医学]医学统计学-绪论
- 格式:ppt
- 大小:597.01 KB
- 文档页数:74
第一章绪论(一)名词解释1.总体与样本2. 随机抽样3. 变异4. 等级资料5. 概率与频率6. 随机误差7. 系统误差8. 随机变量9.参数10. 统计量(二)单项选择题1.观察单位为研究中的( )。
A.样本B. 全部对象C.影响因素D. 个体2.总体是由()。
A.个体组成B. 研究对象组成C.同质个体组成D. 研究指标组成3.抽样的目的是()。
A.研究样本统计量B. 由样本统计量推断总体参数C.研究典型案例研究误差D. 研究总体统计量4.参数是指()。
A.参与个体数B. 总体的统计指标C.样本的统计指标D. 样本的总和5.关于随机抽样,下列那一项说法是正确的()。
A.抽样时应使得总体中的每一个个体都有同等的机会被抽取B.研究者在抽样时应精心挑选个体,以使样本更能代表总体C.随机抽样即随意抽取个体D.为确保样本具有更好的代表性,样本量应越大越好(三)是非题1.研究人员测量了100例患者外周血的红细胞数,所得资料为计数资料。
2.统计分析包括统计描述和统计推断。
3.计量资料、计数资料和等级资料可根据分析需要相互转化。
(四)简答题某年级甲班、乙班各有男生50人。
从两个班各抽取10人测量身高,并求其平均身高。
如果甲班的平均身高大于乙班,能否推论甲班所有同学的平均身高大于乙班?为什麽?第二章计量资料的统计描述(一)名词解释1.频数表2.算术均数3.几何均数4.中位数5.极差6.百分位数7.四分位数间距8.方差9.标准差10.变异系数(二)单项选择题1.各观察值均加(或减)同一数后()。
A.均数不变,标准差改变B.均数改变,标准差不变C.两者均不变D.两者均改变2.比较身高和体重两组数据变异度大小宜采用()。
A.变异系数B.差C.极差D.标准差3.以下指标中()可用来描述计量资料的离散程度。
A.算术均数B.几何均数C.中位数D.标准差4.偏态分布宜用()描述其分布的集中趋势。
A.算术均数B.标准差C.中位数D.四分位数间距5.各观察值同乘以一个不等于0的常数后,()不变。
第1章绪论医学统计学是一门“运用统计学的原理和方法,研究医学科研中有关数据的收集、整理和分析的应用科学。
1.个体:又称观察单位,是统计研究的最基本单位,也是构成总体的最基本的观察单位。
2.总体:根据研究目的确定的同质观察单位某项指标测量值(观察值)的集合。
分为有限总体(明确规定了空间、时间、人群范围内有限个观察单位)和无限总体(无时间和空间范围的限制)。
反映总体特征的指标为参数,常用小写希腊字母表示。
3.样本:从总体中随机抽取的一部分有代表性的观察单位组成的整体。
(抽样,随机化原则,样本含量)根据样本资料计算出来的相应指标为统计量,常用大写英文字母表示。
4.抽样研究:从总体中随机抽取样本,根据样本信息推断总体特征的方法。
抽样误差是由随机抽样(样本的偶然性)造成的样本指标与总体指标之间、样本指标与样本指标之间的差异。
其根源在于总体中的个体存在变异性。
只要是抽样研究,就一定存在抽样误差,不能用样本的指标直接下结论。
统计分析主要是针对抽样误差而言。
5.变量(一个个体的任意“特征”);资料(变量值的集合),资料类型:①计量资料/定量资料/数值变量资料:表现为数值大小,一般有度量衡单位,又可分为连续型和离散型两类;②计数资料/定性资料/无序分类变量资料/名义变量资料:表现为互补相容的属性或类别,一般无度量衡单位,可分为二分类和多分类;③等级资料/半定量资料/有序分类变量资料:表现为等级大小或属性程度。
各类资料间可相互转化。
①可选分析方法有:t检验、方差分析、相关回归分析等;②可选分析方法有:χ2检验、z检验等;③可选分析方法有:秩和检验、Ridit分析等。
6.误差:实测值与真实值之差。
可分为随机误差(随机测量误差+抽样误差)与非随机误差(系统误差与非系统误差)。
①随机误差:是一类不恒定、随机变化的误差,由多种尚无法控制的因素引起,它是不可避免的;②系统误差:是实验过程中产生的误差,它的值或恒定不变,或遵循一定的变化规律,其产生原因往往是可知的或可以掌握的,它是可以消除或控制的;③非系统误差:又称过失误差,是指在实验过程中由于研究者偶然失误而造成的误差,可以消除。
第一章 绪论总体:根据研究目的确定的同质的所有观察单位某种变量值的集合。
总体包括有限总体和无限总体。
样本:从总体中随机抽取的部分观察单位,其实测值的集合。
获取样本仅仅是手段,通过样本信息来推断总体特性才是研究的目的。
资料的类型计量资料、计数资料和等级资料。
误差包括随机误差、系统误差和非系统误差。
抽样误差:由抽样造成的样本统计量和总体参数之间的差异或者是各个样本统计量之间的差异称为抽样误差。
概率:是描述随机事件发生可能性大小的一个度量。
取值范围0≤P ≤1。
小概率事件:表示在一次实验或观察中该事件发生的可能性很小,可以认为很可能不发生。
