轴向拉(压)杆截面上的应力
- 格式:pptx
- 大小:2.73 MB
- 文档页数:15
第七章轴向拉伸和压缩一、内容提要轴向拉伸与压缩是杆件变形的基本形式之一,是建筑工程中常见的一种变形。
(一)、基本概念1. 内力 由于外力的作用,而在构件相邻两部分之间产生的相互作用力。
这里要注意产生内力的前提条件是构件受到外力的作用。
2. 轴力 轴向拉(压)时,杆件横截面上的内力。
它通过截面形心,与横截面相垂直。
拉力为正,压力为负。
3. 应力 截面上任一点处的分布内力集度称为该点的应力。
与截面相垂直的分量σ称为正应力,与截面相切的分量τ称为切应力。
轴拉(压)杆横截面上只有正应力。
4. 应变 单位尺寸上构件的变形量。
5. 轴向拉(压) 杆件受到与轴线相重合的合外力作用,产生沿着轴线方向的伸长或缩短的变形,称为轴向拉(压)。
6. 极限应力 材料固有的能承受应力的上限,用σ0表示。
7. 许用应力与安全系数 材料正常工作时容许采用的最大应力,称为许用应力。
极限应力与许用应力的比值称为安全系数。
8. 应力集中 由于杆件截面的突然变化而引起局部应力急剧增大的现象,称为应力集中。
(二)、基本计算1. 轴向拉(压)杆的轴力计算求轴力的基本方法是截面法。
用截面法求轴力的三个步骤:截开、代替和平衡。
求出轴力后要能准确地画出杆件的轴力图。
画轴向拉(压)杆的轴力图是本章的重点之一,要特别熟悉这一内容。
2. 轴向拉(压)杆横截面上应力的计算任一截面的应力计算公式 AF N =σ 等直杆的最大应力计算公式 AF max N max =σ 3. 轴向拉(压)杆的变形计算虎克定律 A E l F l N =∆εσE =或 虎克定律的适用范围为弹性范围。
泊松比 εε=μ'4. 轴向拉(压)杆的强度计算强度条件塑性材料:σma x ≤[σ] 脆性材料: σt ma x ≤[σt ]σ c ma x ≤[σc ]强度条件在工程中的三类应用(1)对杆进行强度校核在已知材料、荷载、截面的情况下,判断σma x是否不超过许用值[σ],杆是否能安全工作。
§4-3 轴向拉(压)杆的应力1.应力的概念为了解决杆件的强度问题,不仅要知道当外力达到一定值时杆件可能沿哪个截面破坏,而且还要知道该截面上哪个点首先开始破坏。
因而仅仅知道杆件截面上内力的合力是不够的,还需要进一步研究截面上内力的分布情况,从而引入了应力的概念。
应力就是杆件截面上分布内力的集度。
若考察某受力杆截面m-m 上M 点处的应力,如图4-8所示。
图4-8 一点的应力在M 点周围取一很小的面积A ∆,设A ∆面积上分布内力的合力为F ∆,则面积A ∆上内力F ∆的平均集度为A F p m ∆∆= (4-1) 式中m p 称为面积A ∆上的平均应力。
当微小面积A ∆趋近于零时,就得到截面上M 点处的总应力,即dA dFA Fp A =∆∆==∆lim 0(4-2) 由于F 是矢量,故P 也是矢量,其方向一般不与截面垂直或平行,因此可以分解成与截面垂直的法向分量正应力σ和与截面向切的切向分量切应力(剪应力)τ。
从应力的定义可知,应力是与“截面”和“点”这两个因素分不开的。
一般地说,杆件在外力作用下,任一截面上不同点的应力值是不同的,同一点位于不同截面上的应力值也是不同的。
因此在谈内力时,应明确是哪个截面哪个点处的应力。
应力的量纲为⎥⎦⎤⎢⎣⎡2长度力,其国际单位为Pa(帕斯卡),1Pa=1牛顿/米2。
工程中常用MPa ,1MPa=106Pa 。
2.拉(压)杆横截面上的应力对于拉(压)杆,横截面上的内力为轴力F N ,与轴力对应的应力为正应力σ。
观察受拉等直杆(图4-9(a))的变形情况。
首先在等直杆侧面作两条横向线ab 和cd ,代表其横截面,然后在杆的两端施加一对轴向拉力F 使杆发生变形。
可以观察到,横向线ab 和cd 移动到a’b’和c’d’的位置了,如图4-9(b)所示。
对于压杆,同样可以观察到该现象。
根据这一现象,可以假设原为平面的横截面在杆变形后仍为平面,即平面假设。
根据这一假设,拉(压)杆变形后两横截面将沿杆轴线方向作相对平移,也就是说,拉(压)杆在其任意两个横截面之间纵向线段的伸长变形是均匀的。