利用欧拉反褶积法确定水下磁性体的位置
- 格式:pdf
- 大小:622.28 KB
- 文档页数:5
习题1010.1选择题(1)对于安培环路定理的理解,正确的是:(A)若环流等于零,则在回路L上必定是H处处为零;(B)若环流等于零,则在回路L上必定不包围电流;(C)若环流等于零,则在回路L所包围传导电流的代数和为零;(D)回路L上各点的H仅与回路L包围的电流有关。
[答案:C](2)对半径为R载流为I的无限长直圆柱体,距轴线r处的磁感应强度B()(A)内外部磁感应强度B都与r成正比;(B)内部磁感应强度B与r成正比,外部磁感应强度B与r成反比;(C)内外部磁感应强度B都与r成反比;(D)内部磁感应强度B与r成反比,外部磁感应强度B与r成正比。
[答案:B](3)质量为m电量为q的粒子,以速率v与均匀磁场B成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要()(A)增加磁场B;(B)减少磁场B;(C)增加θ角;(D)减少速率v。
[答案:B](4)一个100匝的圆形线圈,半径为5厘米,通过电流为0.1安,当线圈在1.5T的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为()(A)0.24J;(B)2.4J;(C)0.14J;(D)14J。
[答案:A]10.2 填空题(1)边长为a的正方形导线回路载有电流为I,则其中心处的磁感应强度。
[答案:a Iπμ22,方向垂直正方形平面](2)计算有限长的直线电流产生的磁场用毕奥——萨伐尔定律,而用安培环路定理求得(填能或不能)。
[答案:能, 不能](3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为。
电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为。
[答案:零,零](4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以电流时,管内的磁力线分布相同,管内的磁感线分布将。
[答案:相同,不相同]10.3 在同一磁感应线上,各点B ϖ的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B ϖ的方向?解: 在同一磁感应线上,各点B ϖ的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B ϖ的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B ϖ的方向.题10.3图10.4 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B ϖ的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B ρϖ=∑⎰==-=⋅0d 021I bc B da B l B abcdμϖϖ∴ 21B B ρϖ=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B ϖ方向相反,即21B B ρϖ≠.10.5 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.10.6 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管外面环绕一周(见题10.6图)的环路积分⎰外B L ϖ·d l ϖ=0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为 ⎰外B L ϖ·d l ϖ=I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μϖϖ外,与⎰⎰=⋅=⋅Ll l B 0d 0d ϖϖϖ外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B ϖ的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 10.6 图10.7 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.10.8 已知磁感应强度0.2=B Wb/m 2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量. 解: 如题10.8图所示题10.8图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S B ϖϖΦWb(2)通过befc 面积2S 的磁通量022=⋅=S B ϖϖΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ϖϖΦWb (或24.0-Wb )题10.9图10.9 如题10.9图所示,AB 、CD 为长直导线,C B )为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题10.9图所示,O 点磁场由AB 、C B )、CD 三部分电流产生.其中AB 产生 01=B ϖBC 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向垂直向里.10.10 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题10.10图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题10.10图解:如题10.10图所示,A B ϖ方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T52010103310502050102-⨯=⨯++-=..)..(πμπμI I B B T(2)设0=B ϖ在2L 外侧距离2L 为r 处则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题10.11图10.11 如题10.11图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题10.11图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
