华中科技大学——工程材料学复习知识点知识点共17页
- 格式:doc
- 大小:249.50 KB
- 文档页数:17
名词解释1、材料:指人的思想意识之外的所有物质2、设计材料的感性:指材料作用于人的认知体验。
是人们通过感觉器官对材料做出的综合印象。
3、触觉质感:人对质感认识的主要体验和感觉,属于初级感觉或粗觉,靠人手及皮肤接触外界物体(产品),直接刺激接触部位游离神经末梢带给人的感觉。
4、肌理:是由天然材料自身的组织结构或人工材料的人为组织设计而形成的,在视觉或触觉上可感受到的一种表面材质效果。
5、金属塑性加工:是指在外力作用下,使金属坯料产生预期的塑性变形,从而获得具有一定形状、尺寸和机械性能的毛坯或零件的加工方法。
6、自由锻:是将近坯料放在上下地铁之间,以冲击力或压力使其变形的加工方法。
7、鎏金:是把金和水银合成的金汞剂,涂在铜器表层,加热使水银蒸发,使金牢固地附在铜器表面不脱落的技术。
8、黑色金属:乃工业上对铁,铬,锰的统称。
(三者都不是黑色而是银白色,因为铁的表面常常生锈,看上去就是黑色的,人们称之为黑色金属,) 9、生铁:生铁是含碳量大于2%的铁碳合金,工业生铁含碳量一般在2.5%--4%10、工业纯铁:含碳量低于0.04%的铁碳合金,含铁约99.9%,而杂质含量约为0.1%。
11、铸铁:是含碳量大于 2.11%的铁碳合金,常分为白口铸铁、灰口铸铁、麻口铸铁、可锻铸铁、球墨铸铁等几类。
12、铁合金:是一种或一种以上的金属或非金属元素与铁组成的合金。
13、碳钢:是指碳含量低于2%,并有少量硅、锰以及磷、硫等杂质的铁碳合金。
可分为低碳钢(C<=0.25%)、中碳钢(0.25%-0.6%)和高碳钢(>0.6)。
高碳钢属于工具钢。
14、有色金属:除了铁、锰、铬以外,其他的金属,都算是有色金属。
15、有色金属合金:以一种有色金属作为基体,加入一种或几种其它金属或非金属元素,所组成的既具有基体金属通性、又具有某些特定性的物质。
16、青铜Q:原指铜锡合金,现在除黄铜和白铜(铜镍合金)以外的铜合金均称为青铜。
第二章材料的性能一、1)弹性和刚度弹性:为不产生永久变形的最大应力,成为弹性极限刚度:在弹性极限范围内,应力与应变成正比,即:比例常数E称为弹性模量,它是衡量材料抵抗弹性变形能力的指标,亦称为刚度。
2)强度屈服点与屈服强度是材料开始产生明显塑性变形时的最低应力值,即:3 )疲劳强度:表示材料抵抗交变应力的能力, 即:脚标r为应力比,即:对于对称循环交变应力,r= —1时,这种情况下材料的疲劳代号为4)裂纹扩展时的临界状态所对应的应力场强度因子,称为材料的断裂韧度•用Kc表示二、材料的高温性能:1、蠕变的定义:是指在长时间的恒温下、恒应力作用下,即使应力小于该温度下的屈服点, 材料也会缓慢的产生型性变形的现象,而导致的材料断裂的现象称为蠕变断裂2、端变变形与断裂机理:材料的蠕变变形主要通过位错滑移、原子扩散及晶界滑动等机理进行的;而蠕变断裂是山于在晶界上形成裂纹并逐渐扩展而引起的,大多为沿晶断裂。
3、应力松弛:指承受弹性变形的零件,在工作中总变形量应保持不变,但随时间的延长而发生蠕变,从而导致工作应力自行逐渐衰减的现象4、蠕变温度:指金属在一定的温度下、一定的时间内产生一定变形量所能承受的最大应力5、持久强度:指金属在一定温度下、一定时间内所能承受最大断裂应力第三章:金属结构与结晶三种常见金属晶格:体心立方晶格,面心立方晶格、密排六方晶格晶格致密度和配位数晶面和晶向分析1、晶面指数2、晶向指数3、晶面族和晶向族4、晶面和晶向的原子密度第四章:二元合金相图(计算组织组成物的相对含量及相的相对量)1、二元合金相图的建立2、二元合金的基本相图1)匀晶相图(枝晶偏析:由于固溶体一般都以树枝状方式结晶,先结晶的树枝晶轴含高熔点的组元较多;后结晶的晶枝间含低熔点组元较多,故把晶内偏析又称为枝晶偏析)2)共晶相图3)包晶相图4)共晶相图3、铁碳合金铁碳合金基本相1)铁素体2)奥氏体3)渗碳体4)石墨第五章金属塑性变形与再结晶1、单晶体塑性变形形式1)滑移2)挛生2、加工硬化:随着变形程度的增加,金属的强度、硬度上升而塑性、韧性下降,即为冷变形强化,也称加工硬化。
工程材料学知识点总结一、材料的基本性质1. 密度:材料的密度是指单位体积内的质量。
密度越大,材料的质量就越大,密度越小,材料的质量就越小。
2. 弹性模量:材料的弹性模量是指材料在受力时产生弹性变形的能力。
弹性模量越大,材料的刚度就越大,抗压抗弯能力就越强。
3. 强度:材料的强度是指材料在受力时承受拉伸、压缩、剪切等力的能力。
强度越大,材料的抗拉强度、抗压强度、抗剪强度就越大。
4. 韧性:材料的韧性是指材料在受外力作用下能够吸收能量的能力。
韧性越大,材料的抗冲击性就越好。
5. 硬度:材料的硬度是指材料的抗划伤、抗刮伤能力。
硬度越大,材料就越难被划伤或刮伤。
