场,此电场方向与AC 平行且向上,最后离子打在G 处,而G 处距A 点2d (AG ⊥AC ).不计离子重力,离子运动轨迹在纸面内.求:(1)此离子在磁场中做圆周运动的半径r ; (2)离子从D 处运动到G 处所需时间; (3)离子到达G 处时的动能.解析: (1)正离子轨迹如图所示. 圆周运动半径r 满足: d =r +r cos 60°解得r =23d .(2)设离子在磁场中的运动速度为v 0,则有:qv 0B =m v 20rT =2πr v 0=2πm qB在磁场中做圆周运动的时间为:t 1=13T =2πm3Bq离子从C 到G 的时间为:t 2=2d v 0=3mBq离子从D →C →G 的总时间为:t =t 1+t 2=(9+2π)m3Bq .(3)设电场强度为E ,则有: qE =mad =12at 22由动能定理得:qEd =E kG -12mv 2解得E kG =4B 2q 2d 29m .答案: (1)23d (2) (9+2π)m 3Bq(3) 4B 2q 2d 29m带电粒子在叠加场中的运动(2012·重庆理综)有人设计了一种带电颗粒的速率分选装置,其原理如图所示.两带电金属板间有匀强电场,方向竖直向上,其中PQ N M矩形区域内还有方向垂直纸面向外的匀强磁场.一束比荷(电荷量与质量之比)均为1k的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O′O进入两金属板之间.其中速率为v0的颗粒刚好从Q点处离开磁场,然后做匀速直线运动到达收集板.重力加速度为g,PQ=3d,N Q=2d,收集板与N Q的距离为l,不计颗粒间相互作用.求:(1)电场强度E的大小;(2)磁感应强度B的大小;(3)速率为λv0(λ>1)的颗粒打在收集板上的位置到O点的距离.解析:(1)设带电颗粒的电荷量为q,质量为m.有Eq=mg将q m =1k代入,得E=kg.(2)如图甲所示,有qv0B=mv20 RR2=(3d)2+(R-d)2得B=kv05d.(3)如图乙所示,有qλv0B=m (λv0)2 R1tan θ=3dR21-(3d)2y1=R1-R21-(3d)2y2=l tan θy=y1+y2得y=d(5λ-25λ2-9)+3l25λ2-9. 答案:见解析1.带电粒子在复合场中运动的分析思路2.带电粒子(体)在复合场中的运动问题求解要点(1)受力分析是基础.在受力分析时是否考虑重力必须注意题目条件.(2)运动过程分析是关键.在运动过程分析中应注意物体做直线运动,曲线运动及圆周运动、类平抛运动的条件.(3)构建物理模型是难点.根据不同的运动过程及物理模型选择合适的物理规律列方程求解.2-1:如图所示,光滑四分之一圆弧轨道位于竖直平面内,半径R =0.8 m ,与长l =2.0 m 的绝缘水平面CD 平滑连接.水平面右侧空间存在互相垂直的匀强电场和匀强磁场,电场强度E =20 N/C ,方向竖直向上,磁场的磁感应强度B =1.0 T ,方向垂直纸面向外.将质量为m =2.0×10-6 kg 、带电荷量为q =1.0×10-6 C 的带正电小球a 从圆弧轨道顶端由静止释放,最后落在地面上的P 点.已知小球a 在水平面CD 上运动时所受的摩擦阻力F =0.1mg ,P N =3N D (g =10 m/s 2).求:(1)小球a 运动到D 点时速度的大小; (2)水平面CD 离地面的高度h ;(3)从小球a 开始释放到落地前瞬间的整个运动过程中系统损失的机械能ΔE .解析: (1)设小球a 到D 点时的速度为v D ,从小球a 释放至D 点,根据动能定理mgR -Fl =12mv 2D解得v D =23m/s.(2)小球a 进入复合场后,由计算可知Eq =mg 小球在洛伦兹力作用下做匀速圆周运动轨迹如图所示,洛伦兹力提供向心力Bv D q =m v 2Dr由图可知r =2h ,解得h =2 3 m.(3)系统损失的机械能ΔE =mg (R +h )-12mv 2D解得ΔE =4(1+103)×10-6 J. 