P ≤0.05或P ≤0.01。
医学统计学的步骤:设计、收集资料、整理资料和分析资料。
统计分析包括:统计描述和统计推断。
统计推断包括:参数估计和假设检验。
第二章计量资料的统计描述频数表和频数分布图的用途:(1)描述频数分布的类型,以便选择相应的统计指标和分析方法。
对称分布:集中位置在中间,左右两侧頻数基本对称。
偏态分布:正、负偏态分布正偏态集中位置偏向值小一侧,负偏态反之。
(2)描述頻数分布的特征;(3)便于发现资料中的可疑值;(4)便于进一步计算统计指标和进行统计分析。
计量资料集中趋势包括算术均数、几何均数和中位数。
算术均数:直接法(样本小):n x x ∑=;頻数表法(样本大)x =nfx ∑ 几何均数:直接法:)lg (lg 1n x G ∑-=;頻数表法)lg (lg )lg (lg 11n x f fx f G ∑∑∑--==(常用于等比资料或对数正态分布资料)中位数:直接法:n 为奇数2/)1(+=n x M ,n 为偶数2/)(12/2/++=n n x x M ;頻数表法:∑-⨯+=)%50(L M M f n f iL M 。
中位数的应用注意事项:可用于各种分布资料,不受极端值的影响,主要用于(1)偏态分布资料(2)端点无确切值的资料(3)分布不明确的资料。
医学统计学重点第一章绪论1.根本概念:总体:根据研究目确实定的性质相同或相近的研究对象的某个变量值的全体。
样本:从总体中随机抽取局部个体的某个变量值的集合。
总体参数:刻画总体特征的指标,简称参数。
是固定不变的常数,一般未知。
统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数。
抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异。
频率:假设事件A在n次独立重复试验中发生了m次,那么称m为频数。
称m/n为事件A在n 次试验中出现的频率或相对频率。
概率:频率所稳定的常数称为概率。
统计描述:选用适宜统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。
统计推断:包括参数估计和假设检验。
用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计。
用样本差异或样本与总体差异推断总体之间是否可能存在差异,称为假设检验。
2.样本特点:足够的样本含量、可靠性、代表性。
3.资料类型:〔1〕定量资料:又称计量资料、数值变量或尺度资料。
是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。
每个个体都能观察到一个观察指标的数值,有度量衡单位。
〔2〕分类资料:包括无序分类资料〔计数资料〕和有序分类资料〔等级资料〕①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。
包括二分类资料和多分类资料。
二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容。
多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。
4.统计工作根本步骤:统计设计、资料收集、资料整理、统计分析。
第二章实验研究的三要素1.实验设计三要素:被试因素、受试对象、实验效应2.误差分类:随机误差〔抽样误差、随机测量误差〕、系统误差、过失误差。
3.实验设计的三个根本原那么:对照原那么、随机化分组原那么、重复原那么。
《医学统计学》颜虹主编Fundamentals of Biostatistics (BernasrdRosner)孙尚拱译(2004第五版)SPSS统计分析张文彬主编一、绪论【统计学】应用数学的原理和方法,研究数据的搜集、整理与分析的科学,对不确定性数据做出科学的推断。
产生过程:随机现象→随机事件→样本空间→随机变量现象:确定现象随机现象:与确定现象相对的不确定现象,在一定的条件下,其有多种可能的结果,而究竟出现哪一种结果事先不可预言的现象。
≥2种结果。
特征:随机性、规律性两种阶段认识随机现象:1.通过观察或实验取得观测资料;2.通过分析所得资料来认识现象。
注:无论数据分析多么先进,都要以能够代表真实情况的数据为基础。
在偶然的背后发现必然【随机事件】随机现象的一个结果叫随机事件。
【样本空间】为了便于研究随机试验,我们将随机试验E的所有基本事件所组成的集合叫做样本空间,记为Ω。
每一个基本事件为样本点,基本事件也就是集合Ω的元素。
可以把样本空间中的基本事件映射成某个变量的取值,这样就引进了随机变量的概念。
【随机变量】在样本空间中,对不同事件指定有相应概率的数值函数,此函数成为一个随机变量。
