二项分布及其应用
- 格式:ppt
- 大小:2.26 MB
- 文档页数:39
理解二项分布及其应用范围统计学中的二项分布是一种重要的概率分布,它描述了在一系列独立的、有固定概率的伯努利试验中成功次数的分布情况。
在这个分布中,每次试验的结果只有两种可能,成功或失败。
二项分布在实际生活和科学研究中有着广泛的应用范围。
首先,二项分布可以用于描述二分类问题的概率分布。
例如,在市场调研中,我们可能对一组人进行调查,询问他们是否愿意购买某种产品。
假设每个人的购买意愿是独立的,且有固定的概率。
我们可以使用二项分布来计算在给定的样本中,成功(购买)的人数的概率分布。
这对于市场营销决策和产品定价等方面具有重要意义。
其次,二项分布还可以应用于质量控制和可靠性分析。
在制造业中,我们经常需要检查产品是否符合质量标准。
假设每个产品都有一定的概率不符合标准,我们可以使用二项分布来计算在给定的样本中,不合格产品的数量的概率分布。
这有助于我们评估生产过程中的质量控制效果,并采取相应的改进措施。
此外,二项分布还可以用于描述金融市场中的交易结果。
在股票市场中,每次交易的结果只有两种可能,盈利或亏损。
假设每次交易的盈利概率是独立的,且有固定的概率。
我们可以使用二项分布来计算在给定的交易次数中,盈利次数的概率分布。
这对于投资者评估交易策略的有效性和风险管理具有重要意义。
此外,二项分布还可以应用于医学研究中的临床试验。
在进行新药研发或治疗方法评估时,我们需要进行大量的试验和观察,以确定其疗效和副作用。
二项分布可以用来描述试验中患者的治愈率或不良反应的发生率。
这有助于我们评估新药或治疗方法的有效性和安全性,并做出科学的决策。
总之,二项分布是统计学中一种重要的概率分布,广泛应用于各个领域。
它可以用来描述二分类问题的概率分布,应用于市场调研、质量控制、金融交易和医学研究等方面。
理解和应用二项分布可以帮助我们更好地分析和解决实际问题,并做出科学的决策。
在未来的学习和实践中,我们应该深入研究和掌握这一概率分布,以提高统计分析的准确性和可靠性。
第13讲N次重复的伯努利试验——二项分布及其应用学习目标1.了解条件概率和事件的独立性2.掌握独立重复试验与二项分布入门测单选题练习1.抛掷一枚均匀的骰子两次,在下列事件中,与事件“第一次得到6点”不互相独立的事件是()A.“两次得到的点数和是12”B.“第二次得到6点”C.“第二次的点数不超过3点”D.“第二次的点数是奇数”练习2.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对乙更有利?()A.5局3胜制B.7局4胜制C.都一样D.说不清楚练习3.甲乙两人罚球的命中率分别,两人各分别罚球2次,则他们共命中3次的概率为()A.B.C.D.情景导入二项分布是由伯努利提出的概念,指的是重复n次独立的伯努利试验。
在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。
知识精讲相互独立事件知识讲解1.相互独立事件和相互独立事件的概率乘法公式【知识点的认识】1.相互独立事件:事件A(或B)是否发生,对事件B(或A)发生的概率没有影响,这样两个事件叫做相互独立事件.2.相互独立事件同时发生的概率公式:将事件A和事件B同时发生的事件即为A•B,若两个相互独立事件A、B同时发生,则事件A•B发生的概率为:P(A•B)=P(A)•P(B)推广:一般地,如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率之积,即:P(A1•A2…A n)=P(A1)•P(A2)…P(A n)3.区分互斥事件和相互独立事件是两个不同的概念:(1)互斥事件:两个事件不可能同时发生;(2)相互独立事件:一个事件的发生与否对另一个事件发生的概率没有影响.例题精讲相互独立事件例1.若甲、乙两位同学随机地从6门课程中各选修3门,则两人选修的课程中恰有1门相同的概率为__.例2.甲、乙两人依次从标有数字0,1,2的三张卡片中各抽取一张(不放回),则两人均未抽到标有数字0的卡片的概率为__.例3.'一次数学考试有4道填空题,共20分,每道题完全答对得5分,否则得0分.在试卷命题时,设计第一道题使考生都能完全答对,后三道题能得出正确答案的概率分别为P、、且每题答对与否相互独立(1)当p=时,求考生填空题得满分的概率(2)若考生填空题得10分与得15分的概率相等,求的P值.'n次独立重复试验恰好k次发生的概率知识讲解1.n次独立重复试验中恰好发生k次的概率【概念】一般地,在n次独立重复试验中,用ξ表示事件A发生的次数,如果事件发生的概率是P,则不发生的概率q=1﹣p,N次独立重复试验中发生K次的概率是P(ξ=K)=(K=1,2,3,…n)那么就说ξ服从二项分布.其中P称为成功概率.记作ξ~B(n,p),期望:Eξ=np,方差:Dξ=npq.【实例解析】例:在3次独立重复试验中,随机事件恰好发生1次的概率不大于其恰好发生两次的概率,则随机事件A在一次试验中发生的概率的范围是.解:由题设知C31p(1﹣p)2≤C32p2(1﹣p),解≤p≤1,故答案为:[,1].本题是典型的对本知识点进行考察,要求就是熟练的应用公式,理解公式的含义并准确计算就可以了,这种比较简单的题型一般出现在选择填空题中.【考点点评】这个知识点非常的重要,但相对来说也比较简单,所以大家要多花点时间把它吃透.