答案: (1)2 3 m/s (2)2 3 m(3)4(1+103)×10-6 J电磁场在实际中的应用模型质谱仪是用来测定带电粒子的质量和分析同位素的装置,如图所示,电容器两极板相距为d ,两极板间电压为U ,极板间的匀强磁场的磁感应强度为B 1,一束电荷量相同的带正电的粒子沿电容器的中线平行于极板射入电容器,沿直线穿过电容器后进入另一磁感应强度为B 2的匀强磁场,结果分别打在感光片上的a 、b 两点,设a 、b 两点之间的距离为x ,粒子所带电荷量为q ,如不计重力,求:(1)粒子进入匀强磁场B 2时的速度v 的大小.(2)打在a 、b 两点的粒子的质量之差Δm 为多少?解析: (1)粒子在电容器中做直线运动,故q Ud =qvB 1解得v =UdB 1.(2)带电粒子在磁感应强度为B 2的匀强磁场中做匀速圆周运动,则打在a 处的粒子的轨道半径R 1=m 1v qB 2打在b 处的粒子的轨道半径R 2=m 2v qB 2又x =2R 1-2R 2解得Δm =m 1-m 2=qB 1B 2dx2U.答案: (1)U dB 1 (2) qB 1B 2dx2U复合场中几种常见物理模型的解题技巧(1)速度选择器解题技巧:从力的角度入手,合力为零则做匀速直线运动,速度大小为v=EB,合力不为零则发生偏转.(2)质谱仪解题技巧:粒子进入偏转磁场时,一般速度相同,注意分清粒子运动半径,根据半径公式可进行相关问题的判定.(3)回旋加速器解题技巧:抓住T电=T=2πmBq、qvB=mv2R及E km=q2B2R22m这三点.3-1:1932年,劳伦斯和利文斯顿设计出了回旋加速器.回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B 的匀强磁场与盒面垂直.A处粒子源产生的粒子,质量为m、电荷量为+q,在加速器中被加速,加速电压为U.加速过程中不考虑相对论效应和重力作用,则粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比为()A.2∶1B.1∶2C.2∶1 D.1∶ 2解析:设粒子第1次经过狭缝后的半径为r1,速度为v1qU=12mv21,qv1B=v21r1解得r1=1B 2mU q同理,粒子第2次经过狭缝后的半径r2=1B 4mU q则r2∶r1=2∶1.故选项C正确.答案: C带电粒子在交变电磁场中的运动1.变化的电场或磁场往往具有周期性,同时受力也有其特殊性,常常其中两个力平衡,如电场力与重力平衡,粒子在洛伦兹力作用下做匀速圆周运动.2.处理方法:仔细分析带电粒子的运动过程、受力情况,清楚带电粒子在变化电场、磁场中各处于什么状态,做什么运动,然后分过程求解.如图甲所示,在以O为坐标原点的xOy平面内,存在着范围足够大的电场和磁场.一个带正电小球在0时刻以v0=3gt0的初速度从O点沿+x方向(水平向右)射入该空间,在t0时刻该空间同时加上如图乙所示的电场和磁场,其中电场沿-y方向(竖直向上),场强大小E0=mgq,磁场垂直于xOy平面向外,磁感应强度大小B0=πmqt0.已知小球的质量为m,带电荷量为q,当地重力加速度为g,空气阻力不计.试求:(1)12t0末小球速度的大小.(2)在给定的xOy坐标系中,大致画出小球在0到24t0内运动轨迹的示意图.解析:(1)0~t0内,小球只受重力作用,做平抛运动.当同时加上电场和磁场时,电场力:F1=qE0=mg,方向向上,因为重力和电场力恰好平衡,所以在电场和磁场同时存在时小球受洛伦兹力作用而做匀速圆周运动,根据牛顿第二定律有:qvB0=m v2r运动周期T=2πrv联立解得T=2t0电场、磁场同时存在的时间正好是小球做圆周运动周期的5倍,即在这10t0内,小球恰好做了5个完整的匀速圆周运动.所以小球在t1=12t0末的速度相当于小球做平抛运动t=2t0时的末速度v y=g·2t0=2gt0,所以12t0末v1=v2x+v2y=13gt0.(2)24t0内运动轨迹的示意图如图所示.在如图所示的空间里,存在垂直纸面向里的匀强磁场,磁感应强度为B=2πmq.在竖直方向存在交替变化的匀强电场如图(竖直向上为正),电场大小为E0=mgq.一倾角为θ、长度足够长的光滑绝缘斜面放置在此空间.斜面上有一质量为m,带电荷量为-q的小球,从t=0时刻由静止开始沿斜面下滑,设第5秒内小球不会离开斜面,重力加速度为g.求:(1)第6秒内小球离开斜面的最大距离.(2)第19秒内小球未离开斜面,θ角的正切值应满足什么条件?