德国天才数学家
- 格式:docx
- 大小:12.38 KB
- 文档页数:1
数学家的故事:德国著名的五位数学家
数学家小故事之德国最着名的五位数学家。
德国是一个数学大国,期间出现了众多非常优秀的数学家,今天极客数学帮就来为大家介绍其中几位非常
优秀的数学家。
一起来看看吧。
卡尔·弗里德里希·高斯
高斯,德国着名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一。
高斯被认为是历史上最重要的数学家之一,并享有“数学王子”
之称。
高斯和阿基米德、牛顿并列为世界三大数学家。
一生成就极为丰硕,
以他名字“高斯”命名的成果达110个,属数学家中之最。
他对数论、代数、
统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。
着名的高斯求和
一天,老师布置了一道题,1+2+3······这样从1一直加到100等于多少。
高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案:”你一定是算错了,回去再算算。
”高斯非常坚定,说出答案就是5050。
高斯是这样算的:1+100=101,2+99=101......50+51=101。
从1加到100有50
组这样的数,所以50X101=5050。
布特纳对他刮目相看。
他特意从汉堡买了
最好的算术书送给高斯,说:“你已经超过了我,我没有什幺东西可以教你了。
康托尔提起“集合”,除了像“集合起来搞事情”的意思,作为名词,上过高中的小伙伴们可能都还记得,这是高中数学最开始学的知识。
内容不多,原理也比较简单,更是高考数学的送分题(做对了送分,做不对送命)。
不过大家可能对集合背后的这个神秘男子不太了解,今天浪子老师就给大家扒一扒“集合论”的创始人:康托尔大神和他的传奇故事。
1.天才求学康托尔(Georg Ferdinand Philip Cantor,1845~1918),德国数学家,集合论的创始者,与其他天才一样,还在幼年时代,康托尔就表现出对数学的强烈兴趣。
1862年,17岁的康托尔离开双亲,考入瑞士苏黎世大学,第二年转入柏林大学,兴趣开始转移到纯数学方面。
于1868年以数论方面的论文获博士学位,1869年进入哈勒大学担任讲师,之后发表多篇论文,1879年成为哈勒大学的教授……巴拉巴拉等,反正都是些数学家的正常操作。
2.集合论诞生康托尔的研究主要是在无穷集合领域,无穷这个东西,看不见摸不着,也数不过来,到底能不能拿来计算,怎么个用法,大家争论很大。
因此大多数数学家,包括像高斯、柯西这样的大数学家,只好对无穷集合采取避而远之的态度。
但是老康却把无穷当作了自己的珍爱,他夜以继日地苦读、研究、计算、论证。
最终,康托尔得出了许多惊人的结论,起初他都不敢相信自己的眼睛,他说,“我见到了,但我不相信。
”按照康托尔研究的理论,下述观点是完全正确的——1厘米长的线段内的点,和太平洋内的点,和地球内部的点竟是“一样多”!这种整体等价于局部的理论,在世人眼里,就好比郭敬明和姚明同时站在你面前,你非得说他俩一样高。
但是天才就是天才,在进行了严密的论证后,他证明了郭敬明和姚明一样高,不对,是发现自己的理论无懈可击。
这样,在1874年,年仅29岁的康托尔在《数学杂志》上发表了关于无穷集合理论的第一篇革命性论文。
这篇论文的发表,标志着集合的诞生。
当时老康估计像这张照片上一样,意气风发,帅的掉渣。
高斯数学介绍高斯数学,指的是德国数学家卡尔·弗里德里希·高斯(Carl Friedrich Gauss)所创立和贡献的数学领域。
他被认为是数学天才,对于数学的发展做出了重大贡献,尤其在代数、数论、几何和统计学等方面的研究。
代数在代数学方面,高斯提出了许多重要的概念和思想,如复数、多项式、正规方程等。
他的复数理论为实数域的扩充提供了基础,并且使得许多复杂的问题可以转化为较为简单的代数计算。
他还研究了多项式的根和方程的解法,提出了高斯消元法和高斯引理等方法,对代数方程论作出了重要贡献。
数论在数论方面,高斯对整数和素数的研究具有里程碑的意义。
他提出了二次互反律和高斯素数定理等重要结果,为数论的发展奠定了基础。
他还发展了高斯整数环和高斯和域等概念,通过研究这些特殊的数集,揭示了整数性质的深层次结构。
几何高斯在几何学方面的贡献主要集中在曲线、曲面和曲线变换的研究上。
他提出了高斯曲率的概念,并发展了高斯不变量理论。
他的研究为后来的微分几何学和流形理论奠定了基础,对于现代的几何学有着重要的影响。
统计学高斯也是统计学的奠基人之一,他对误差和概率分布的研究为统计学发展的重要起点。
