Engineering Materials工程材料学知识分享
- 格式:ppt
- 大小:1.79 MB
- 文档页数:16
工程材料学知识点第一章材料是有用途的物质。
一般将人们去开掘的对象称为“原料”,将经过加工后的原料称为“材料”工程材料:主要利用其力学性能,制造结构件的一类材料。
主要有:建筑材料、结构材料力学性能:强度、塑性、硬度功能材料:主要利用其物理、化学性能制造器件的一类材料.主要有:半导体材料(Si)磁性材料压电材料光电材料金属材料:纯金属和合金金属材料有两大类:钢铁(黑色金属)非铁金属材料(有色金属)非铁金属材料:轻金属(Ni以前)重金属(Ni以后)贵金属(Ag,Au,Pt,Pd)稀有金属(Zr,Nb,Ta)放射性金属(Ra,U)高分子材料:由低分子化合物依靠分子键聚合而成的有机聚合物主要组成:C,H,O,N,S,Cl,F,Si三大类:塑料(低分子量):聚丙稀树脂(中等分子量):酚醛树脂,环氧树脂橡胶(高分子量):天然橡胶,合成橡胶陶瓷材料:由一种或多种金属或非金属的氧化物,碳化物,氮化物,硅化物及硅酸盐组成的无机非金属材料。
陶瓷:结构陶瓷Al2O3,Si3N4,SiC等功能陶瓷铁电压电材料的工艺性能:主要反映材料生产或零部件加工过程的可能性或难易程度。
材料可生产性:材料是否易获得或易制备铸造性:将材料加热得到熔体,注入较复杂的型腔后冷却凝固,获得零件的能力锻造性:材料进行压力加工(锻造、压延、轧制、拉拔、挤压等)的可能性或难易程度的度量焊接性:利用部分熔体,将两块材料连接在一起能力第二章(详见课本)密排面密排方向fcc{111}<110>bcc{110}<111>体心立方bcc面心立方fcc密堆六方cph点缺陷:在三维空间各方向上尺寸都很小,是原子尺寸大小的晶体缺陷。
类型:空位:在晶格结点位置应有原子的地方空缺,这种缺陷称为“空位”。
间隙原子:在晶格非结点位置,往往是晶格的间隙,出现了多余的原子。
它们可能是同类原子,也可能是异类原子。
异类原子:在一种类型的原子组成的晶格中,不同种类的原子占据原有的原子位置。
工程材料学知识点总结一、材料的基本性质1. 密度:材料的密度是指单位体积内的质量。
密度越大,材料的质量就越大,密度越小,材料的质量就越小。
2. 弹性模量:材料的弹性模量是指材料在受力时产生弹性变形的能力。
弹性模量越大,材料的刚度就越大,抗压抗弯能力就越强。
3. 强度:材料的强度是指材料在受力时承受拉伸、压缩、剪切等力的能力。
强度越大,材料的抗拉强度、抗压强度、抗剪强度就越大。
4. 韧性:材料的韧性是指材料在受外力作用下能够吸收能量的能力。
韧性越大,材料的抗冲击性就越好。
5. 硬度:材料的硬度是指材料的抗划伤、抗刮伤能力。
硬度越大,材料就越难被划伤或刮伤。
6. 热膨胀系数:材料的热膨胀系数是指材料在温度变化时产生体积膨胀或收缩的程度。
热膨胀系数越大,材料在温度变化时的变形就越大。
二、金属材料1. 铁素体和奥氏体:铁素体是铁碳合金中的烤饼组织,具有较低的强度和硬度;奥氏体是铁碳合金中的馒头组织,具有较高的强度和硬度。
2. 钢的分类:钢可以按照成分分为碳钢、合金钢和特种钢;按照用途分为结构钢、工具钢和耐磨钢。
3. 铸铁的分类:铸铁可以按照形态分为白口铸铁和灰口铸铁;按照成分分为白口铸铁、灰口铸铁和球墨铸铁。
4. 不锈钢的特性:不锈钢具有耐腐蚀、耐高温、抗氧化等特性,适用于化工、食品加工、医疗器械等领域。