欧拉反褶积欧拉反褶积(ELder deconvolution)是一种能够利用重磁网格数据确定地质体位置(边界)和深度的自动化计算方法,这种方法的优点是不需要已知地质信息的控制。
位场和其梯度与场源之间的联系可以通过欧拉齐次方程表示,场源的不同形状即地质构造的差异则表现为方程的齐次程度,也就是地质构造指数。
地质构造指数或齐次程度实质上表现了场随离开场源距离的衰减率。
位场和其梯度与场源之间的联系可以通过欧拉齐次方程表示,场源的不同形状即地质构造的差异则表现为方程的齐次程度,也就是地质构造指数。
地质构造指数或齐次程度实质上表现了场随离开场源距离的衰减率欧拉反褶积法网格异常深度计算1.欧拉反演方法理论与基本公式欧拉反演方法又称欧拉反褶积,该方法是一种能自动估算场源位置的位场反演方法。
该方法是以欧拉齐次方程为基础,运用位场异常、其空间导数以及各种地质体具有的特定的“构造指数”来确定异常场源的位置。
位场在场源之外满足Laplace方程,一些特殊形状场源的位场为N阶齐次方程,N阶齐次方程也满足欧拉方程。
欧拉方程的表达式为:r·▽T=-NT式中:r为场源点到观测点的距离向量,T是位场异常,N是方程的阶数。
该方程的一个解为:航空重力勘探理论方法及应用在磁异常情况下,k为一常数,N可认为是异常幅值随距离增大的衰减率(异常衰减率,AAR)。
Thompson(1982年)首先推出了二维欧拉褶积反演方法,用于剖面磁测资料的解释。
如果剖面位场函数ΔT(x,z)满足方程式:ΔT(t·x,t·z)=t-N·ΔT(x,z),则称ΔT(x,z)是N阶齐次的。
可以证明,如果函数ΔT(x,z)是N阶齐次的,则满足下列方程:航空重力勘探理论方法及应用此偏微分方程称作二维欧拉齐次方程,或简称二维欧拉方程。
Reid等人1990年把二维欧拉褶积反演方法推广到三维情况,获得三维欧拉褶积反演方法。
与二维情况类似,满足ΔT(t·x,t·y,t·z)=t-N·ΔT(x,y,z)齐次关系的N阶齐次网格位场函数ΔT(x,y,z)同样满足下面的三维欧拉齐次方程:航空重力勘探理论方法及应用现已证明中心点位于(x0,y0,z0)的一些简单规则的磁性体(或重力密度体)满足下面欧拉方程:航空重力勘探理论方法及应用其“构造指数”N与规则形体具有一定的对应关系。
Tilt-Euler方法在位场数据处理及解释中的应用王明;郭志宏;骆遥;罗锋;郭华;屈进红【摘要】This paper deals with methods and properties of Tilt-Euler deconvolution by analyzing the theoretical model and the measured gravity data. The results show that the Tilt-Euler deconvolution method can rapidly provide automatic estimation of the source location and source type from gridded gravity or magnetic data on condition that no structural index is required, and can also automatically estimate the structural index. With simple calculation and high practical use, this method is of great significance in large-area aeromagnetic and airborne gravity data processing and interpretation.%通过探讨斜梯度欧拉反褶积(Tih-Euler)方法及性质,对理论模型和实测重力资料进行分析,结果表明Tilt-Euler在无场源构造指数的条件下能快速推断出场源边界和深度分布,并能自动估算出构造指数,计算简便,实用性强,这对于大面积航空磁测和航空重力资料处理解释具有重要意义.【期刊名称】《物探与化探》【年(卷),期】2012(036)001【总页数】7页(P126-132)【关键词】重磁位场数据处理;斜梯度欧拉反褶积;场源边界;构造指数【作者】王明;郭志宏;骆遥;罗锋;郭华;屈进红【作者单位】中国国土资源航空物探遥感中心,北京100083;中国国土资源航空物探遥感中心,北京100083;中国国土资源航空物探遥感中心对地观测技术工程实验室,北京100083;中国国土资源航空物探遥感中心,北京100083;中国国土资源航空物探遥感中心,北京100083;中国国土资源航空物探遥感中心,北京100083;中国国土资源航空物探遥感中心,北京100083;中国国土资源航空物探遥感中心对地观测技术工程实验室,北京100083【正文语种】中文【中图分类】P631近些年来,我国地球物理工作得到迅猛发展,重磁勘探作为重要组成部分,其优势是高效、快速、经济、覆盖范围广,但在新形式下,面临着更新更高的发展要求[1-3]。
磁学物理知识点总结一、磁场的产生磁场是由电流、磁化的物质或者运动的电荷产生的。
在磁学物理中,最常见的磁场产生方式是由电流产生的磁场。
根据安培定律,电流在导线周围产生的磁场大小与电流强度成正比,与导线长度成反比。