6. 热膨胀系数:材料的热膨胀系数是指材料在温度变化时产生体积膨胀或收缩的程度。
热膨胀系数越大,材料在温度变化时的变形就越大。
二、金属材料1. 铁素体和奥氏体:铁素体是铁碳合金中的烤饼组织,具有较低的强度和硬度;奥氏体是铁碳合金中的馒头组织,具有较高的强度和硬度。
2. 钢的分类:钢可以按照成分分为碳钢、合金钢和特种钢;按照用途分为结构钢、工具钢和耐磨钢。
3. 铸铁的分类:铸铁可以按照形态分为白口铸铁和灰口铸铁;按照成分分为白口铸铁、灰口铸铁和球墨铸铁。
4. 不锈钢的特性:不锈钢具有耐腐蚀、耐高温、抗氧化等特性,适用于化工、食品加工、医疗器械等领域。
5. 铝合金的应用:铝合金具有轻质、耐腐蚀、导热性好的特性,广泛应用于航空航天、汽车、建筑等领域。
三、非金属材料1. 水泥混凝土:水泥混凝土应用广泛,常见于建筑、桥梁、水利工程等领域。
它具有强度高、耐久性好、施工方便等特点。
2. 砖瓦:砖瓦是建筑材料的重要组成部分,主要用于墙体、地面、屋面的施工。
它们具有隔热、隔音、防潮等特性。
3. 玻璃:玻璃具有透明、坚硬、抗腐蚀等特点,广泛应用于建筑、家具、日用品等领域。
4. 塑料:塑料具有轻质、耐腐蚀、可塑性好的特性,广泛应用于包装、日用品、建筑材料等领域。
5. 纤维素材料:纤维素材料主要包括木材、纸张、纺织品等,具有可再生、易加工、环保等特点。
1、晶格:描述原子在晶体中排列规律的三维空间几何点阵。
2、晶胞:晶格中能够代表晶格特征的最小几何单元致密度=原子所占的总体积÷晶胞的体积属于面心立方晶格的常用金属:γ铁、铝、铜、镍等。
属于体心立方晶格的常用金属:α铬、钨、钼、钒、α铁、β钛、铌等。
属于密排六方晶格的常用金属:镁、锌、铍、α钛、镉等。
晶面:晶体中由物质质点所组成的平面。
晶向:由物质质点所决定的直线。
每一组平行的晶面和晶向都可用一组数字来标定其位向。
这组数字分别称为晶面指数和晶向指数。
晶面指数的确定:晶面与三个坐标轴截距的倒数取最小整数,用圆括号表示。
如(111)、(112)。
晶向指数的确定:通过坐标原点直线上某一点的坐标,用方括号表示。
如[111]晶面族:晶面指数中各个数字相同但是符号不同或排列顺序不同的所有晶面。
这些晶面上的原子排列规律相同,具有相同的原子密度和性质。
如{110}=(110)+(101)+(011)+(101)+(110)+(011)晶向族:原子排列密度完全相同的晶向。
如<111>=[111]+[111]+[111]+[111]由于各个晶面和晶向上原子排列密度不同,使原子间的相互作用力也不相同。
因此在同一单晶体内不同晶面和晶向上的性能也是不同的。
这种现象称为晶体的各向异性。
晶粒——金属晶体中,晶格位向基本一致,并有边界与邻区分开的区域。
亚晶粒——晶粒内部晶格位向差小于2°、3°的更小的晶块。
实际金属晶粒大小除取决于金属种类外,主要取决于结晶条件和热处理工艺。
晶界——晶粒之间原子排列不规则的区域。
亚晶界——亚晶粒间的过渡区。
晶体缺陷:是指晶体中原子排列不规则的区域。
1、点缺陷2、线缺陷3、面缺陷点缺陷类型主要有三种:(1)间隙原子(2)晶格空位(3)置换原子间隙原子:在晶格的间隙处出现多余原子的晶体缺陷。
☆晶格空位:在晶格的结点处出现缺少原子的晶体缺陷线缺陷·位错:指晶体中若干列原子发生有规律的错排现象。
第一篇第一章液态金属的结构和性质1.凝固不过只是一种相变过程,即物质从液态转变成固态的过程称为凝固。
2.相变不只是发生在固相、液相、气相三相之间,在固相中间也是会有相变,即同素异构转变。
3.对金属晶体加热以后,晶体受热膨胀,若对晶体进一步加热,则达到激活能数值的原子数量也进一步增加。
原子离开点阵后,即留下自由点阵—空穴。
空穴的产生,造成局部地区的势垒的减少,使得邻近的原子进入空穴位置,这样就是造成空穴的位移。
在熔点附近,空穴数目可以达到原子总数的1%。
这样在实际晶体中,除按一定点阵排列外,尚有离位原子与空穴。
当这些原子的数量达到某一数量值时,首先在晶界处的原子跨越势垒而处于激活状态,以致能脱离晶粒的表面而向邻近的晶粒跳跃,导致原有晶粒失去固定形状与尺寸,晶粒间可出现相对流动,称为晶界粘性流动。
液态金属中的原子排列,在几个原子间距的小范围内与固态原子基本一致,而远离原子后就完全不同于固态,这个就称为“近程有序”、“远程无序”。
固态的原子为远程有序。
4.在熔点温度的固态变为同温度的液态时,金属要吸收大量的热量,称为熔化潜热。
5.固态金属的加热熔化符合热力学规律:Eq=d(U+pV)=dU+pdV=dHdS=Eq/T,其大小描述了金属由固态变成液态时原子由规则排列变成非规则排列的紊乱程度。
6.熵值变化是系统结构紊乱性变化的量度。
7.液态金属的结构:纯金属结构是由原子集团、游离原子和空穴组成;液态金属的结构是不稳定的,而是处于瞬息万变的状态,这种原子集团与空穴的变化现象称为“结构起伏”,同时还存在大量的能量起伏。