5. 铝合金的应用:铝合金具有轻质、耐腐蚀、导热性好的特性,广泛应用于航空航天、汽车、建筑等领域。
三、非金属材料1. 水泥混凝土:水泥混凝土应用广泛,常见于建筑、桥梁、水利工程等领域。
它具有强度高、耐久性好、施工方便等特点。
2. 砖瓦:砖瓦是建筑材料的重要组成部分,主要用于墙体、地面、屋面的施工。
它们具有隔热、隔音、防潮等特性。
3. 玻璃:玻璃具有透明、坚硬、抗腐蚀等特点,广泛应用于建筑、家具、日用品等领域。
4. 塑料:塑料具有轻质、耐腐蚀、可塑性好的特性,广泛应用于包装、日用品、建筑材料等领域。
5. 纤维素材料:纤维素材料主要包括木材、纸张、纺织品等,具有可再生、易加工、环保等特点。
1、晶格:描述原子在晶体中排列规律的三维空间几何点阵。
2、晶胞:晶格中能够代表晶格特征的最小几何单元致密度=原子所占的总体积÷晶胞的体积属于面心立方晶格的常用金属:γ铁、铝、铜、镍等。
属于体心立方晶格的常用金属:α铬、钨、钼、钒、α铁、β钛、铌等。
属于密排六方晶格的常用金属:镁、锌、铍、α钛、镉等。
晶面:晶体中由物质质点所组成的平面。
晶向:由物质质点所决定的直线。
每一组平行的晶面和晶向都可用一组数字来标定其位向。
这组数字分别称为晶面指数和晶向指数。
晶面指数的确定:晶面与三个坐标轴截距的倒数取最小整数,用圆括号表示。
如(111)、(112)。
晶向指数的确定:通过坐标原点直线上某一点的坐标,用方括号表示。
如[111]晶面族:晶面指数中各个数字相同但是符号不同或排列顺序不同的所有晶面。
这些晶面上的原子排列规律相同,具有相同的原子密度和性质。
如{110}=(110)+(101)+(011)+(101)+(110)+(011)晶向族:原子排列密度完全相同的晶向。
如<111>=[111]+[111]+[111]+[111]由于各个晶面和晶向上原子排列密度不同,使原子间的相互作用力也不相同。
因此在同一单晶体内不同晶面和晶向上的性能也是不同的。
这种现象称为晶体的各向异性。
晶粒——金属晶体中,晶格位向基本一致,并有边界与邻区分开的区域。
亚晶粒——晶粒内部晶格位向差小于2°、3°的更小的晶块。
实际金属晶粒大小除取决于金属种类外,主要取决于结晶条件和热处理工艺。
晶界——晶粒之间原子排列不规则的区域。
亚晶界——亚晶粒间的过渡区。
晶体缺陷:是指晶体中原子排列不规则的区域。
1、点缺陷2、线缺陷3、面缺陷点缺陷类型主要有三种:(1)间隙原子(2)晶格空位(3)置换原子间隙原子:在晶格的间隙处出现多余原子的晶体缺陷。
☆晶格空位:在晶格的结点处出现缺少原子的晶体缺陷线缺陷·位错:指晶体中若干列原子发生有规律的错排现象。
工程材料复习总结第一部分项目一:工程材料1.金属材料一般是指具有金属特性的物质。
2.金属材料通常分为钢铁材料、非铁金属材料、粉末冶金材料。
3.钢铁材料是指以铁、碳为主要元素组成的铁碳合金,分为工业用钢、工程铸铁。
4.非合金钢(碳素钢),通常分为碳素结构钢、优质碳素结构钢、碳素工具钢、铸钢。
5.工业用钢是指碳的质量分数在%11.2以下并含有其他元素的铁碳合金;工程铸铁是指碳的质量分数在%.2以上并含有其他元素的铁碳合金。
116.钢材生产过程:轧制→锻造→拉拔→挤压7.钢材分类:板材、型材和管材。
项目二:工程材料性能1.力学性能:材料在力的作用下表现出来的特性。