解析: (1)设第一秒内小球在斜面上运动的加速度为a , 由牛顿第二定律得:(mg +qE 0)sin θ=ma , 第一秒末的速度为:v 1=at 1, 解得v 1=2g sin θ. 第二秒内:qE 0=mg ,所以小球将离开斜面在上方做匀速圆周运动,则圆周运动的周期T =2πm qB =1 s.小球在第2 s 末回到第1 s 末的位置,所以小球前2 s 内位移为:x 2=12at 21=g sin θ.由图所示可知,小球在奇数秒内沿斜面做匀加速运动,在偶数秒内离开斜面做完整的圆周运动.所以,第5秒末的速度为:v 5=a (t 1+t 3+t 5)=6g sin θ,由qvB =mv 2R得小球第6 s 内做圆周运动的半径为:R 3=3g sin θπ. 小球离开斜面的最大距离为:d =2R 3=6g sin θπ.(2)第19秒末的速度:v 19=a (t 1+t 3+t 5+t 7+…+t 19)=20g sin θ 小球未离开斜面的条件是: qv 19B ≤(mg +qE 0)cos θ所以tan θ≤120π.答案: (1) 6g sin θπ (2) tan θ≤120π1.有一带电荷量为+q、重为G的小球,从竖直的带电平行板上方h处自由落下,两极板间匀强磁场的磁感应强度为B,方向如图所示,则带电小球通过有电场和磁场的空间时() A.一定做曲线运动B.不可能做曲线运动C.有可能做匀速运动D.有可能做匀加速直线运动解析:带电小球在重力场、电场和磁场中运动,所受重力、电场力是恒力,但受到的洛伦兹力是随速度的变化而变化的变力,因此小球不可能处于平衡状态,也不可能在电、磁场中做匀变速运动.答案: A2.(2013·南京模拟)如图所示,从S处发出的热电子经加速电压U加速后垂直进入相互垂直的匀强电场和匀强磁场中,发现电子流向上极板偏转.设两极板间电场强度为E,磁感应强度为B,欲使电子沿直线从电场和磁场区域通过,只采取下列措施,其中可行的是()A.适当减小电场强度EB.适当减小磁感应强度BC.适当增大加速电场极板之间的距离D.适当减小加速电压U解析:欲使电子沿直线从电场和磁场区域通过,则qE=qvB,而电子流向上极板偏转,则qE>qvB,故应减小E或增大B、v.故A正确.B、D、D错误.答案: A3.如图所示,竖直放置的平行金属板M、N带有等量异种电荷,M板带正电,两板间有垂直于纸面向里的匀强磁场,若一个带正电的液滴在两板间只受场力作用,下述哪些运动是可能的()A.沿路径①水平向左做匀减速运动B.沿路径②水平向右做匀加速运动C.沿路径③竖直向上做匀速运动D.沿路径④斜向右上做匀速运动解析:带电液滴在两板之间运动时始终受到重力、电场力、洛伦兹力三个力作用,且重力方向始终竖直向下,电场力方向始终水平向右.若液滴沿路径①水平向左运动时,液滴受到的重力、洛伦兹力的方向都是竖直向下,合力不为零,A 错;若液滴沿路径②水平向右加速运动时,洛伦兹力逐渐增大,B 错;若液滴沿路径③运动,洛伦兹力与电场力抵消,重力做功,C 错:若液滴沿路径④斜向右上运动,重力、电场力、洛伦兹力三个力的合力可能为零,D 对.答案: D4.(2013·石家庄教学检测)劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图所示.置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B 的匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U .若A 处粒子源产生的质子质量为m 、电荷量为+q ,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是( )A .质子被加速后的最大速度不可能超过2πRfB .质子离开回旋加速器时的最大动能与加速电压U 成正比C .质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1D .