三相发电机原理
- 格式:doc
- 大小:95.00 KB
- 文档页数:2
三相交流发电机发电机的工作原理与构成一、三相交流发电机的工作原理发电机是根据电磁感应原理来工作的,能把机械能转换为电能的旋转电机,在火电厂中,用汽轮机作为发电机的原动机,整个机组叫汽轮发电机组,其中的交流发电机称之为汽轮发电机,那么汽轮发电机是怎样发出的电能?根据电磁感应原理,只要导体切割磁场,在导体中就会产生感应电动势,也就是说,不管是导体运动还是磁场运动,只要是导体与磁场之间有相对运动,导体切割了磁力线,就会在导体中产生感应电动势。
在工程实际应用中,发电机制造厂家适当选择了转子磁极的形状,使得在励磁绕组中流过电流后,发电机定转子之间气隙中的磁感应强度大致按正弦规律分布,当汽轮机带动发电机转子旋转时,就得到了一个在空间旋转的磁场,此旋转磁场与静止不动的三相定子绕组就发生相对运动,在三相定子绕组中感应出正弦交流电动势,由于三相定子绕组在制造时,其每相绕组在空间的位置是对称的,因此感应出的电动势也是对称的,我们在工程实际中,按照三相电路中的连接方法,把定子绕组接成星形后,再与负载接通,在感应电动势的作用下,电路中就出现电流,向负载输出电能。
二、三相交流发电机的构成从总体结构上来看,三相交流发电机都是由建立磁场的转子和产生电动势的定子的两大部分组成的,转子由导电的转子绕组与建立磁场并增强磁场强度的转子铁芯构成,定子由导电的定子绕组与导磁的定子铁芯构成,发电机的定子绕组与转子绕组构成了发电机的电路部分,发电机的定子铁芯与转子铁芯构成了发电机的磁路部分,发电机定子与转子之间,彼此没有电和机械的直接联系,发电机定子与转子磁路之间通过磁力线相联系,利用磁的联系传递能量、转换能量。
三、三相交流发电机频率与转速的关系交流电动势每秒钟变化的次数称之为交流电的频率,而交流电动势是由转子磁场感应出来的,发电机转子是由汽轮机拖动进行旋转的,显然发电机转子磁场要是只有一对磁极,当转子磁场旋转一周时,定子绕组中的感应电动势就要交变一次。
实验四三相同步发电机的运行特
性
实验四:三相同步发电机的运行特性
三相同步发电机是一种常用的大功率电机,它具有较好的效率、可靠性和低成本。
在实验四中,将对三相同步发电机的运行特性进行详细的说明。
首先,要弄清楚三相同步发电机的工作原理。
三相同步发电机是通过三个单相电磁激励来产生同步旋转磁场的。
三个单相电磁激励的电流分别以120度的相位差来传递,这样就形成了一个永久磁场,在这个永久磁场中,三相交流电的同步旋转磁场,能够对发电机的转子产生相应的力,使发电机的转子沿着永久磁场的方向旋转。
其次,要了解三相同步发电机的主要运行特性。
三相同步发电机的运行特性有以下几点:
1. 功率因数:三相同步发电机的功率因数取决于负载的阻抗值,随着负载阻抗的变化,功率因数也会发生变化。
2. 电流平衡:当三相同步发电机处于空载状态时,三相电流应保持平衡,即三相电流之间的相位关系应始终保持120度。
3. 调速特性:三相同步发电机的调速特性取决于供电电压,当供电电压改变时,发电机的转速也会随之改变。
4. 效率:三相同步发电机的效率高,其输出功率大于输入功率,且随着负载的增加而逐渐降低。
5. 启动特性:三相同步发电机的启动特性要求电流不能过大,否则可能会对转子、绕组等部件造成损坏。
最后,要注意三相同步发电机的安全性。
三相同步发电机的安全性要求要求电流不能过大,电压不能过高,否则可能会对电机产生过大的力,从而导致发电机的损坏。
三相电原理介绍
一、概述
三相电,也被称为三相交流电,是由三个相位的单相交流电组成的。
每个相位之间的电压和电流都是不同的,但它们都是正弦波,且频率相同。
三相电在电力系统中被广泛应用,是工业、家庭和商业等领域的重要能源。
二、三相电的产生
三相电的产生通常是通过发电机实现的。
发电机内部有三个绕组,这三个绕组按照一定的角度(通常是120度)放置。
当发电机转动时,这三个绕组切割磁力线,从而产生三个相位不同的电动势。
这三个电动势的幅度和相位都不同,但它们的频率是相同的。
三、三相电的特点
1.平衡性:三相电的三个相位是平衡的,即它们的电压和电流的幅度和相位都是相同的。
这种平衡性使得三相电在传输和使用过程中更加稳定和可靠。