实际液态金属极其复杂,其中包括各种化学成分的原子集团、游离原子、空穴、夹杂物及气泡,是一种“浑浊”的液体。
存在温度起伏、结构起伏和成分起伏。
8.液态金属的性质:⑴粘度:实质上就是原子间作用力,影响因素①化学成分 一般的难熔化合物的物体粘度高,而熔点低的共晶成分合金的粘度低;②温度 液态金属的粘度随温度的升高而降低;③非金属夹杂物 液态金属中固态的非金属夹杂物使液态金属的粘度增加,主要是因为夹杂物的存在使液态金属成为不均匀的多相体系,液相流动时的内摩擦力增加所致。
材料⼯程基础复习要点及知识点整理(全)材料⼯程基础复习要点第⼀章粉体⼯程基础粉体:粉末质粒与质粒之间的间隙所构成的集合。
*粉末:最⼤线尺⼨介于0.1~500µm的质粒。
*粒度与粒径:表征粉体质粒空间尺度的物理量。
粉体颗粒的粒度及粒径的表征⽅法:1.⽹⽬值表⽰——(⽬数越⼤粒径越⼩)直接表征,如果粉末颗粒系统的粒径相等时可⽤单⼀粒度表⽰。
2.投影径——⽤显微镜测试,对于⾮球形颗粒测量其投影图的投影径。
①法莱特(Feret)径D F:与颗粒投影相切的两条平⾏线之间的距离②马丁(Martin)径D M:在⼀定⽅向上将颗粒投影⾯积分为两等份的直径③克伦贝恩(Krumbein)径D K:在⼀定⽅向上颗粒投影的最⼤尺度④投影⾯积相当径D H:与颗粒投影⾯积相等的圆的直径⑤投影周长相当径D C:与颗粒投影周长相等的圆的直径3.轴径——被测颗粒外接⽴⽅体的长L、宽B、⾼T。
①⼆轴径长L与宽B②三轴径长L与宽B及⾼T4.球当量径——把颗粒看做相当的球,并以其直径代表颗粒的有效径的表⽰⽅法。
(容易处理)*粉体的⼯艺特性:流动性、填充性、压缩性和成形性。
*粉体的基本物理特性:1.粉体的能量——具备较同质的块状固体材料⾼得多的能量。
2.分体颗粒间的作⽤⼒——⾼表⾯能,固相颗粒之间容易聚集(分⼦间引⼒、颗粒间异性静电引⼒、固相侨联⼒、附着⽔分的⽑细管⼒、磁性⼒、颗粒表⾯不平滑引起的机械咬合⼒)。
3.粉体颗粒的团聚。
第⼆章粉体加⼯与处理粉体制备⽅法:1.机械法——捣磨法、切磨法、涡旋磨法、球磨法、⽓流喷射粉碎法、⾼能球磨法。
①脆性⼤的材料:捣磨法、涡旋磨法、球磨法、⽓流喷射粉碎法、⾼能球磨法②塑性较⾼材料:切磨法、涡旋磨法、⽓流喷射粉碎法③超细粉与纳⽶粉:⽓流喷射粉碎法、⾼能球磨法2.物理化学法①物理法(雾化法、⽓化或蒸发-冷凝法):只发⽣物理变化,不发⽣化学成分的变化,适于各类材料粉末的制备②物理-化学法:⽤于制备的⾦属粉末纯度⾼,粉末的粒度较细③还原法:可直接利⽤矿物或利⽤冶⾦⽣产的废料及其他廉价物料作原料,制的粉末的成本低④电解法:⼏乎可制备所有⾦属粉末、合⾦粉末,纯度⾼3.化学合成法——指由离⼦、原⼦、分⼦通过化学反应成核和长⼤、聚集来获得微细颗粒的⽅法①固相法:以固态物质为原始原料(热分解反应法、化合反应法、⽔热法等)②液相沉淀法:最常见的⽅法沉淀法(直接沉淀法、均匀沉淀法、共沉淀法)、溶胶-凝胶法影响颗粒粉碎的因素:易碎性、碰撞速度(碎料例⼦碰撞速度、粉碎介质碰撞速度)粉体的分级:把粉体材料按某种粒度⼤⼩或不同种类颗粒进⾏分选的操作。
工程材料学考研知识点归纳工程材料学是研究材料的性能、加工、应用及其与工程结构和功能之间的关系的学科。
随着科技的发展,新材料的不断涌现,工程材料学在现代工业中扮演着越来越重要的角色。
以下是工程材料学考研的一些重要知识点归纳:1. 材料的基本属性- 材料的力学性能:包括强度、硬度、韧性、弹性模量等。
- 材料的物理性能:包括密度、热膨胀系数、导热性、电导率等。
- 材料的化学性能:包括耐腐蚀性、抗氧化性、化学稳定性等。
2. 材料的分类- 金属材料:包括铁、铝、铜等及其合金。
- 陶瓷材料:如氧化铝、氮化硅等。
- 聚合物材料:如聚乙烯、聚丙烯等。
- 复合材料:由两种或两种以上不同性质的材料组合而成。
3. 材料的微观结构与性能关系- 晶体结构:包括面心立方、体心立方等。
- 缺陷:如位错、晶界、孔洞等对材料性能的影响。
- 相变:如马氏体转变、贝氏体转变等。
4. 材料的加工与制备技术- 铸造:包括砂型铸造、金属模铸造等。
- 锻造:包括自由锻造、模锻等。
- 焊接:包括电弧焊、激光焊等。
- 粉末冶金:包括粉末压制、烧结等。
5. 材料的腐蚀与防护- 腐蚀机理:包括化学腐蚀、电化学腐蚀等。
- 腐蚀类型:如点蚀、应力腐蚀、腐蚀疲劳等。
- 防护措施:如涂层、阴极保护等。
6. 材料的疲劳与断裂- 疲劳机理:包括循环应力下的损伤累积。
- 断裂韧性:材料抵抗裂纹扩展的能力。
- 预防措施:如设计优化、材料选择等。
7. 高性能材料与新材料- 超高强度钢、钛合金、高温合金等。
- 纳米材料、智能材料、生物材料等。
8. 材料的测试与表征方法- 力学性能测试:如拉伸试验、压缩试验等。
- 微观结构分析:如扫描电子显微镜(SEM)、透射电子显微镜(TEM)等。