不改变磁感应强度B 和交流电频率f ,该回旋加速器也能用于α粒子加速解析: 粒子被加速后的最大速度受到D 形盒半径R的制约,因v =2πR T =2πRf ,A 正确;粒子离开回旋加速器的最大动能E k m =12mv 2=12m ×4π2R 2f 2=2mπ2R 2f 2,与加速电压U 无关,B 错误;根据R =mv Bq ,Uq =12mv 21,2Uq =12mv 22,得质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1,C 正确;因回旋加速器的最大动能E km =2mπ2R 2f 2与m 、R 、f 均有关,D 错误.答案: AC5.如图所示,带电粒子以某一初速度进入一垂直于纸面向里、磁感应强度为B 的有界匀强磁场,粒子垂直进入磁场时的速度与水平方向成θ=60°角,接着垂直进入电场强度大小为E ,水平宽度为L 、方向竖直向上的匀强电场,粒子穿出电场时速度大小变为原来的2倍.已知带电粒子的质量为m 、电荷量为q ,重力不计.(1)分析判断粒子的电性.(2)求带电粒子在磁场中运动时速度v .(3)求磁场的水平宽度d .解析: (1)根据粒子在磁场中向下偏转的情况和左手定则可知,粒子带负电.(2)由于洛伦兹力对粒子不做功,故粒子以原来的速率进入电场中,设带电粒子进入电场的初速度为v 0,在电场中偏转时做类平抛运动,如图所示.由题意知粒子离开电场时的末速度大小为v =2v 0,将v t 分解为平行于电场方向和垂直于电场方向的两个分速度:由几何关系知v y =v 0①由运动学公式:v y =at ②L=v0t③根据牛顿第二定律:a=Fm =qEm④联立①②③④求解得:v0=qELm⑤(3)如图所示,带电粒子在磁场中所受洛伦兹力作为向心力,设在磁场中做圆周运动的半径为R,则:qv0B=m v20 R⑥由几何知识可得:d=R sin θ⑦⑤⑥⑦联立解得:d=1B mELq sin θ.答案:(1)负电(2)qELm(3)1BmELq sin θ。
高三物理高考第一轮总复习(二十四) 带电粒子在复合场中的运动及应用实例1.不计重力的负粒子能够在如图所示的正交匀强电场和匀强磁场中匀速直线穿过.设产生匀强电场的两极板间电压为U,距离为d,匀强磁场的磁感应强度为B,粒子电荷量为q,进入速度为v,以下说法正确的是( )A.若同时增大U和B,其他条件不变,则粒子一定能够直线穿过B.若同时减小d和增大v,其他条件不变,则粒子可能直线穿过C.若粒子向下偏,能够飞出极板间,则粒子动能一定减小D.若粒子向下偏,能够飞出极板间,则粒子的动能有可能不变2.如图所示,一束正离子从S点沿水平方向射出,在没有偏转电场、磁场时恰好击中荧光屏上的坐标原点O;若同时加上电场和磁场后,正离子束最后打在荧光屏上坐标系的第Ⅲ象限中,则所加电场E和磁场B的方向可能是(不计离子重力及其之间相互作用力)( )A.E向下,B向上B.E向下,B向下C.E向上,B向下D.E向上,B向上3.三个带正电的粒子a、b、c(不计重力)以相同动能水平射入正交的电磁场中,轨迹如图所示.关于它们的质量m a、m b、m c的大小关系和粒子a动能变化,下列说法正确的是( )A.m a<m b<m cB.m a>m b>m cC.粒子a动能增加D.粒子a动能减少4.如图所示,空间存在相互垂直的匀强电场和匀强磁场,电场的方向竖直向下,磁场方向水平(图中垂直纸面向里),一带电油滴P恰好处于静止状态,则下列说法正确的是( )A.若仅撤去电场,P可能做匀加速直线运动B.若仅撤去磁场,P可能做匀加速直线运动C.若给P一初速度,P不可能做匀速直线运动D.若给P一初速度,P可能做匀速圆周运动5.如图所示,一束带电粒子(不计重力,初速度可忽略)缓慢通过小孔O1进入极板间电压为U的水平加速电场区域Ⅰ,再通过小孔O2射入相互正交的恒定匀强电场、磁场区域Ⅱ,其中磁场的方向如图所示,收集室的小孔O3与O1、O2在同一条水平线上.则( )A.该装置可筛选出具有特定质量的粒子B.该装置可筛选出具有特定电荷量的粒子C.该装置可筛选出具有特定速度的粒子D.该装置可筛选出具有特定动能的粒子6.如图所示是质谱仪工作原理的示意图,带电粒子a、b经电压U加速(在A点初速度为0)后,进入磁感应强度为B的匀强磁场做匀速圆周运动,最后分别打在感光板S上的x1、x2处.图中半圆形的虚线分别表示带电粒子a、b所通过的路径,则( )A.a的质量一定大于b的质量B.a的电荷量一定大于b的电荷量C.a运动的时间大于b运动的时间D.a的比荷大于b的比荷7.