2.安全性:由于三相电的平衡性,当一根导线出现故障时,其他两根导线仍然可以正常工作,从而提高了电力系统的安全性。
3.高效性:三相电在传输和使用过程中产生的损耗较小,因此具有较高的效率。
四、三相电的应用
1.电力系统:三相电在电力系统中被广泛应用,包括发电、输电、配电等环节。
2.工业生产:许多工业设备都需要使用三相电,如电动机、变压器等。
3.家庭生活:家庭用电也主要使用三相电,如照明、空调、洗衣机等。
4.商业领域:商业场所如商场、酒店等也大量使用三相电来支持各种设备运行。
五、总结
三相电作为一种重要的能源形式,在我们的日常生活和工作中发挥着重要作用。
了解三相电的原理和应用有助于我们更好地利用和管理这种能源,提高能源利用效率,促进可持续发展。
三相同步发电机的组成及工作原理2009年04月17日 12:29 不详作者:佚名用户评论(0)三相同步发电机由原动机拖动直流励磁的同步发电机转子,以转速n(rpm)旋转,根据电磁应原理,三相定子绕阻便感应交流电势。
定子绕阻若接入用电负载,电机就有交流电能输出。
若认为磁路不饱和,则电枢磁势与磁极磁势各自产生相应的磁通,并在定子绕阻内感因电势。
对于极电机,电枢磁势所感应的电势可以表示为Ea=-jIaXa. Xa被称为电枢反应电抗。
Xa+Xσ=Xs隐极同步发电机的同步电抗。
对于凸极电机,因直轴.交轴处磁阻不同,可将电枢磁势分解成Fad和Faq分别研究。
它们所感应的电势分别写成Ead=-jIdXad和Eaq=-jIqXaq,式中Xad.Xaq分别是直轴及交轴电枢反应电抗。
Xad+Xσ=Xd.Xaq+Xσ=Xq,Xd和Xq分别为直轴同步电抗和交交轴同步电抗。
Xσ为漏磁通引起的电抗。
同步电抗是决定同步电机性能的一个重要参数,通个开路实验和稳态实验就可求取。
同步发电机的空载特性是一个很重要的特性,它直接影响着电机的其它特性,通个开路实验还可以发现励磁系统的故障。
态短路特性和零功率因数特性也都属于同步电机的重要特性,和空载特性配合,可以求出同步发电机的态参数及确定出补偿电枢的励磁电流。
同步发电机的外特性曲线用来求取电机运行时的重要指标之一及电压调整率。
同步发电机的调整特性可使运行人员知道在功率因数一定时,不改变端电压值.负载电流到多小而不使励磁电流超过规定值。
国家标准"GB1029" 对三相同步电机的实验方法作了具体规定,适用于普通三相同步发电机的型式实验或检查实验。
通过实验可以确定该电机各性能指标。
各种电机的效率和电压调整率均在部颁标准的相应技术条件中有具体规定,将实验结果与标准规定数据比较即可确定某同步发电机的质量和性能了。
若求取额定励磁电流和电压变化率,一般用做图法,跟国家标准GB1029介绍,其具体步骤如下:(1)如图1上绘制开路特性曲线,并沿纵轴额定相电压相量UN.(2)自原点O作额定电枢电流相量IN,与纵轴成ΦN角(cosΦN 为额定功率因数)。
三相同步发电机的组成及工作原理2009年04月17日 12:29 不详作者:佚名用户评论(0)三相同步发电机由原动机拖动直流励磁的同步发电机转子,以转速n(rpm)旋转,根据电磁应原理,三相定子绕阻便感应交流电势。
定子绕阻若接入用电负载,电机就有交流电能输出。
若认为磁路不饱和,则电枢磁势与磁极磁势各自产生相应的磁通,并在定子绕阻内感因电势。
对于极电机,电枢磁势所感应的电势可以表示为Ea=-jIaXa. Xa被称为电枢反应电抗。
Xa+Xσ=Xs隐极同步发电机的同步电抗。
对于凸极电机,因直轴.交轴处磁阻不同,可将电枢磁势分解成Fad和Faq分别研究。
它们所感应的电势分别写成Ead=-jIdXad和Eaq=-jIqXaq,式中Xad.Xaq分别是直轴及交轴电枢反应电抗。
Xad+Xσ=Xd.Xaq+Xσ=Xq,Xd和Xq分别为直轴同步电抗和交交轴同步电抗。
Xσ为漏磁通引起的电抗。
同步电抗是决定同步电机性能的一个重要参数,通个开路实验和稳态实验就可求取。
同步发电机的空载特性是一个很重要的特性,它直接影响着电机的其它特性,通个开路实验还可以发现励磁系统的故障。
态短路特性和零功率因数特性也都属于同步电机的重要特性,和空载特性配合,可以求出同步发电机的态参数及确定出补偿电枢的励磁电流。
同步发电机的外特性曲线用来求取电机运行时的重要指标之一及电压调整率。