- 热分析技术:如差示扫描量热法(DSC)、热重分析(TGA)等。
结束语工程材料学是一个不断发展的领域,考研学生需要不断更新知识,掌握材料的基本理论、性能、加工技术以及新材料的发展动态。
通过对这些知识点的深入理解,可以为未来的研究和工程实践打下坚实的基础。
材料工程基础复习要点及知识点整理材料工程是一门研究材料的性能与结构、制备与应用的学科。
在进行材料工程的复习时,可以从以下几个方面进行重点整理:1.材料的分类与性质:了解材料的基本分类,包括金属材料、无机非金属材料、有机材料和复合材料等。
每种材料都有其独特的性质和特点,例如金属具有高强度、导电性和塑性等特点;无机非金属材料具有高温性能和耐腐蚀性能等;有机材料具有低密度和良好的绝缘性能等。
2.材料的结构:掌握材料的晶体结构和非晶结构。
晶体结构可分为立方晶系、六方晶系、正交晶系等,不同结构对材料的性能有着重要影响。
非晶结构指材料的原子排列无规则,常见的非晶结构包括玻璃和塑料等。
3.材料的制备与工艺:了解常见的材料制备方法,包括熔融法、溶液法、气相法和固相法等。
掌握不同制备方法对材料性能的影响,以及材料的烧结、热处理、涂覆等工艺方法。
4.材料的物理性能:熟悉材料的物理性能,包括力学性能、热学性能、电学性能和磁学性能等。
了解不同材料的硬度、强度、韧性、导热性、导电性和磁性等方面的性能。
5.材料的化学性能:了解材料与环境的相互作用,包括腐蚀、腐蚀疲劳、氧化、烧蚀等现象。
熟悉不同材料的耐蚀性,以及如何通过表面涂层和防护措施来改善材料的化学性能。
6.材料的性能测试与评价:了解材料性能的测试方法和评价标准,例如拉伸试验、硬度测试、电阻测试等。
熟悉不同测试方法的原理和应用,并能够分析测试结果。
7.材料的应用:掌握材料在各个领域的应用,例如航空航天、汽车工业、电子技术和生物医药等。
了解材料的选择原则和设计原则,以及如何根据具体应用要求选择合适的材料。
除了上述基本要点和知识点,还可以参考相关教材和课堂笔记,结合习题和案例进行练习和思考,加深对材料工程的理解和应用。
同时,关注国内外的最新研究进展和材料工程的新技术,及时了解和学习材料工程领域的前沿知识。
不断提升自己的综合素质,掌握科学研究和工程实践中的材料选择、设计和改性等技术能力。
材料工程基础复习要点及知识点整理全材料工程是工科的一个重要领域,它研究材料的特性、性能和结构,以及材料的制备、改性和应用。
在材料工程的学习和研究中,掌握基础的知识和复习要点是非常重要的。
本文将从材料的分类、性能和结构、制备方法以及常见材料的特点等方面进行全面的整理,帮助读者回顾和巩固材料工程的基础知识。
一、材料的分类材料可以根据其组成和性质的不同进行分类。
常见的材料分类有金属材料、非金属材料和复合材料。
1. 金属材料金属材料具有良好的导电性、导热性和可塑性。
常见的金属材料有铁、铜、铝等。
金属材料常用于制造机械、汽车等工业产品。
2. 非金属材料非金属材料分为有机材料和无机材料。
有机材料具有较高的灵活性和可塑性,如塑料、橡胶等;无机材料具有较高的硬度和稳定性,如陶瓷、玻璃等。
非金属材料广泛应用于建筑、电子等领域。
3. 复合材料复合材料是由两种或两种以上的材料组成,具有优异的综合性能。
常见的复合材料有纤维增强复合材料、层状复合材料等。
复合材料在航空航天、汽车等领域得到了广泛应用。
二、材料的性能和结构材料的性能包括力学性能、物理性能、化学性能和热性能等。
1. 力学性能力学性能是材料的力学特征。
常见的力学性能有强度、韧性、硬度等。
强度表示材料抗拉、抗压、抗弯等载荷作用下的能力;韧性表示材料的抗断裂性能;硬度表示材料抵抗表面形变和划伤的能力。
2. 物理性能物理性能描述材料在物理方面的特性。
常见的物理性能有导电性、导热性、磁性等。
导电性表示材料传导电流的能力;导热性表示材料传导热量的能力;磁性表示材料受磁场作用的特性。
3. 化学性能化学性能是材料对外界化学物质的反应特性。
常见的化学性能有耐腐蚀性、稳定性等。
耐腐蚀性表示材料抵抗酸碱等侵蚀的能力;稳定性表示材料在不同条件下的性能变化情况。
4. 热性能热性能描述材料在温度变化下的特性。
常见的热性能有热导率、热膨胀系数等。
热导率表示材料传导热量的能力;热膨胀系数表示材料在温度变化下的膨胀程度。
工程材料学知识点第一章材料是有用途的物质。
一般将人们去开掘的对象称为“原料”,将经过加工后的原料称为“材料”工程材料:主要利用其力学性能,制造结构件的一类材料。
主要有:建筑材料、结构材料力学性能:强度、塑性、硬度功能材料:主要利用其物理、化学性能制造器件的一类材料.主要有:半导体材料(Si)磁性材料压电材料光电材料金属材料:纯金属和合金金属材料有两大类:钢铁(黑色金属)非铁金属材料(有色金属)非铁金属材料:轻金属(Ni以前)重金属(Ni以后)贵金属(Ag,Au,Pt,Pd)稀有金属(Zr,Nb,Ta)放射性金属(Ra,U)高分子材料:由低分子化合物依靠分子键聚合而成的有机聚合物主要组成:C,H,O,N,S,Cl,F,Si三大类:塑料(低分子量):聚丙稀树脂(中等分子量):酚醛树脂,环氧树脂橡胶(高分子量):天然橡胶,合成橡胶陶瓷材料:由一种或多种金属或非金属的氧化物,碳化物,氮化物,硅化物及硅酸盐组成的无机非金属材料。