例题精讲n次独立重复试验恰好k次发生的概率例1.随机变量X~B(6,),则P(X=2)等于()A.B.C.D.例2.如果X~B(20,p),当且P(X=k)取得最大值时,k的值是()A.8B.9C.10D.11例3.一头病猪服用某药品后被治愈的概率是90%,则服用这种药的5头病猪中恰有3头猪被治愈的概率为()A.0.93B.1-(1-0.9)3C.C53×0.93×0.12D.C53×0.13×0.92超几何分布知识讲解1.超几何分布【知识点的知识】一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则称超几何分布列.(1)超几何分布的模型是不放回抽样;(2)超几何分布中的参数是N,M,n上述超几何分布记作X~H(N,M,n).【典型例题分析】典例1:有N件产品,其中有M件次品,从中不放回地抽n件产品,抽到的次品数的数学期望值是()A.n B.C.D.分析:先由超几何分布的意义,确定本题中抽到次品数服从超几何分布,再由超几何分布的性质:若随机变量X~H(n,M,N),则其数学期望为,计算抽到的次品数的数学期望值即可解答:设抽到的次品数为X,则有N件产品,其中有M件次品,从中不放回地抽n件产品,抽到的次品数X服从超几何分布即X~H(n,M,N),∴抽到的次品数的数学期望值EX=故选C.题型一:抽样次品数的分布规律问题典例1:某批产品共10件,已知从该批产品中任取1件,则取到的是次品的概率为P=0.2.若从该批产品中任意抽取3件,(1)求取出的3件产品中恰好有一件次品的概率;(2)求取出的3件产品中次品的件数X的概率分布列与期望.解:设该批产品中次品有x件,由已知,∴x=2…(2分)(1)设取出的3件产品中次品的件数为X,3件产品中恰好有一件次品的概率为…(4分)(2)∵X可能为0,1,2∴…(10分)∴X的分布为:X012P则…(13分)题型二:不放回摸球游戏问题典例2:甲有一个箱子,里面放有x个红球,y个白球(x,y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子任取2个球,乙从箱子里在取1个球,若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色的个数,才能使自己获胜的概率最大?(2)在(1)的条件下,求取出的3个球中红球个数的数学期望.解:(1)由题意,;∴,当且仅当x=y=2时“=”成立所以当红球与白球各2个时甲获胜的概率最大(2)取出的3个球中红球个数ξ=0,1,2,3,所以【解题方法点拨】超几何分布的求解步骤:(1)辨模型:结合实际情景分析所求概率分布问题是否有冥想的两部分组成,如“男生、女生”“正品、次品”“优、劣”等,或可转化为明显的两部分.(2)算概率:可以直接借助公式,也可利用排列、组合及概率知识求解.(3)列分布表:把求得的概率值通过表格表示出来.例题精讲超几何分布例1.已知超几何分布满足X~H(3,5,8),则P(X=2)=___.例2.在10件产品中有2件次品,任意抽取3件,则抽到次品个数的数学期望的值是___.例3.若X~H(2,3,5),则P(X=1)=___。
二项分布及其应用1. 相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件.(2)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立.(3)若P (AB )=P (A )P (B ),则A 与B 相互独立.2. 二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验, 在这种试验中每一次试验只有__两__种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)n 次独立重复试验中,用X 表示事件A 发生的次数,设试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k (k =0,1,2,…,n ),此时称随机变量X 服从二项分布, 记为X ~B (n ,p ),并称题型一 相互独立事件的概率例1 甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116. (1)求乙投球的命中率p ;(2)求甲投球2次,至少命中1次的概率;(3)若甲、乙两人各投球2次,求共命中2次的概率.练:甲、乙两运动员,对一目标射击一次,甲射中的概率为0.8,乙射中的概率为0.9,(1)两人都射中的概率;(2)两人中恰有一人射中的概率; (3)两人中至少一人射中的概率;(4)两人中至多一人射中的概率.甲、乙、丙做一道题,甲做对的概率12,三人都做对的概率124,三人全做错的概率是14. (1)求乙、丙两人各自做对这道题的概率;(2)求甲、乙、丙三人恰有一人做对这道题的概率.题型二 独立重复试验与二项分布例2 某气象站天气预报的准确率为80%,计算:(结果保留到小数点后第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.练习. 某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记X 为3人中参加过培训的人数,求X 的分布列.