2.力学指标:强度、塑性、硬度、韧性、疲劳强度。
实验:拉伸试验、硬度试验、冲击试验、疲劳试验。
3.变形:材料受到外力作用时,机器零件和部件在宏观上将表现出形状和尺寸的变化。
4.⎩⎨⎧变形外力之后被保留下来的产生不能自行恢复卸除外力继续加大,材料将塑性变形,变形随之消失外力不大时,去除外力弹性变形变形5. 荷载(负荷、负载):材料所受的力。
⎪⎩⎪⎨⎧化向随时间发生周期性变大小、方向或大小和方变动载荷突然增加的载荷冲击载荷载荷大小不变或变动很慢的静载荷分类6.强度:材料在外力作用下抵抗塑性变形和断裂的能力。
7.变形的五种基本形式:拉伸与压缩、剪切与挤压、扭转、弯曲。
8.力—伸长曲线()1Oe 弹性变形阶段:发生弹性变形()2eeL 微量塑性变形阶段:弹性变形(大部分)+塑性变形(小部分)()3'eLeL 屈服阶段:屈服现象(水平线段或锯齿形线段)()4M eL '均匀变形阶段:材料发生大量塑性变形()5mz 缩颈阶段:缩颈现象,在z 点发生断裂图2-1 力—伸长曲线9.强度指标强度指标是判定材料强度大小的量化数据,通常用应力表示。
应力是指试验过程中的力除以试样原始横截面积的商,即试样单位横截面积上所受到的力,用符号R 表示,单位为MPa (兆帕)。
工程材料学考研知识点归纳工程材料学是研究材料的性能、加工、应用及其与工程结构和功能之间的关系的学科。
随着科技的发展,新材料的不断涌现,工程材料学在现代工业中扮演着越来越重要的角色。
以下是工程材料学考研的一些重要知识点归纳:1. 材料的基本属性- 材料的力学性能:包括强度、硬度、韧性、弹性模量等。
- 材料的物理性能:包括密度、热膨胀系数、导热性、电导率等。
- 材料的化学性能:包括耐腐蚀性、抗氧化性、化学稳定性等。
2. 材料的分类- 金属材料:包括铁、铝、铜等及其合金。
- 陶瓷材料:如氧化铝、氮化硅等。
- 聚合物材料:如聚乙烯、聚丙烯等。
- 复合材料:由两种或两种以上不同性质的材料组合而成。
3. 材料的微观结构与性能关系- 晶体结构:包括面心立方、体心立方等。
- 缺陷:如位错、晶界、孔洞等对材料性能的影响。
- 相变:如马氏体转变、贝氏体转变等。
4. 材料的加工与制备技术- 铸造:包括砂型铸造、金属模铸造等。
- 锻造:包括自由锻造、模锻等。
- 焊接:包括电弧焊、激光焊等。
- 粉末冶金:包括粉末压制、烧结等。
5. 材料的腐蚀与防护- 腐蚀机理:包括化学腐蚀、电化学腐蚀等。
- 腐蚀类型:如点蚀、应力腐蚀、腐蚀疲劳等。
- 防护措施:如涂层、阴极保护等。
6. 材料的疲劳与断裂- 疲劳机理:包括循环应力下的损伤累积。
- 断裂韧性:材料抵抗裂纹扩展的能力。
- 预防措施:如设计优化、材料选择等。
7. 高性能材料与新材料- 超高强度钢、钛合金、高温合金等。
- 纳米材料、智能材料、生物材料等。
8. 材料的测试与表征方法- 力学性能测试:如拉伸试验、压缩试验等。
- 微观结构分析:如扫描电子显微镜(SEM)、透射电子显微镜(TEM)等。
- 热分析技术:如差示扫描量热法(DSC)、热重分析(TGA)等。
结束语工程材料学是一个不断发展的领域,考研学生需要不断更新知识,掌握材料的基本理论、性能、加工技术以及新材料的发展动态。
通过对这些知识点的深入理解,可以为未来的研究和工程实践打下坚实的基础。