陶瓷:结构陶瓷 Al2O3, Si3N4,SiC等功能陶瓷铁电压电材料的工艺性能:主要反映材料生产或零部件加工过程的可能性或难易程度。
材料可生产性:材料是否易获得或易制备铸造性:将材料加热得到熔体,注入较复杂的型腔后冷却凝固,获得零件的能力锻造性:材料进行压力加工(锻造、压延、轧制、拉拔、挤压等)的可能性或难易程度的度量焊接性:利用部分熔体,将两块材料连接在一起能力第二章(详见课本)密排面密排方向fcc {111} <110>bcc {110} <111>体心立方bcc面心立方fcc密堆六方cph点缺陷:在三维空间各方向上尺寸都很小,是原子尺寸大小的晶体缺陷。
类型:空位:在晶格结点位置应有原子的地方空缺,这种缺陷称为“空位”。
间隙原子:在晶格非结点位置,往往是晶格的间隙,出现了多余的原子。
它们可能是同类原子,也可能是异类原子。
异类原子:在一种类型的原子组成的晶格中,不同种类的原子占据原有的原子位置。
材料工程基础复习要点及知识点整理全材料工程是化学、物理的交叉学科,它涉及到材料的物理、化学以及其结构等方面知识。
在学习材料工程基础时,我们需要掌握一些重要的复习要点和知识点,本文将对其进行系统的整理。
一、晶体结构与晶体缺陷晶体结构是材料工程基础的核心内容之一,其对材料的性质和应用有着非常重要的影响。
晶体结构的种类包括金属晶体、离子晶体、共价晶体、分子晶体等,每种结构都有其独特的特点和性质。
晶体缺陷是晶体中存在的缺陷或异质物,它对材料的性质和应用也有着重要的影响。
晶体缺陷包括点缺陷(空位、间隙、杂质)、线缺陷(位错、蚀刻通道)和面缺陷(晶界、界面)等。
二、材料的物理性质材料的物理性质包括密度、比热、热导率、电导率、热膨胀系数、磁性、光学性能等。
这些性质对于材料的性能和应用起着决定性的作用,因此学习和掌握这些物理性质是非常重要的。
三、材料的力学性质材料的力学性质包括弹性模量、屈服强度、断裂韧性、硬度等。
这些性质是衡量材料强度和耐久性的重要指标,对于材料的设计和应用也具有非常重要的作用。
四、材料的组织结构和相变材料的组织结构指的是材料内部的微观结构和相互之间的关系,包括晶体结构、晶粒大小、晶体缺陷、晶格畸变、相分布等。
了解和掌握材料的组织结构对于材料的性能和应用具有重要的意义。
材料的相变指的是材料在不同条件下发生的状态变化现象,包括固态相变、液态相变和气态相变等。
了解和掌握材料的相变规律可以为材料的制备和性能提高提供重要的理论依据和工程指导。
五、材料加工和处理材料加工和处理是将材料转变成所需的形态、结构和性能的过程。
常见的加工和处理方式包括热处理、冷加工、焊接、表面处理、涂层等。
了解和掌握这些加工和处理过程对于材料的制备和性能提高非常重要。
六、材料的应用材料的应用是材料工程学科的最终目的。
掌握材料的应用知识可以为实际工程和生产提供重要的理论基础和实践指导。
总之,材料工程基础涉及到的知识点非常丰富和复杂,需要我们通过多种途径进行学习和掌握。
《工程材料学》总结2014-04-03第一部分:晶体结构与塑性变形一、三种典型的金属晶体结构1.bcc、fcc、hcp的晶胞结构、内含原子数,致密度、配位数。
2.立方晶系的晶向指数[uvw]、晶面指数(hkl)的求法和画法。
3.晶向族〈…〉/晶面族{…}的意义(原子排列规律相同但方向不同的一组晶向/晶面,指数的数字相同而符号、顺序不同),会写出每一晶向族/晶面族包括的全部晶向/晶面。
4.bcc、fcc晶体的密排面和密排方向。
密排面密排方向fcc {111} <110>bcc {110} <111>二、晶体缺陷1.点缺陷、线缺陷、面缺陷包括那些具体的晶体缺陷。
如:位错是线缺陷,晶界(包括亚晶界)是面缺陷三、塑性变形与再结晶1.滑移的本质:滑移是通过位错运动进行的。
2.滑移系=滑移面+ 其上的一个滑移方向。
滑移面与滑移方向就是晶体的密排面和密排方向。
3.强化金属的原理及主要途径:阻碍位错运动,使滑移进行困难,提高了金属强度。
主要途径是细晶强化(晶界阻碍)、固溶强化(溶质原子阻碍)、弥散强化(析出相质点阻碍)、加工硬化(因塑变位错密度增加产生阻碍)等。
4.冷塑性变形后金属加热时组织性能的变化过程:回复→再结晶→晶粒长大。
性能变化:回复:不引起硬度大的变化;再结晶:硬度大幅度降低(晶格类型有何变化?)5.冷、热加工的概念冷加工:在再结晶温度以下进行的加工变形,产生纤维组织和加工硬化、内应力。
热加工:在再结晶温度以上进行的加工变形,同时进行再结晶,产生等轴晶粒,加工硬化、内应力全消失。