他提出了高斯分布曲线,并发展了最小二乘法和正态分布的理论。
他的统计学成果对于误差分析和数理统计学的发展起到了重要作用。
结论高斯数学是数学史上的重要里程碑,通过他的研究和贡献,数学领域得到了极大的推动和发展。
他的理论和方法不仅在当时具有重要的应用价值,而且对于现代数学的研究仍然具有深远的影响。
高斯被誉为数学公爵,他对数学的热爱和卓越的才能为后世留下了宝贵的财富。
莱布尼茨大哲学家、伟大科学家戈特弗里德·威廉·凡·莱布尼茨(Gottfried Wilhelm von Leibniz)。
一、人物戈特弗里德·威廉·凡·莱布尼茨(Gottfried Wilhelm von Leibniz,1646年7月1日~1716年11月14日)德国最重要的自然科学家、数学家、物理学家、历史学家和哲学家,一位举世罕见的科学天才,和牛顿(1643年1月4日—1727年3月31日)同为微积分的创建人。
他的研究成果还遍及力学、逻辑学、化学、地理学、解剖学、动物学、植物学、气体学、航海学、地质学、语言学、法学、哲学、历史、外交等等,“世界上没有两片完全相同的树叶”就是出自他之口,他还是最早研究中国文化和中国哲学的德国人,对丰富人类的科学知识宝库做出了不可磨灭的贡献。
二、个人生平与事迹公元1646年7月1日,戈特弗里德·威廉·凡·莱布尼茨出生于德国东部莱比锡的一个书香之家,父亲弗里德希·莱布尼茨是莱比锡大学的道德哲学教授,母亲凯瑟琳娜·施马克出身于教授家庭,虔信路德新教。
莱布尼茨的父母亲自做孩子的启蒙教师,耳濡目染使莱布尼茨从小就十分好学,并有很高的天赋,幼年时就对诗歌和历史有着浓厚的兴趣。
不幸的是,父亲在他6岁时去世,却给他留下了丰富藏书。
莱布尼茨的父亲在他年仅六岁时便去世了,给他留下了比金钱更宝贵的丰富的藏书,知书达理的母亲担负起了儿子的幼年教育。
莱布尼茨因此得以广泛接触古希腊罗马文化,阅读了许多著名学者的著作,由此而获得了坚实的文化功底和明确的学术目标。
8岁时,莱布尼茨进入尼古拉学校,学习拉丁文、希腊文、修辞学、算术、逻辑、音乐以及《圣经》、路德教义等。
1661年,15岁的莱布尼茨进入莱比锡大学学习法律,一进校便跟上了大学二年级标准的人文学科的课程,他还抓紧时间学习哲学和科学。
世界最伟大数学家排名世界上有许多伟大的数学家,他们的贡献对数学的发展起到了重要的推动作用。
在这篇文章中,我将介绍一些被认为是世界上最伟大的数学家,并解释他们的贡献。
1. 费马费马(Pierre de Fermat)是法国数学家,被认为是数论的奠基人之一。
他最著名的贡献是费马大定理,该定理在他的手稿中提出,但他没有给出证明。
费马大定理在数学界引起了极大的关注,直到1994年才由安德鲁·怀尔斯(Andrew Wiles)给出了完整的证明。
2. 牛顿牛顿(Isaac Newton)是英国科学家,也是数学家和物理学家。
他是微积分的创始人之一,并且对力学和光学的研究也做出了重要贡献。
他的《自然哲学的数学原理》被认为是现代物理学的奠基之作。
3. 欧拉欧拉(Leonhard Euler)是瑞士数学家,被认为是现代数学的奠基人之一。
他在各个领域都有重要的贡献,包括分析数论、图论、微积分和力学等。
他的数学成果非常丰富,他的著作超过900部,其中包括《算术研究》、《解析数论导论》和《代数基础》等。
4. 高斯高斯(Carl Friedrich Gauss)是德国数学家,他被认为是数学天才。
他的贡献涵盖了许多领域,包括数论、代数、几何和物理学等。
他的《数论导论》和《高斯-约当消元法》等著作对数学的发展起到了重要的推动作用。
5. 黎曼黎曼(Bernhard Riemann)是德国数学家,他的贡献主要集中在复变函数和几何学领域。
他的《黎曼几何学》开创了非欧几何学的新领域,对后来的数学发展产生了深远的影响。
他还提出了黎曼假设,该假设至今仍未被证明或推翻,是数论领域的重要问题之一。
6. 庞加莱庞加莱(Henri Poincaré)是法国数学家,他的贡献主要集中在拓扑学、动力系统和微分方程等领域。
他的研究对现代数学的发展起到了重要的推动作用,他提出了庞加莱猜想,该猜想在他去世后100年才被证明。
7. 蒲丰蒲丰(Blaise Pascal)是法国数学家、物理学家和哲学家,他是概率论和几何学的重要贡献者之一。
数学家高斯简介高斯(Carl Friedrich Gauss,1777年4月30日-1855年2月23日)被公认为是数学史上最伟大的数学家之一。
他对数学的贡献横跨多个领域,包括数论、代数、几何、物理学和天文学。
高斯开创了许多新的数学分支,并带领数学发展向前迈进。
在他非凡的数学成就背后,还有一个令人钦佩的个人故事。
