轴向拉(压)杆截面上的应力
- 格式:pptx
- 大小:2.73 MB
- 文档页数:15
第七章轴向拉伸和压缩一、内容提要轴向拉伸与压缩是杆件变形的基本形式之一,是建筑工程中常见的一种变形。
(一)、基本概念1. 内力 由于外力的作用,而在构件相邻两部分之间产生的相互作用力。
这里要注意产生内力的前提条件是构件受到外力的作用。
2. 轴力 轴向拉(压)时,杆件横截面上的内力。
它通过截面形心,与横截面相垂直。
拉力为正,压力为负。
3. 应力 截面上任一点处的分布内力集度称为该点的应力。
与截面相垂直的分量σ称为正应力,与截面相切的分量τ称为切应力。
轴拉(压)杆横截面上只有正应力。
4. 应变 单位尺寸上构件的变形量。
5. 轴向拉(压) 杆件受到与轴线相重合的合外力作用,产生沿着轴线方向的伸长或缩短的变形,称为轴向拉(压)。
6. 极限应力 材料固有的能承受应力的上限,用σ0表示。
7. 许用应力与安全系数 材料正常工作时容许采用的最大应力,称为许用应力。
极限应力与许用应力的比值称为安全系数。
8. 应力集中 由于杆件截面的突然变化而引起局部应力急剧增大的现象,称为应力集中。
(二)、基本计算1. 轴向拉(压)杆的轴力计算求轴力的基本方法是截面法。
用截面法求轴力的三个步骤:截开、代替和平衡。
求出轴力后要能准确地画出杆件的轴力图。
画轴向拉(压)杆的轴力图是本章的重点之一,要特别熟悉这一内容。
2. 轴向拉(压)杆横截面上应力的计算任一截面的应力计算公式 AF N =σ 等直杆的最大应力计算公式 AF max N max =σ 3. 轴向拉(压)杆的变形计算虎克定律 A E l F l N =∆εσE =或 虎克定律的适用范围为弹性范围。
泊松比 εε=μ'4. 轴向拉(压)杆的强度计算强度条件塑性材料:σma x ≤[σ] 脆性材料: σt ma x ≤[σt ]σ c ma x ≤[σc ]强度条件在工程中的三类应用(1)对杆进行强度校核在已知材料、荷载、截面的情况下,判断σma x是否不超过许用值[σ],杆是否能安全工作。
§4-3 轴向拉(压)杆的应力1.应力的概念为了解决杆件的强度问题,不仅要知道当外力达到一定值时杆件可能沿哪个截面破坏,而且还要知道该截面上哪个点首先开始破坏。
因而仅仅知道杆件截面上内力的合力是不够的,还需要进一步研究截面上内力的分布情况,从而引入了应力的概念。
应力就是杆件截面上分布内力的集度。
若考察某受力杆截面m-m 上M 点处的应力,如图4-8所示。
图4-8 一点的应力在M 点周围取一很小的面积A ∆,设A ∆面积上分布内力的合力为F ∆,则面积A ∆上内力F ∆的平均集度为A F p m ∆∆= (4-1) 式中m p 称为面积A ∆上的平均应力。
当微小面积A ∆趋近于零时,就得到截面上M 点处的总应力,即dA dFA Fp A =∆∆==∆lim 0(4-2) 由于F 是矢量,故P 也是矢量,其方向一般不与截面垂直或平行,因此可以分解成与截面垂直的法向分量正应力σ和与截面向切的切向分量切应力(剪应力)τ。
从应力的定义可知,应力是与“截面”和“点”这两个因素分不开的。
一般地说,杆件在外力作用下,任一截面上不同点的应力值是不同的,同一点位于不同截面上的应力值也是不同的。
因此在谈内力时,应明确是哪个截面哪个点处的应力。
应力的量纲为⎥⎦⎤⎢⎣⎡2长度力,其国际单位为Pa(帕斯卡),1Pa=1牛顿/米2。
工程中常用MPa ,1MPa=106Pa 。
2.拉(压)杆横截面上的应力对于拉(压)杆,横截面上的内力为轴力F N ,与轴力对应的应力为正应力σ。
观察受拉等直杆(图4-9(a))的变形情况。
首先在等直杆侧面作两条横向线ab 和cd ,代表其横截面,然后在杆的两端施加一对轴向拉力F 使杆发生变形。
可以观察到,横向线ab 和cd 移动到a’b’和c’d’的位置了,如图4-9(b)所示。
对于压杆,同样可以观察到该现象。
根据这一现象,可以假设原为平面的横截面在杆变形后仍为平面,即平面假设。
根据这一假设,拉(压)杆变形后两横截面将沿杆轴线方向作相对平移,也就是说,拉(压)杆在其任意两个横截面之间纵向线段的伸长变形是均匀的。
轴向拉压杆件横截面上的应力在工程设计和材料力学中,轴向拉压杆件是一种经常使用的结构元件,其横截面上的应力分布是一个重要的研究内容。