如图,空间某一区域内存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域沿直线运动,从C点离开区域;如果这个区域只有电场,则粒子从B点离开场区;如果这个区域只有磁场,则粒子从D点离开场区;设粒子在上述三种情况下,从A到B点、A到C点和A到D点所用的时间分别是t1、t2和t3,比较t1、t2和t3的大小,则有(粒子重力忽略不计)( )A.t1=t2=t3B.t2<t1<t3C.t1=t2<t3D.t1=t3>t28.如图甲所示是回旋加速器的示意图,其核心部分是两个D形金属盒,在加速带电粒子时,两金属盒置于匀强磁场中,并分别与高频电源相连.带电粒子在磁场中运动的动能E k 随时间t的变化规律如图乙所示,若忽略带电粒子在电场中的加速时间,则下列判断中正确的是( )A.在E k-t图中应有t4-t3=t3-t2=t2-t1B.高频电源的变化周期应该等于t n-t n-1C.粒子加速次数越多,粒子最大动能一定越大D.要想粒子获得的最大动能越大,则要求D形盒的面积也越大9.质谱仪是测带电粒子质量和分析同位素的一种仪器,它的工作原理是带电粒子(不计重力)经同一电场加速后,垂直进入同一匀强磁场做圆周运动,然后利用相关规律计算出带电粒子质量.其工作原理如图所示.虚线为某粒子运动轨迹,由图可知( )A.此粒子带负电B.下极板S2比上极板S1电势高C.若只增大加速电压U,则半径r变大D.若只增大入射粒子的质量,则半径r变小10.如图所示,MN是一段在竖直平面内半径为1 m的光滑的1/4圆弧轨道,轨道上存在水平向右的匀强电场.轨道的右侧有一垂直纸面向里的匀强磁场,磁感应强度为B1=0.1 T.现有一带电荷量为1 C、质量为100 g的带正电小球从M点由静止开始自由下滑,恰能沿NP方向做直线运动,并进入右侧的复合场(NP沿复合场的中心线).已知A、B板间的电压为U BA=2 V,板间距离d=2 m,板的长度L=3 m,若小球恰能从板的右边沿飞出,g取10 m/s2.求:(1)小球运动到N点时的速度v的大小.(2)水平向右的匀强电场的电场强度E的大小.(3)复合场中的匀强磁场的磁感应强度B2的大小.11.如图所示,矩形abcd 关于x 轴对称,长ad =2L ,宽ab =L ,三角形Oab 区域内存在竖直向下的匀强电场,梯形Obcd 区域内存在垂直于纸面向外的匀强磁场.一个质量为m 、电荷量为+q 的带电粒子(不计重力)以初速度v 从P 点沿x 轴正方向进入电场,穿过电场后从Ob 边上Q 点处进入磁场,然后从y 轴负半轴上的M 点(图中未标出)垂直于y 轴离开磁场,已知OP =23L ,OQ =429L ,试求:(1)匀强电场的场强E 大小; (2)匀强磁场的磁感应强度B 的大小.12.绝缘水平面ab 与处在竖直平面内的半圆形绝缘轨道bcd相切于b 点,半圆轨道的半径为R .过b 点的竖直平面MN 的左侧有水平向右的匀强电场,右侧有正交的电、磁场,磁场的磁感应强度为B ,方向垂直于纸面向里,如图所示,比荷为k 的带电小球从水平面上某点由静止释放,过b 点进入MN 右侧后能沿半圆形轨道bcd 运动且对轨道始终无压力,小球从d 点再次进入MN 左侧后正好落在b 点,不计一切摩擦,重力加速度为g ,求:(1)小球进入电、磁场时的速度大小v ; (2)MN 右侧的电场强度大小E 2; (3)MN 左侧的电场强度大小E 1; (4)小球释放点到b 点的距离x .答案:(二十四)1.BC 粒子能够直线穿过,则有q U d =qvB ,即v =U Bd,若U 、B 增大的倍数不同,粒子不能沿直线穿过,A 错误,同理B 正确;粒子向下偏,电场力做负功,又W 洛=0,所以ΔE k <0,C 正确.D 错误.2.A 正离子束打到第Ⅲ象限,相对原入射方向向下,所以电场E 方向向下;根据左手定则可知磁场B 方向向上,故A 正确.3.AD 粒子a 受的电场力向下、受的洛伦兹力向上,又a 向上偏,说明a 受的洛伦兹力大,故推出a 的初速度大.