工程材料复习笔记整理(重点中的重点)名词解释:1.强度:抵抗塑性变形和破坏屈服强度:抵抗产生塑性变形抗拉强度:抵抗产生断裂前硬度:抵抗局部塑性变形塑性:产生塑性变形而不破坏的能力韧度:材料抵抗冲击载荷作用而不致破坏的极限能力称为冲击韧度疲劳强度:材料在规定的重复次数或交变应力作用下不致发生断裂的能力2.再结晶:升高温度,形成新的晶粒,使原来被拉大的晶粒转变为等轴晶粒,完全消除冷变形强化,力学性能恢复到塑性变形前的状态3.冷变形与热变形:再结晶温度以上进行的塑性变形为热变形,以下的为冷变形4.巴氏合金:铅基轴承合金5.下贝氏体,强度、韧度高,有最佳的综合机械性能,理想的强韧化组织,生产中常采用等温淬火获得下贝氏体组组织6. 一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。
二次渗碳体:指从奥氏体中析出的渗碳体三次渗碳体:从中析出的称为三次渗碳体共晶渗碳体:莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:珠光体中的渗碳体称为共析渗碳体7.纤维组织:热变形使铸态金属的偏析、分布在晶界上的夹杂物和第二相逐渐沿变形方向延展拉长、拉细而形成锻造流线;难以用热处理来消除8.变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
9.索氏体:在650〜600℃温度范围内形成层片较细的珠光体10.屈氏体:在600〜550℃温度范围内形成片层极细的珠光体。
11.马氏体:碳在a-Fe中的过饱和固溶体。
12.过冷度:实际结晶温度与理论结晶温度之差称为过冷度13.玻璃钢:玻璃纤维增强塑料称为玻璃钢。
玻璃钢具有成本低,工艺简单;强度低,绝缘等特点,它可制造壳体、管道、容器等14.加工硬化:随变形量的增加,金属的强度大为提高,塑性却有较大降低产生原因:位错密度升高为了继续变形,退火可消除加工硬化15.调质:调质处理后钢获得回火索氏体组织,其性能特点是具有较高的综合力学性能16.铁素体:(a或F )碳原子溶于a-Fe形成的间隙固溶体性能:固溶强化不明显,强度,硬度低,塑性韧性高17.奥氏体:(Y或A)碳原子溶于丫-Fe形成的间隙固溶体性能:高塑性,是理想的锻造组织18.渗碳体:(Fe3C )由12个铁原子和4个碳原子组成的具有复杂晶体结构间隙化合物性能:高硬度、高脆性、低强度19.珠光体:(P )铁素体和渗碳体的混合物称为珠光体,它具有较高的综合力学性能的特点20.莱氏体Ld 或Ld':组织:Ld : Fe3C ( Fe3C+Fe3CH) + Y Ld‘: Fe3C ( Fe3C+Fe3c口)+ P 机械化合物,性能:高硬度、高脆性。
材科基知识点范文材料科学与工程(Materials Science and Engineering,简称MSE)是一门研究材料的基本原理、性能、结构和制备工艺的学科。
在现代科学技术中,材料科学与工程的研究内容十分丰富和广泛,包括金属材料、无机非金属材料、有机高分子材料、复合材料等。
以下是关于材料科学与工程的一些基本知识点。
1.材料的分类:-金属材料:如钢、铝等。
具有良好的导电性、导热性和机械性能。
-无机非金属材料:如陶瓷、玻璃等。
具有高温耐性、绝缘性等特点。
-有机高分子材料:如塑料、橡胶等。
具有良好的可塑性和可拉伸性。
-复合材料:由两种或两种以上的材料组合而成,具有优异的力学性能。