P X泛指随机变量(X=x k)=p k,如抛掷硬币:正反1 0→随机事件的选项XkP0.5 0.5→对应概率,所有加起来=1k特征:与普通函数相比有两点不同:1.随机变量随着实验结果不同取不同的值,因此在实验之前只能知道取值的范围,而不能预先知道取什么值。
由于随机试验的各个结果出现有一定的概率,所以随机变量的出现也有一定的概率。
2.普通函数定义在实数轴上,而随机变量是定义在样本空间上,样本空间的元素不一定是实数二、统计学中的基本概念1.总体(Population)、样本(Sample)【总体】根据研究目的确定的、全体同质个体的某个(或某些)变量值。
比如:糖尿病的血红蛋白水平、高血压患者的血压分类:无限总体→新生儿体重有限总体→一所学校今年新生的身高【样本】:总体中的一部分,为了保证样本的代表性,在取样时我们要求X1、X2……Xn互相独立,并且与总体X有相同的概率分布。
第一章绪论第一节医学统计学的地位和作用当人们研发了一种治疗高血压病的新药,应该怎样评价该新药的疗效?最基本的方法就是比较。
通常将患者以随机的方式分成两个组,一组服用该新药,另一组服用对照药物,观测并记录两种药物的疗效,最后统计分析该新药的有效性和安全性,这就是一个常见的临床试验。
其中,统计学扮演什么角色?在这个临床试验中有诸多问题需要回答:需要多少名患者参加试验?如何随机地将患者分为两个组?哪些措施可以保证两组患者除了接受不同药物治疗外,其他影响疗效的因素在两组的分布是一致的?如果分布不一致,如何在诸多的影响因素中,分离出药物因素的效应?应采用什么样的指标来反映新药的有效性和安全性?怎样测量这些指标以保证数据的准确性和可靠性?如何控制临床试验的误差?如果两组疗效存在一定差别,怎样比较两个药物的疗效到底是否存在差别?换言之,我们需要了解这种差别是机会造成的,还是真实存在的?统计学可以回答上述问题。
我们再看另一种情形,假定为了解一个城市居民高血压病的患病现状,通常的做法是在这个城市调查一部分个体,利用这一部分个体的高血压病患病状况来反映整个城市的患病状况。
那么,如何在这个城市选取这一部分个体?因为只有这部分个体能够很好地代表整个城市人群,用这种部分推论全体的做法才是准确的。
此外,需要选取多少人进行调查?如何保证收集到的资料是准确和可靠的,又如何评价这种准确性和可靠性?几百人的血压值(如收缩压值)各不相同,看上去是一堆“杂乱无章”的数据,如何描述高血压病的患病状况,如何才能推论到整个城市人群?我们对于这种推论的正确性抱有多大的信心?统计学也可以回答上述问题。
每个人的血压都不一样,每个高血压病患者对同一种药物治疗的反应也存在着差别,这就是所谓的个体差异和不确定性。
个体差异是自然界普遍存在的现象,个体结构和功能千差万别,机体反应受到各种自然和社会环境因素的影响和制约,对内外环境刺激的反应同样千差万别。
在统计学中,我们将这种差异称为变异(variation)。
第一章绪论一、卫生统计学就是运用概率论和数理统计的原理和方法并结合医学实践来研究医学资料的收集、整理、分析和推断的一门科学。
二、同质和变异同质:针对被研究指标来讲,其影响因素相同。
变异:同质观察单位之间的个体差异。
三、总体和样本总体:根据研究目的确定的同质观察单位的全体。
确切地说,是同质的所有观察单位某种变量值的集合。
样本:从研究总体中随机抽取部分有代表性的观察单位。
样本量:样本中所含的观察单位的数量。
抽样:从总体中抽取样本的过程。
抽样研究:从总体中抽取样本,根据样本信息来推断总体特征。
四、参数与统计量参数:是根据总体分布的特征而计算的总体统计指标,是一个固定的常数,通常是未知的。
统计量:由样本计算得到的反映样本资料特征的统计指标,为随机变量,取值在参数附近波动,可作为参数的估计值。
五、变量的类型( 选择题高频考点)(一)定量变量1.离散型定量变量2.连续型定量变量(二)定性变量1.分类变量(名义变量):二分类变量和多分类变量2.等级变量(有序变量)六、频率与概率概率:描述随机事件发生可能性大小的一个度量,为一个固定的常数,取值在0到1之间,常用p来表示。
频率:在相同的条件下,独立地重复进行n次实验,随机事件A 出现了f次,则称f/n为事件A出现的频率。
↓(高频考点)小概率事件:习惯上将P≤0.05或P≤0.01称为小概率事件,通常表示某事件发生的可能性很小,在一次随机抽样中不会发生。
七、误差↓(高频考点)抽样误差:由抽样引起的样本统计量与总体参数之间的差异,或者不同样本统计量之间的差异。
包括系统误差和随机误差(不可避免的,类似抽样误差)。
随机误差:是一类恒定的、随机变化的误差,由多种尚无法控制的因素引起。
系统误差:是实验过程或者干预产生的误差。
过失误差:偶然失误造成的误差。
八、统计工作步骤(↓简答题高频考点)(一)统计设计(最关键的一环)拟定包括资料收集、整理和分析的计划和设想和如何遵循设计的三个基本原则(随机化、重复、对照)。