同步发电机的调整特性可使运行人员知道在功率因数一定时,不改变端电压值.负载电流到多小而不使励磁电流超过规定值。
国家标准"GB1029" 对三相同步电机的实验方法作了具体规定,适用于普通三相同步发电机的型式实验或检查实验。
通过实验可以确定该电机各性能指标。
各种电机的效率和电压调整率均在部颁标准的相应技术条件中有具体规定,将实验结果与标准规定数据比较即可确定某同步发电机的质量和性能了。
若求取额定励磁电流和电压变化率,一般用做图法,跟国家标准GB1029介绍,其具体步骤如下:(1)如图1上绘制开路特性曲线,并沿纵轴额定相电压相量UN.(2)自原点O作额定电枢电流相量IN,与纵轴成ΦN角(cosΦN 为额定功率因数)。
发电机通常由定子、转子、端盖及轴承等部件构成。
定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。
转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。
由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定子中旋转,做切割磁力线的运动,从而产生感应电势。
发电机曲轴带动发电机的转子,利用“电磁感应”原理,发电机就会输出感应电动势,经闭合的负载回路就能产生电流。
主磁场的建立:励磁绕组通入直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。
载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。
切割运动:引擎曲轴拖动转子旋转(给电球输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。
交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。
通过接线端子引出,接在回路中,便产生了电流。
励磁机整流器 转子 定子AVR (自动电压调节器)风扇 飞轮连接盘出线端子向同步发电机的转子励磁绕组供给励磁电流的整套装置叫做励磁系统。
励磁系统是同步发电机的重要组成部分。
转子的励磁绕组通入直流电流,产生接近于正弦分布磁场(称为转子磁场),其有效励磁磁通与静止的电枢绕组相交链。
转子旋转时,转子磁场随同一起旋转、每转一周,磁力线顺序切割定子的每相绕组,在三相定子绕组内感应出三相交流电势。
发电机带对称负载运行时,三相电枢电流合成产生一个同步转速的旋转磁场。
定子磁场和转子磁场相互作用,会产生制动转矩。
从引擎输入的机械转矩克服制动转矩而作功。
发电机可发出有功功率和无功功率。
转子磁场的强弱直接影响定子绕组的电压,所以,调发电机端电压或调发电机的无功功率必须调节转子电流。
发电机的有功功率和无功功率几何相加之和称为视在功率。
有功功率和视在功率之比称为发电机的功率因数,发电机的额定功率因数一般为0.8。
三相无刷发电机原理三相无刷直流电机(BLDC)是目前工业自动化领域中广泛应用的一种电机类型,它具有高效率、高速度和高可靠性等优点。
下面将介绍三相无刷发电机的工作原理、结构、控制方式、特点和应用等方面。
一、工作原理三相无刷电机主要由永磁体、转子和定子等部分组成。
永磁体是提供转子磁通的部分,转子由永磁体包围,与永磁体之间构成气隙,转子内部装有磁极,是驱动电机的旋转部分;定子则由三个线圈(相)组成,每个线圈之间相隔120度,电机通过相序的变化来控制转子的转动。
三相无刷电机的工作原理和普通电机相似,即通过电磁感应和动电力作用来实现转子的转动。
在启动时,电机控制器提供电源(通常是直流电源),让电机的转子产生旋转磁场,在旋转磁场的作用下,定子线圈内的磁场也会产生旋转,由于定子线圈的磁场在旋转的过程中是不断变化的,因此会在定子线圈中产生感应电动势,进而引起电流流过定子线圈,产生动力作用,驱动转子进行旋转。
三相无刷电机的最大区别在于其转子没有驱动电源和电刷的设置,因此可以减少电刷和机械结构的摩擦损失,从而提高电机效率和寿命。
二、结构特点三相无刷电机的结构相对简单,主要由永磁体、转子和定子等部分组成。