6.热加工应使流线合理分布,提高零件的使用寿命。
第二部分:金属与合金的结晶与相图一、纯金属的结晶1.为什么结晶必须要过冷度?2.结晶是晶核形成和晶核长大的过程。
3.细化晶粒有哪些主要方法?(三种方法)二、二元合金的相结构与相图1.固溶体和金属化合物的区别。
(以下哪一些是固溶体,哪一些是金属化合物:α-Fe、γ-Fe、Fe3C、A、F、P、L’d、S、T、B上、B下、M片、M条?)2.匀晶相图①在两相区内结晶时两相的成分、相对量怎样变化?②熟练掌握用杠杆定律计算的步骤:⑴将所求材料一分为二,⑵注意杠杆的位置和长度,⑶正确列出关系式。
工程材料学知识点总结材料的基本性质:密度:指单位体积内的质量,密度越大,材料的质量就越大。
弹性模量:反映材料在受力时产生弹性变形的能力,弹性模量越大,材料的刚度越大。
强度:指材料在受力时承受拉伸、压缩、剪切等力的能力,强度越大,材料的抗拉、抗压、抗剪能力就越强。
韧性:表示材料在受外力作用下能够吸收能量的能力,韧性好的材料抗冲击性更佳。
硬度:指材料的抗划伤、抗刮伤能力,硬度大的材料更不容易被损伤。
热膨胀系数:反映材料在温度变化时产生体积膨胀或收缩的程度。
钢的分类与特性:分类:钢按成分可分为碳钢、合金钢和特种钢;按用途可分为结构钢、工具钢和耐磨钢。
特性:以铁素体为例,它是碳在α-Fe中的间隙固溶体,硬度低而塑性高,具有铁磁性。
金属的塑性变形与加工硬化:滑移变形:单晶体金属在拉伸塑性变形时,晶体内部沿特定晶面和晶向发生相对滑移。
加工硬化:随塑性变形增加,金属晶格的位错密度增加,导致金属的强度和硬度提高,而塑性和韧性降低。
晶体缺陷与强化:晶体缺陷:包括点缺陷、线缺陷和面缺陷。
强化机制:室温下,金属的强度随晶体缺陷的增多而迅速下降,但当缺陷增加到一定数量后,金属强度又会随缺陷的增加而增大。
结晶与过冷:结晶过程:金属结晶是晶核不断形成和长大的过程。
过冷现象:实际结晶温度低于理论结晶温度,过冷度与冷却速度有关。
这些只是工程材料学的一部分知识点,实际上该领域涉及的内容远不止这些。
在学习工程材料学时,需要深入理解各种材料的性质、制备工艺、应用领域以及相关的工程实践。
同时,也需要关注新材料的发展趋势和研究动态,以便更好地应对工程实践中的挑战和需求。
工程材料学知识要点工程材料学是工程领域中一门重要的学科,主要研究各种工程材料的组成、性质、加工、应用等方面的知识。
对于从事工程领域的学生或者从业人员来说,学习了解工程材料学的知识点是非常必要的。
本文将从工程材料分类、晶体结构、成分、热力学、化学、力学等方面为大家详细介绍工程材料学常见的知识点。
一、工程材料分类1.金属材料:常见的有铁、铝、铜、锌等,应用最多的材料。
2.非金属材料:常见的有陶瓷、聚合物、复合材料等。
3.半导体材料:如硅、锗等。
4.磁性材料:如铁氧体、硬磁材料等。
二、晶体结构1.晶体是由一定数量的离子、原子或分子组成,按照它们的排列方式制成的。
2.晶格:它描述了晶体内原子或离子之间的空间布局,是晶体中最基本的结构单元。
3.晶体有14种基本的对称性类型,每一种晶体结构类型都有其特定的晶体结构参数,如胞型参数、晶胞参数、原子坐标等。
三、成分1.组分:指材料中所包含的元素或化合物,这些元素或化合物的种类和数量给出材料的化学组成。
2.相:相是指材料中具有相同组成和结构的部分,单一组分材料只有一个相,而多组分材料则存在多个相。
四、热力学1.热力学是研究热、功、能量之间的关系的分支学科,它涉及相变、绿木况、热力学函数等基本概念。
2.相图:相图是不同条件下研究物质的物理状态的视觉表示,它涵盖了各种透平、不透明和化学变化等。
五、化学1.化学反应:工程材料在加工和使用过程中经常会发生化学反应,例如腐蚀、印刷、加工等。
2.酸碱中和反应:材料的腐蚀往往与酸碱中和反应有关,例如酸性大气污染、海洋水腐蚀等。
六、力学1.力的概念:力是物体作用于另一个物体时给它的物理量,通常由力的大小、方向和作用点三部分组成。
2.应力和应变:在力下,物体内部会受到应力的作用,使其发生应变变化。
这两种力学量在多种工程材料的力学设计和分析过程中很重要。
以上就是关于工程材料学知识要点的简单介绍,工程材料学是一个非常广泛、复杂和深奥的领域,需要我们不断地学习、实践和探索。
工程材料学知识点第一章材料是有用途的物质。
一般将人们去开掘的对象称为“原料”,将经过加工后的原料称为“材料”工程材料:主要利用其力学性能,制造结构件的一类材料。
主要有:建筑材料、结构材料力学性能:强度、塑性、硬度功能材料:主要利用其物理、化学性能制造器件的一类材料.主要有:半导体材料(Si)磁性材料压电材料光电材料金属材料:纯金属和合金金属材料有两大类:钢铁(黑色金属)非铁金属材料(有色金属)非铁金属材料:轻金属(Ni以前)重金属(Ni以后)贵金属(Ag,Au,Pt,Pd)稀有金属(Zr,Nb,Ta)放射性金属(Ra,U)高分子材料:由低分子化合物依靠分子键聚合而成的有机聚合物主要组成:C,H,O,N,S,Cl,F,Si三大类:塑料(低分子量):聚丙稀树脂(中等分子量):酚醛树脂,环氧树脂橡胶(高分子量):天然橡胶,合成橡胶陶瓷材料:由一种或多种金属或非金属的氧化物,碳化物,氮化物,硅化物及硅酸盐组成的无机非金属材料。