2.结构与性能:-结晶结构:材料中的原子按照一定的顺序排列形成有序的晶格结构。
晶格结构的不同对材料的性能有重要影响。
-缺陷结构:包括点缺陷、面缺陷和体缺陷,是材料中的非正常原子或原子排列方式。
-物理性能:包括力学性能(如强度、硬度等)、热学性能(如导热性、热膨胀系数等)和电学性能(如导电性、绝缘性等)等。
-化学性能:材料的化学稳定性、耐腐蚀性等。
3.材料制备工艺:-熔炼:将原材料加热至液体状态,使其均匀混合,再通过冷却凝固,得到所需形状和尺寸的材料。
-粉末冶金:通过机械粉碎,将金属或非金属制成细小颗粒,然后通过压制、烧结等工艺获得材料。
-涂覆技术:通过把材料表面涂覆上其他材料,提高材料的性能和耐用性。
-复合制备:通过将两种或两种以上具有不同性能的材料组合在一起,形成新的复合材料,发挥各材料的优点。
4.特种材料:-高温材料:能在高温环境下保持稳定性能的材料,如高温合金等。
-磁性材料:具有磁性质的材料,如铁、钴、镍等。
-光学材料:对光的传播和反射有特殊性能的材料,如玻璃、晶体等。
-生物材料:用于医学和生物领域的材料,如人工关节、植入材料等。
5.材料测试与表征:-X射线衍射:通过测量X射线的衍射图案,确定材料的晶体结构和晶格参数。
工程材料知识点总结(全)第二章材料的性能1、布氏硬度布氏硬度的优点:测量误差小,数据稳定。
缺点:压痕大,不能用于太薄件、成品件及比压头还硬的材料。
适于测量退火、正火、调质钢,铸铁及有色金属的硬度(硬度少于450HB)。
2、洛氏硬度HRA用于测量高硬度材料, 如硬质合金、表淬层和渗碳层。
HRB用于测量低硬度材料, 如有色金属和退火、正火钢等。
HRC用于测量中等硬度材料,如调质钢、淬火钢等。
洛氏硬度的优点:操作简便,压痕小,适用范围广。
缺点:测量结果分散度大。
3、维氏硬度维氏硬度所用载荷小,压痕浅,适用于测量零件表面的薄硬化层、镀层及薄片材料的硬度,载荷可调范围大,对软硬材料都适用。
4、耐磨性是材料抵抗磨损的性能,用磨损量来表示。
分类有黏着磨损(咬合磨损)、磨粒磨损、腐蚀磨损。
5、接触疲劳:(滚动轴承、齿轮)经接触压应力的反复长期作用后引起的一种表面疲劳剥落损坏的现象。
6、蠕变:恒温、恒应力下,随着时间的延长,材料发生缓慢塑变的现象。
7、应力强度因子:描述裂纹尖端附近应力场强度的指标。
第三章金属的结构与结晶1、晶体中原子(分子或离子)在空间的规则排列的方式为晶体结构。
为便于描述晶体结构,把每个原子抽象成一个点,把这些点用假想直线连接起来,构成空间格架,称为晶格。
晶格中每个点称为结点,由一系列原子所组成的平面成为晶面。
由任意两个原子之间连线所指的方向称为晶向。
组成晶格的最小几何组成单元称为晶胞。
晶胞的棱边长度、棱边夹角称为晶格常数。
①体心立方晶格晶格常数用边长a表示,原子半径为√3a/4,每个晶胞包含的原子数为1/8×8+1=2(个)。
属于体心立方晶格的金属有铁、钼、铬等。
②面心立方晶格原子半径为√2a/4,每个面心立方晶胞中包含原子数为1/8×8+1/2×6=4(个)典型金属(金、银、铝、铜等)。
③密排六方晶格每个面心立方晶胞中包含原子数为为12×1/6+2*1/2+3=6(个)。
工程材料学知识点总结材料的基本性质:密度:指单位体积内的质量,密度越大,材料的质量就越大。
弹性模量:反映材料在受力时产生弹性变形的能力,弹性模量越大,材料的刚度越大。