其中永磁体是提供转子磁通的部分,它通常采用稀土永磁材料,能够提供强大的磁场,确保电机高效、低噪音和高可靠性的运行。
转子由永磁体包围,与永磁体之间构成气隙,转子内部装有磁极,是驱动电机的旋转部分;定子则由三个线圈(相)组成,每个线圈之间相隔120度,电机通过相序的变化来控制转子的转动。
三相无刷电机还具有以下优点:1. 无刷结构,减少机械结构和电刷的损耗,提高机械效率和寿命;2. 不需要传统的换向器,控制简单,能够实现高精度、高效率、高速度和高可靠性的转换;3. 由于不需要电刷和换向器,减少了电机的维护成本、噪音和电磁干扰,能够适用于高精度、低噪音、低振动和高可靠性的工业自动化领域。
三、控制方式三相无刷电机的控制方法主要分为霍尔传感器控制和无传感器控制两种。
三相交流电发电机工作原理三相正弦交流电一般由三相交流发电机产生,发电原理如图3-1(a)所示。
发电机主要由定子和转子两部分构成。
定子包括机座、定子铁心、电枢绕组等几部分。
定子铁心固定在机座里,其内圆表面冲有均匀分布的槽。
定子槽内对称嵌放着参数相同的三组绕组,每组N匝(图中以一匝示意)称为一相,于是有三相对称绕组,每相的始末端分别用U1、U2,V1、V2,W1、W2标示。
图3-1(b)是一相绕组结构示意图。
图3-1(c)为每相绕组电路模型。
各相绕组的始端 U1、V1、W1(末端U2、V2、W2)彼此间隔120°。
这样三相绕组的法线方向也互成120°(线圈绕组的法线与输出电流正方向成右螺旋关系)如图3-1(a)中、、所示方向。
发电机转子铁心上绕有励磁线圈,它以直流电流?I励磁,可产生恒磁通,这就形成一个可转动的磁极S-N,其磁通经定子铁心闭合。
转子由原动机驱动,按顺时针方向以ω角速度匀速旋转。
图3-1 三相交流发电机设t=0时,磁极是由方位转动,图3-1(a)中磁极位于ωt=瞬间,各相绕组中穿过的磁通量将随时间变化。
的大小应为在各法线方向的投影,即(3-1)由电磁感应定律,三相绕组中会产生频率相同、幅值相等、相位彼此互差120°的三相正弦交流电动势,感应电动势的正方向由各相绕组的末端指向始端,如图3-1(b)、(c)所示,称为三相对称电动势。
即(3-2)用相量表述为(3-3)显然,各相正弦交流电动势的相位滞后于其对应磁通的相位90°角。
图3-2(a)给出一相绕组的e、f波形关系,图3-2(b)、(c)则给出三相电动势波形图及相量图。
经计算三相对称电动势的瞬时值之和及相量之和均为零,即(3-4)图3-2 三相对称电动势三相电动势各瞬时值抵达正幅值的先后次序称为相序。
图3-1(a)所示电源相序U1→V1→W1称为正相序,与之相反的相序U1→W1→V1称为逆相序。
当发电机并网运行时必须严格按相序同名端连线。
三相交流发电机原理模型
实际应用的都是三相交流发电机,其定子铁芯的内圆均匀分布着6个槽,嵌装着三个相互间隔120度的同样线圈,分别称之为A相线圈、B相线圈、C相线圈。
装上转子就组成了一台三相交流发电机原理模型。
三相交流发电机原理
画面中的三相交流发电机采用星形接法,三个线圈的公共点引出线是中性线,每个线圈的引出线是相线。
当转子匀速旋转时三个线圈顺序切割磁力线,都会感生交流电动势,其幅度与频率相同。
由于三个线圈相互间隔120度,它们感应电势的相位也相差120度。
在画面上有每根相线的输出电势波形。
这个模型的转子只有两个极,所以感生的电压频率与转子每秒转速相同,是同步交流发电机,当转速为每分钟3000转(3000r/min)时,发出的三相交流电频率为50赫兹(Hz),这种两极的同步发电机广泛应用在燃煤电厂、燃气轮机电厂与核电厂,这些电厂使用转速为3000r/min的蒸汽轮机或燃气轮机带动同步发电机发电。
以上的原理模型电机的转子有2个磁极,定子有6个槽,实际的三相交流发电机定子铁芯上有多个槽,其槽数为极数的3n倍(n=1,2,3, ……),称为整数槽;还有不成整数关系的称为分数槽。
多个三相绕组按规律均匀的分布在槽中。
下面请观看三相交流发电机工作原理3D动画课件
三相交流发电机原理3D动画课件
3D动画分辨率为640×480,有配音解说,播放时间1分42秒,文件格式为FLV。
下载后请用新版暴风影音播放。
注意:在暴风影音的播放\高级选项\格式关联中,一定要钩选有关Flash的选项。