陶瓷:结构陶瓷 Al2O3, Si3N4,SiC等功能陶瓷铁电压电材料的工艺性能:主要反映材料生产或零部件加工过程的可能性或难易程度。
材料可生产性:材料是否易获得或易制备铸造性:将材料加热得到熔体,注入较复杂的型腔后冷却凝固,获得零件的能力锻造性:材料进行压力加工(锻造、压延、轧制、拉拔、挤压等)的可能性或难易程度的度量焊接性:利用部分熔体,将两块材料连接在一起能力第二章(详见课本)密排面密排方向fcc {111} <110>bcc {110} <111>体心立方bcc面心立方fcc密堆六方cph点缺陷:在三维空间各方向上尺寸都很小,是原子尺寸大小的晶体缺陷。
类型:空位:在晶格结点位置应有原子的地方空缺,这种缺陷称为“空位”。
间隙原子:在晶格非结点位置,往往是晶格的间隙,出现了多余的原子。
它们可能是同类原子,也可能是异类原子。
异类原子:在一种类型的原子组成的晶格中,不同种类的原子占据原有的原子位置。
线缺陷:在三维空间的一个方向上的尺寸很大(晶粒数量级),另外两个方向上的尺寸很小(原子尺寸大小)的晶体缺陷。
其具体形式就是晶体中的位错(Dislocation)形式:刃型位错螺型位错混合型位错位错线附近的晶格有相应的畸变,有高于理想晶体的能量;位错线附近异类原子浓度高于平均水平;位错在晶体中可以发生移动,是材料塑性变形基本原因之一;位错与异类原子的作用,位错之间的相互作用,对材料的力学性能有明显的影响。
面缺陷:在三维空间的两个方向上的尺寸很大(晶粒数量级),另外一个方向上的尺寸很小(原子尺寸大小)的晶体缺陷。
形式:晶界面亚晶界面相界面第三章过冷:一般地,熔体自然冷却时,随时间延长,温度不断降低,但当冷却到某一温度Tn时,开始结晶,此时随着时间的延长,出现一个温度平台,这一平台温度通常要低于理想的结晶温度T0,这样在低于理想结晶温度以下才能发生结晶的现象——过冷。
过冷度:实际结晶温度Tn与理想结晶温度T0之差T=T0-Tn 称为过冷度。
过冷度的大小随冷却速度的增加而增加过冷度愈大,ΔG愈大,结晶驱动力愈大结晶过程:形核:符合能量条件和结构条件的短程有序集团(尺寸达到临界尺寸)将成为结晶核心。
长大:金属液体中的晶核一旦形成,由于系统自由能降低,晶核将迅速长大直到液体全部消失形核率(N):单位时间在单位母体(液体)的体积内晶核的形成数目称为形核率。
一般合金相图是在常压下(P=1atm)获得的,所以对于一个合金体系描述相图的参数有三个:成分,温度,相。
即相只与温度和成分相关。
若以成分(C)为横坐标,T为纵坐标,那么坐标系任一点即表示某一成分合金在某一温度下对应的相.匀晶相图杠杆定律:设 mL和 m分别为两相的质量,它们满足以下杠杆定律:共晶反应:在某一温度下,从液体中同时析出两种固溶体。
即:L→α+β7条线:AE、BE为液相线,温度在液相线上,为单一液态;AC、BD为固相线,温度在此以下为单一固溶体;CED:共晶反应线,对应L→α+β;CG、DH为α,β固溶体的溶解度变化线,即:α,β固溶体的溶解度随温度变化而发生变化的曲线。
6个相区:3个单相区:L、、3个两相区: L+, L+ 、+注:两个单相区由一个双相区分隔 (相律)1个点:E:共晶成分点,液体温度最低点。
成分在E点以左,为亚共晶(成分在 CE 范围)成分在E点以右,为过共晶(成分在 ED 范围)包晶反应:两组元在液态下无限互溶,固态下有限溶解,并且发生包晶转变:L+。
Ac 和 bc为两液相线,与其对应的 ad 和 bp 为两固相线;Df 和pg 固溶体α、β的溶解度随温度变化线;dpc为包晶转变线。
相图含三个单相区L、α、β;三个双相区L+α、L+β、α+β;一个三相区 L+α+β,水平线dpc为包晶反应线, P点为包晶点,对应包晶反应: L+。
共析反应:特点:(1)固态反应。
(2)类似于共晶反应。
(3)共析反应:+(4)、为交替的片层结构。
(5)、的相对含量符合杠杆定律。
稳定化合物(金属间化合物)在相图中的形式:稳定化合物在相图中表现为一直线,可将其视为独立组元,并以其为界将相图分开进行分析。
纯铁:α-Fe 在770℃(居里温度)发生由铁磁性转变为顺磁性,即铁磁性消失。
工业纯铁的力学性能特点是:强度、硬度低,塑性、韧性好C在钢铁中存在的三种形式:溶入Fe的晶格形成固溶体(间隙固溶体)-钢以游离石墨存在于钢铁中-铸铁。
与铁成金属间化合物如Fe3C, Fe2C, FeC)-金属间化合物石墨性能:耐高温,可导电,润滑性好,强度、硬度、塑性和韧性低。