强度:指材料在受力时承受拉伸、压缩、剪切等力的能力,强度越大,材料的抗拉、抗压、抗剪能力就越强。
韧性:表示材料在受外力作用下能够吸收能量的能力,韧性好的材料抗冲击性更佳。
硬度:指材料的抗划伤、抗刮伤能力,硬度大的材料更不容易被损伤。
热膨胀系数:反映材料在温度变化时产生体积膨胀或收缩的程度。
钢的分类与特性:分类:钢按成分可分为碳钢、合金钢和特种钢;按用途可分为结构钢、工具钢和耐磨钢。
特性:以铁素体为例,它是碳在α-Fe中的间隙固溶体,硬度低而塑性高,具有铁磁性。
金属的塑性变形与加工硬化:滑移变形:单晶体金属在拉伸塑性变形时,晶体内部沿特定晶面和晶向发生相对滑移。
加工硬化:随塑性变形增加,金属晶格的位错密度增加,导致金属的强度和硬度提高,而塑性和韧性降低。
晶体缺陷与强化:晶体缺陷:包括点缺陷、线缺陷和面缺陷。
强化机制:室温下,金属的强度随晶体缺陷的增多而迅速下降,但当缺陷增加到一定数量后,金属强度又会随缺陷的增加而增大。
结晶与过冷:结晶过程:金属结晶是晶核不断形成和长大的过程。
过冷现象:实际结晶温度低于理论结晶温度,过冷度与冷却速度有关。
这些只是工程材料学的一部分知识点,实际上该领域涉及的内容远不止这些。
在学习工程材料学时,需要深入理解各种材料的性质、制备工艺、应用领域以及相关的工程实践。
同时,也需要关注新材料的发展趋势和研究动态,以便更好地应对工程实践中的挑战和需求。
工程材料学知识要点工程材料学是工程领域中一门重要的学科,主要研究各种工程材料的组成、性质、加工、应用等方面的知识。
对于从事工程领域的学生或者从业人员来说,学习了解工程材料学的知识点是非常必要的。
本文将从工程材料分类、晶体结构、成分、热力学、化学、力学等方面为大家详细介绍工程材料学常见的知识点。
一、工程材料分类1.金属材料:常见的有铁、铝、铜、锌等,应用最多的材料。
2.非金属材料:常见的有陶瓷、聚合物、复合材料等。
3.半导体材料:如硅、锗等。
4.磁性材料:如铁氧体、硬磁材料等。
二、晶体结构1.晶体是由一定数量的离子、原子或分子组成,按照它们的排列方式制成的。
2.晶格:它描述了晶体内原子或离子之间的空间布局,是晶体中最基本的结构单元。
3.晶体有14种基本的对称性类型,每一种晶体结构类型都有其特定的晶体结构参数,如胞型参数、晶胞参数、原子坐标等。
三、成分1.组分:指材料中所包含的元素或化合物,这些元素或化合物的种类和数量给出材料的化学组成。
2.相:相是指材料中具有相同组成和结构的部分,单一组分材料只有一个相,而多组分材料则存在多个相。
四、热力学1.热力学是研究热、功、能量之间的关系的分支学科,它涉及相变、绿木况、热力学函数等基本概念。
2.相图:相图是不同条件下研究物质的物理状态的视觉表示,它涵盖了各种透平、不透明和化学变化等。
五、化学1.化学反应:工程材料在加工和使用过程中经常会发生化学反应,例如腐蚀、印刷、加工等。
2.酸碱中和反应:材料的腐蚀往往与酸碱中和反应有关,例如酸性大气污染、海洋水腐蚀等。
六、力学1.力的概念:力是物体作用于另一个物体时给它的物理量,通常由力的大小、方向和作用点三部分组成。
2.应力和应变:在力下,物体内部会受到应力的作用,使其发生应变变化。
这两种力学量在多种工程材料的力学设计和分析过程中很重要。
以上就是关于工程材料学知识要点的简单介绍,工程材料学是一个非常广泛、复杂和深奥的领域,需要我们不断地学习、实践和探索。