高斯出生在现在的德国布伦瑞克市附近的一个小村庄。
尽管他出生在一个贫穷的家庭,但他早年展示出了惊人的数学才华。
在他父亲的指导下,他很早就掌握了阿伯特·杨的《算术》等数学经典书籍。
当他只有三岁的时候,他已经展示出了解决简单数学问题的能力。
这引起了他父亲和其他人的注意,并开始为他提供更高水平的数学课程。
高斯在数学上的天赋使得他很早就引起了数学家们的注目。
当他10岁时,他的才华已经被广泛传播,他开始受到一些著名数学家的关注。
其中一位是德国数学家沃尔夫冈·布希勒,他在高斯年轻时给予了他很多指导和鼓励。
在布希勒的帮助下,高斯在16岁时发表了一篇被认为是数学领域突破性的论文,证明了一个关于构造正17边形的问题。
这引起了许多数学家的注意,并为高斯赢得了声誉。
他受到了大学的邀请,并开始对继续深造感兴趣。
高斯在哥廷根大学学习期间取得了一系列的突破性成果。
他在代数和数论领域做出了许多重要的贡献,其中最著名的是他的数论工作。
高斯在数论中发表了多篇重要的论文,主要涉及素数和二次剩余等问题。
他证明了数论中的数学定理,对数学发展产生了深远的影响。
在几何学领域,高斯也有许多贡献。
他是非欧几何学的先驱之一,主张不同于传统欧几里得几何学的观点。
高斯的非欧几何学理论在当时引起了争议,但现在被广泛接受并成为数学的一部分。
除了在数学领域的突破,高斯还对天文学和物理学产生了重要影响。
他是现代统计学的奠基人,并对电磁学和磁学理论做出了重要贡献。
高斯的法则和高斯定律在这些领域中被普遍应用。
高斯的成就和贡献为他赢得了数学家的声誉。
明星简介高斯 (1777-1855),高斯是德国数学家,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。
高斯是近代数学奠基者之一,在历史上影响之大,可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。
他幼年时就表现出超人的数学天才。
1795年进入格丁根大学学习。
第二年他就发现正十七边形的尺规作图法。
并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。
高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。
这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。
由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。
“数学之王”的称号是对他一生恰如其分的赞颂。
笛卡儿(1596-1660)法国数学家、科学家和哲学家。
他是西方近代资产阶级哲学奠基人之一。
他的哲学与数学思想对历史的影响是深远的。
人们在他的墓碑上刻下了这样一句话:“笛卡儿,欧洲文艺复兴以来,第一个为人类争取并保证理性权利的人。
”8岁时他进入一所耶稣会学校,在校学习8年,接受了传统的文化教育,读了古典文学、历史、神学、哲学、法学、医学、数学及其他自然科学。
但他对所学的东西颇感失望。
因为在他看来教科书中那些微妙的论证,其实不过是模棱两可甚至前后矛盾的理论,只能使他顿生怀疑而无从得到确凿的知识,惟一给他安慰的是数学。
在结束学业时他暗下决心:不再死钻书本学问,而要向“世界这本大书”讨教,于是他决定避开战争,远离社交活动频繁的都市,寻找一处适于研究的环境。
1628年,他从巴黎移居荷兰,开始了长达20年的潜心研究和写作生涯,先后发表了许多在数学和哲学上有重大影响的论著。
德国天才数学家——黎曼
1、德国天才数学家,1826年—1866年,启发爱因斯坦的巨人之一。
2、主要贡献:现代解析数论的奠基者,组合拓扑学的开创者,黎曼几何的创立者。
创造了如黎曼函数、黎曼积分、黎曼引理、黎曼流形、黎曼映照定理、黎曼-希尔伯特问题、黎曼思路回环矩阵、黎曼曲面等。
3、1840年黎曼进入中学学习,自学了瑞士数学家欧拉、法国数学家勒让德等人的数学著作,用6天时间系统研究了勒让德的名著《数论》。
4、1846年黎曼遵从父亲意愿进入哥廷根大学学习哲学和神学,后改学数学,师从数学王子—高斯。
5、1857年创立黎曼几何,也称为椭圆几何,其基本规定为:在同一平面内任何两条直线都有交点。
黎曼几何是微分几何的基础,且大量应用在微分方程、变分法、复变函数论以及爱因斯坦的广义相对论等领域,广义相对论的非均匀时空概念就是受黎曼几何的启发。
6、1859年提出数学史上伟大的猜想:黎曼猜想,其关注的是素数的分布问题。
如果黎曼猜想成立,则有一千多条命题可升为定理。
2019年毕业于剑桥三一学院的英国数学家证明了黎曼猜想。