另一种产生磁场的方式是由磁铁产生的,根据磁化强度的不同,磁铁也可以产生不同程度的磁场。
此外,运动的电荷也可以产生磁场,这是由洛伦兹力学定律决定的。
二、磁场的特性1. 磁力线:在磁场中,磁力线是描述磁场分布的一种形象化的方法。
磁力线的方向是磁场线的方向,而其密度则表示了磁场强度的大小。
通常情况下,磁力线是从磁铁的南极指向北极,而在电流周围则是按照螺旋线的方式分布。
2. 磁场的作用:磁场对运动的电荷、电流和磁化的物质都有着作用。
对于电流而言,如果置于磁场中,则会受到洛伦兹力的作用,使得导线发生受迫运动。
对于磁化的物质,磁场可以使其产生磁化,或者改变其磁化方向。
对于运动的电荷来说,磁场力会对其轨道产生影响,使其运动轨迹呈弯曲形状。
3. 磁场的强度:磁场的强度用磁感应强度B来表示,它是用来描述磁场在空间中分布情况的物理量。
磁感应强度的方向与磁力线的方向一致,其大小与磁场强度成正比。
磁感应强度的单位是特斯拉(T)。
三、磁力与电流的作用1. 洛伦兹力:在磁场中,电流所受的力称为洛伦兹力,它的大小与电流强度、磁场强度以及夹角有关。
如果电流方向与磁场方向垂直,则洛伦兹力的大小与电流强度和磁场强度成正比。
根据洛伦兹力定律,电流在磁场中受到的洛伦兹力与其速度、磁感应强度、电荷量和夹角有关。
2. 磁感应强度:根据毕奥-萨伐尔定律,磁场中的导线所受的磁场力与导线长度、电流强度以及磁感应强度成正比。
磁感应强度的方向与导线电流方向与磁力线的方向作右手螺旋旋转,即右手法则。
磁感应强度的大小与导线长度、电流强度以及磁场强度成正比。
四、磁化与磁性材料1. 磁化强度:磁化强度是描述磁化程度的物理量,它的大小与磁化体的内部分子磁矩有关。
勘探地球物理学基础--习题解答《勘探地球物理学基础》习题解答第一章磁法勘探习题与解答(共8题)1、什么是地磁要素?它们之间的换算关系是怎样的?解答:地磁场T是矢量,研究中令x轴指向地理北,y轴指向地理东,z 轴铅直向下。
地磁场T 分解为:北向分量为X,东向分量为Y,铅直分量为Z。
T在xoy面内的投影为水平分量H,H的方向即磁北方向,H与x的夹角(即磁北与地理北的夹角)为磁偏角D(东偏为正),T与H的夹角为磁倾角I(下倾为正)。
X、Y、Z,H、D、I,T统称为地磁要素。
它们之间的关系如图1-1。
图1-1 地磁要素之间的关系示意图各要素间以及与总场的关系如下:T2?H2?Z2?X2?Y2?Z2,X?HcosD,Y?H?sinDH?T?cosI,Z?T?sinI,tanI?Z/H,I?arctaZn(H/ tanD?Y/X,D?arctaYn(X/2、地磁场随时间变化有哪些主要特点?解答:地磁场随时间的变化主要有以下两种类型:(1)地球内部场源缓慢变化引起的长期变化;(2)地球外部场源引起的短期变化。
其中长期变化有以下两个特点:磁矩减弱:地心偶极子磁矩正在衰减,导致地磁场强度衰减(速率约为10~20nT/a)。
磁场漂移:非偶极子的场正在向西漂移。
(且是全球性的,但快慢不同,平均约0.2o/a)。
短期变化有以下两个特点:平静变化:按一定的周期连续出现,平缓而有规律,称为平静变化。
地磁场的平静变化主要指地磁日变。
扰动变化:偶然发生、短暂而复杂、强弱不定、持续一定的时间后就消失,称为扰动变化。
地磁场的扰动变化又分为磁暴和地磁脉动两类。
3、地磁场随空间、时间变化的特征,对磁法勘探有何意义?解答:在实际磁法勘探中,一般工作周期较短,主要关心的是地磁场的短期变化,即地磁日变化、磁暴以及地磁脉动。
在高精度磁测中,地磁日变化是一种严重干扰,一般在地面磁测、航空磁测过程中设有专用仪器进行地磁日变观测,以便进行相应的校正,称为日变改正。
2015 届福建省厦门市普通高中高三下学期3月质量检查理科综合试题本卷分第I卷(选择题)和第B卷。
第I卷均为必考题,第II卷包括必考和选考两部分。
第I卷1一4页,第II 卷5一12 页,共12页。
满分300分,考试时间150 分钟。
注意事项:1. 答题前,考生务必先将自己的姓名、准考证号瑰写在答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2. 答题要求,见答题卡上的“填涂举例”和“注意事项”。
相对原子质原子: C-12 O-16 A1-27第I 卷(必考)本卷共18 题,每小题6分共108分。
在下列各题的四个选项中,只有一个选项是正确的。
1.下列关于人体细胞形态、结构与功能的叙述,错误..的是A. 心肌细胞有许多线粒体为心肌细胞收缩提供能量B•成熟红细胞无细胞核和细胞器,无法完成新陈代谢C. 神经细胞有许多分枝状的树突,有利于接受刺激,产生兴奋D. 浆细胞有丰富的内质网和高尔基体,有利于加工、分泌抗体2.下列关于观察洋葱根尖分生组织细胞有丝分裂实验的说法,正确的是A. 为节约实验材料,可将一条5cm长的根剪成若干2~3mm的小段,制作多个装片进行观察B•制作装片时盖上盖玻片后,可用拇指按压盖玻片,使细胞分散开来,便于观察C. 若在排列紧密呈正方形的细胞中未能找到分裂期细胞,可在呈长方形的细胞中继续寻找D. 统计各时期细胞数,计算其占计数细胞总数的比值,可估算不同时期所占的时间比例3.加拉帕戈斯群岛上生活着13 种地雀,这些地雀的啄差别很大。
DNA 分析证实,约一百万年前,这些地雀的共同祖先从南美大陆迁徙至此形成了不同岛屿上的初始种群。
根据现代生物进化理论,下列观点正确的是A. 由于具有共同的祖先,不同岛屿上初始种群的基因库相同B. 不同岛屿上食物种类不同,导致地雀咏的外形朝不问方向变异C. 长时间地理隔离导致不同岛屿地雀种群基因库的差异逐渐扩大D•不同岛屿上地雀的啄差别很大,说明这些地雀已演化成不同物种16条同源染色体 36个DNA 分子cm理科综合能力测试第 1页(共12页)4.蜜蜂中工蜂和蜂王是二倍体体细胞含有 32条染色体(2n=32);雄蜂是单倍体,体细胞含有16条染 色体(n=16)雄蜂可通过一种特殊的减数分裂方式形成精子,如图所示。