又三个粒子动能相同,故a 的质量小,因此选项A 对;a 向上偏,电场力对其做负功,洛伦兹力不做功,故a 动能减少,因此选项D 对.4.D 由题意可知,带电粒子所受的重力与电场力平衡,若P 的初速度垂直于磁感线方向,则P 可能做匀速圆周运动,若P 的初速度沿磁感线方向,则P 可能做匀速直线运动,C 错误,D 正确;若仅撤去电场,带电粒子在重力作用下先加速,由于洛伦兹力的大小与速度大小成正比,故所受的合外力将发生变化,带电粒子不可能做匀加速直线运动,A 错误;若仅撤去磁场,P 仍处于静止状态,B 错误.5.C 速度选择器的工作原理:带电粒子垂直射入正交的匀强电场和匀强磁场组成的复合场空间,所受的电场力和洛伦兹力方向相反,大小相等.本题中粒子若要无偏转地通过区域Ⅱ,通过收集室的小孔O 3,需要满足qE =qvB ,即粒子的速度v =E /B ,C 正确.6.D 粒子经电场加速的过程,由动能定理有:qU =12mv 20;粒子在磁场中运动,由牛顿第二定律知Bqv 0=m v 20R ,所以R =1B 2mUq,由图知R a <R b ,故q a m a >q bm b,A 、B 错、D 对;因周期为T =2πm Bq ,运行时间为T2,所以a 运动的时间小于b 运动的时间,C 错. 7.C8.A 带电粒子在两D 形盒内做圆周运动时间等于半个圆周运动周期,而粒子运动周期T =2πmqB与粒子速度无关,则有t 4-t 3=t 3-t 2=t 2-t 1,A 正确;高频电源的变化周期应该等于2(t n -t n -1),B 错误;由R =mv qB可知:粒子最后获得的最大动能与加速次数无关,与D 形盒内磁感应强度和D 形盒半径有关,故C 、D 错误.9.C 粒子从S 3小孔进入磁场中,速度方向向下,粒子向左偏转,由左手定则可知粒子带正电.带正电的粒子在S 1和S 2两板间加速,则要求场强的方向向下,那么S 1板的电势高于S 2板的电势.粒子在电场中加速,由动能定理有12mv 2=qU ,在磁场中偏转,则有r =mvqB ,联立两式解得r =2UmqB 2,由此式可以看出只增大U 或只增大m 时,粒子的轨道半径都变大.10.解读: (1)小球沿NP 做直线运动,由平衡条件可得:mg =qvB 1 解得v =10 m/s.(2)小球从M 点到N 点的过程中,由动能定理得:mgR +qER =12mv 2代入数据解得:E =4 N/C.(3)在板间复合场中小球受电场力qU BA /d =1 N 与重力平衡,故小球做匀速圆周运动 设运动半径为R ′,由几何知识得:R ′2=L 2+(R ′-d2)2,解得:R ′=5 m由qvB 2=mv 2/R ′,解得:B 2=0.2 T. 答案:(1)10 m/s(2)4 N/C(3)0.2 T 11.解读: (1)根据题意,Ob 与x 轴的夹角为45°,带电粒子在电场中做类平抛运动,设在电场中运动时间为t ,场强为E ,则x =OQ ·cos 45°=vt ① x =OP -OQ ·sin 45°=12at 2② qE =ma ③联立以上各式解得 E =9mv 24qL.(2)粒子的运动轨迹如图所示,在Q 点竖直分速度v y =at ,代入数据解得v y =v ∴粒子在进入磁场时的速度v ′=v 2x +v 2y =2v ④速度方向与+x 方向之间的夹角θ满足 tan θ=v y v x=1⑤∴θ=45°即粒子垂直于Ob 边进入磁场,在磁场中做匀速圆周运动的圆心即为O 点 半径R =OQ =42L 9⑥又qv ′B =mv ′2R.⑦解得B =9mv4qL.答案: (1)9mv 24qL (2)B =9mv4qL12.解读: (1)小球进入MN 右侧电、磁场后能沿bcd 运动且始终对轨道无压力,表明洛伦兹力等于小球做圆周运动的向心力,且小球的速率不变,因此有qvB =m v 2R①代入q m=k 解得v =kBR .②(2)小球速率不变,则重力与电场力平衡,即qE 2-mg =0③解得E 2=g k.(3)小球再次进入左侧电场后,在水平方向做匀减速运动,则 0=vt -12a 1t 2④a 1=qE 1m⑤在竖直方向做自由落体运动,则2R =12gt 2⑥联立④⑤⑥解得E 1=B gR . (4)小球由静止释放,由动能定理得qE 1x =12mv 2⑦将②式代入解得x =kBR gR2g . 答案: (2)kBR (2)g k(3)B gR (4)kBR gR2g。