实线为 Fe-Fe3C虚线为 Fe-C 相图α相 C在α-Fe中的间隙固溶体,晶体结构为bcc,仅由α相形成的组织称为铁素体,记为 F(Ferrite)。
α= Fγ相 C在γ-Fe中的间隙固溶体,晶体结构为fcc,仅由γ相形成的组织称为奥氏体,记为 A(Austenite)。
γ= Aδ相 C在δ-Fe中的间隙固溶体,晶体结构也为bcc,δ相出现的温度较高,组织形貌一般不易观察,也有称高温铁素体。
Fe3C相铁与碳生成的间隙化合物,其中碳的重量百分比为6.69%,晶体结构是复杂正交晶系,仅由Fe3C相构成的组织称为渗碳体,依然记为Fe3C,也有写为 Cm(Cementite)。
石墨在铁碳合金中的游离状态下存在的碳为石墨,组织记G(Graphite)。
L相碳在高温下熔入液体,相图中标记 L(Liquid)。
这是一包晶反应(1495 C),发生在高温,并且在随后的冷却过程中组织还会发生变化。
共晶反应(1148 C),产物共晶体组织称为莱氏体,记为Ld(Ledeburite)共析反应(727 C),产物为F 、Fe3C 两相层片交替分布的共析体组织,称为珠光体,记为P(Pearlite)(1) ABCD ― 液相线(2) AHJECF ― 固相线(3) HJB ― 包晶反应线 (1495 C) L B +H A J (4) ECF ― 共晶反应线 (1148 C) L CA E +Fe 3C I (称为莱氏体) (5) PSK ― 共析反应线 (727 C)As Fp+Fe 3C (称为珠光体)(6) A CM 线(ES 线)― 从奥氏体析出Fe 3C Ⅱ的临界温度线(7) A 3线 (GS 线)―从奥氏体转变为铁素体线 五个单相区:液相区 L 高温固溶体 ;相 (奥氏体 ,A) ;相 (铁素体 ,F)Fe 3C 相 (渗碳体,Cm )七个双相区:L +, L + , L + Fe 3C ,+ ,+ Fe 3C , + ; +Fe 3C三个三相区:HJB 线 L ++ ;ECK 线 L + + Fe 3C ;PSK 线 + +Fe 3C工业纯铁 (C%<0.02%)碳钢 ( C%= 0.02% 2.11 wt %)依据C 含量不同,又分为:亚共析钢:C<0.77 wt% 共析钢: C=0.77 wt% 过共析钢:C>0.77 wt% 白口铸铁 (生铁) (C%= 2.11 6.69 wt %)依据C 含量不同,又分为:亚共晶白口铸铁 C<4.3 wt% 共晶白口铸铁 C=4.3 wt% 过共晶白口铸铁 C>4.3 wt%灰口铸铁 (C%= 2.116.69 wt %)亚共晶、共晶、过共晶灰口铸铁 工业纯铁(C%<0.02%):组织: F 相: (F)共析钢(C%≈0.77%):组织: P 相:(F)+Fe 3C亚共析钢(C%=0.020.77%):组织: F +P 相: (F)+Fe 3C组织转变: L →L+A →A →F+A →F+P 过共析钢(C%=0.772.11%):组织: P +Fe 3C II 相; (F) +Fe 3C组织转变:L →L +A →A →A +Fe 3C II →P +Fe 3C II共晶白口铁(C%≈4.3%):组织: L’d 相: (F) +Fe 3C 组织转变 LLd (A+Fe 3C I )A+Fe 3C II +Fe 3C I (P + Fe 3C I (Fe 3C Ⅱ))亚共晶白口铁(C%=2.11 4.3%):组织: P +Fe 3C II +L’d 相: (F) +Fe 3C 组织转变 LL +AA +Ld A +Fe 3C II +Ld P +Fe 3C II +L ’d过共晶白口铁(C%=4.3 6.69%):组织: Fe 3C I +L’d 相:(F) +Fe 3C组织转变 L →L+Fe 3C I →Fe 3C I +Ld →Fe 3C I +L ’d1、各组成相的力学性质:F :软, 塑 Fe 3C :硬,脆 P (F+ Fe 3C ):介入二者之间2、C 对性能的影响:随C 含量增加,硬度持续增加 δ,ψ持续下降 σb 先增加(C 2.11%)后下降(由于网状Fe 3C Ⅱ的出现) 按含碳量分:低碳钢 W C 0.25% 中碳钢 0.25% < W C 0.6% 高碳钢 W C >0.6%按用途分:碳素结构钢(建筑材料,如桥梁,房屋,机器零件等) 碳素工具钢 (刀具, 模具等) 根据P , S 含量的多少 普通碳素钢 W P 0.045% W S 0.055% 优质碳素钢 W P 0.040% W S0.040%高级优质碳素钢 W P0.035% W S0.030%根据含氧量: 沸腾钢 镇定钢Q275AF 普通碳素结构钢(Q :屈服 数字为强度值 A 为等级 F 为沸腾钢) 特点:这一钢种仅关心材料的力学性能,不考察其成分,大多为轧制的型 材(钢板、圆、管、角)。
用途:合适的强度,一定的塑性和韧性,价格较低,大量用于普通简单结构零件。