在此,将介绍轴向拉压杆件横截面上的应力分布,并给出相关参考内容。
轴向拉压杆件是指受到拉力或压力作用的杆件,其横截面形状可以是圆形、方形、矩形、椭圆形等。
在讨论轴向拉压杆件横截面上的应力分布时,我们假设该杆件是均匀材料、轴对称且受到等径向拉力或压力作用。
根据这些假设,我们可以得到以下结论。
首先,对于圆形横截面的轴向拉压杆件,应力沿着截面的半径方向是均匀的。
这意味着,在横截面上的任何一点,杆件的应力大小是相同的,只是方向不同。
具体而言,在拉力作用下,横截面上的应力大小为σ = F/A,其中F是作用于杆件上的拉力,A是横截面的面积。
而在压力作用下,横截面上的应力大小为σ = -F/A。
其次,对于矩形或方形横截面的轴向拉压杆件,其应力分布是非均匀的。
在拉力作用下,杆件的边缘处应力最大,中心处应力最小。
具体而言,在矩形或方形横截面的边缘处,应力计算公式为σ = F/2A,其中F是作用于杆件上的拉力,A是横截面的面积。
而在中心处,应力计算公式为σ = F/A。
此外,对于椭圆形横截面的轴向拉压杆件,其应力分布也是非均匀的。
在拉力作用下,杆件的长轴方向应力最大,短轴方向应力最小。
具体而言,在椭圆形横截面的长轴方向,应力计算公式为σ = F/2A,其中F是作用于杆件上的拉力,A是横截面的面积。
而在短轴方向,应力计算公式为σ = F/A。
综上所述,轴向拉压杆件横截面上的应力分布与杆件的形状密切相关。
在实际工程中,根据结构的要求,可以选择合适的截面形状来平衡应力分布,以提高杆件的强度和稳定性。
参考文献:1. 程训文等著. 材料力学. 北京:清华大学出版社,2016年2. 韩良辉等著. 结构力学. 北京:中国建筑工业出版社,2019年3. 林万善等著. 实用结构力学基础. 北京:中国水利水电出版社,2014年4. Beer, Ferdinand P., Johnston, E. Russell, DeWolf, John T. Mechanics of Materials. New York: McGraw-Hill Education, 2017.5. Popov, Egor P. Engineering Mechanics of Solids. Upper Saddle River, NJ: Pearson, 2015.。
1拉压杆横截面上的应力6.1.1 应力的概念同一种材料制成横截面积不同的两根直杆,在相同轴向拉力的作用下,其杆内的轴力相同。
但随拉力的增大,横截面小的杆必定先被拉断。
这说明单凭轴力F N 并不能判断拉(压)杆的强度,即杆件的强度不仅与内力的大小有关, 图6-1而且还与截面面积有关,即与内力在横截面上分布的密集程度(简称集度)有关,为此引入应力的概念。
要了解受力杆件在截面m-m 上的任意一点C 处的分布内力集度,可假想将杆件在m-m 处截开,在截面上围绕C 点取微小面积ΔA ,ΔA 上分布内力的合力为Δp (图6-1a),将Δp 除以面积ΔA ,即Ap p ∆∆=m (6-1) p m 称为在面积ΔA 上的平均应力,它尚不能精确表示C 点处内力的分布状况。
当面积无限趋近于零时比值Ap ∆∆的极限,才真实地反映任意一点C 处内力的分布状况,即 lim 0dAdp A p p A =∆∆=→∆ (6-2) 上式p 定义为C 点处内力的分布集度,称为该点处的总应力。
其方向一般既不与截面垂直,也不与截面相切。
通常,将它分解成与截面垂直的法向分量和与截面相切的切向分量(图6-1b ),法向分量称为正应力,用σ 表示;切向分量称为切应力,用τ表示。
将总应力用正应力和切应力这两个分量来表达具有明确的物理意义,因为它们和材料的两类破坏现象——拉断和剪切错动——相对应。
因此,今后在强度计算中一般只计算正应力和切应力而不计算总应力。
应力的单位为“帕”,用Pa 表示。
1Pa=1N/m 2, 常用单位为兆帕MPa ,1MPa=106Pa=1MN/mm 2=1N/mm 2,1GPa=109Pa 。
6.1.2 轴向拉伸和压缩时横截面上的正应力取一等截面直杆,在其侧面作两条垂直于杆轴的直线ab 和 cd ,然后在杆两端施加一对轴向拉力F 使杆发生变形,此时直线ab 、 cd分别平移至a 'b '、 c 'd '且仍保持为直线(图6-2a )。