粒子A 位于数轴x =0处,粒子B 位于数轴x =2处,这两颗粒子每隔1秒钟向左或向右移动一个单位,设向右移动的概率为23,向左移动的概率为13. (1)求4秒后,粒子A 在点x =2处的概率;(2)求2秒后,粒子A 、B 同时在x =2处的概率.基础测试1.两人独立地破译一个密码,他们能译出的概率分别为15,14,则密码被译出的概率为( ) A .0.45 B .0.05 C .0.4 D .0.62.一学生通过一种英语听力测试的概率是12,他连续测试两次,恰有一次通过的概率是 A.14 B.13 C.12 D.343.已知随机变量X 服从二项分布X ~B ⎝⎛⎭⎫6,13,则P (X =2)等于( ) A.1316 B.4243 C.13243 D.802434.一次测量中出现正误差和负误差的概率都是12,在5次测量中至少3次出现正误差的概率 A.516 B.58 C.23 D.125.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.6.位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是 A.⎝⎛⎭⎫125 B .C 25⎝⎛⎭⎫125 C .C 25⎝⎛⎭⎫123 D .C 25C 35⎝⎛⎭⎫125 7.一个电路如图所示,A 、B 、C 、D 、E 、F 为6个开关,其闭合的概率都是12,且是相互独立的,则灯亮的概率是( )A.164B.5564C.18D.1168.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为________(用数字作答).9.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170、169、168,且各道工序互不影响,则加工出来的零件的次品率为________.10.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( )A.12B.35C.23D.3411. 明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己.假设甲闹钟准时响的概率为0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________.12.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是13. (1)求这支篮球队首次胜场前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好胜了3场的概率.13.甲、乙两个乒乓球选手进行比赛,他们的水平相当,规定“七局四胜”,即先赢四局者胜,若已知甲先赢了前两局,(1)乙取胜的概率;(2)比赛打满七局的概率;(3)设比赛局数为ξ,求ξ的分布列.。
二项分布概念:二项分布即重复n次独立的伯努利试验。
在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布就是伯努利分布。
该事件发生k次的概率为:P=C(k,n)×p^k×(1-p)^(n-k),其中C(k,n)表示组合数,即从n个事物中拿出k个的方法数.,p为事件发生的概率,k是发生的次数,其中k=1,2,3...n,Ek=np,方差:Dk=np(1-p)例6-1某种药物治疗某种非传染性疾病的有效率为0.70,无效率为0.30。
今用该药治疗该疾病患者10人,试分别计算这10人中有6人、7人、8人有效的概率(《医学统计学》,第三版,孙振球)。
#源代码例6-1:dbinom(6,10,0.7)#二项分布函数dbinom(7,10,0.7)dbinom(8,10,0.7)#其中dbinom(k,n,p)中,k是发生的次数,10是共次数,p是概率>#源代码例6-1:>dbinom(6,10,0.7)[1]0.2001209>dbinom(7,10,0.7)[1]0.2668279>dbinom(8,10,0.7)[1]0.2334744>#其中dbinom(k,n,p)中,k是发生的次数,10是共次数,p是概率例6-2在对13名输卵管结扎的育龄妇女经壶腹部-壶腹部吻合术后,观察其受孕情况,发现有6人受孕,试据此资料估计该吻合术受孕率的95%可信区间。
#源代码例6-2:binom.test(6,13,p=6/13,conf.level=0.95)>#源代码例6-2:>binom.test(6,13,p=6/13,conf.level=0.95)Exact binomial testdata:6and13number of successes=6, number of trials=13, p-value=1alternative hypothesis:true probability of success is not equal to0.461538595percent confidence interval:0.19223240.7486545sample estimates:probability of success0.4615385例6-3在观测一种药物对某种非传染性疾病的治疗效果时,用该药治疗了此种非传染性疾病患者100人,发现55人有效,试据此估计该药物治疗有效率的95%可信区间。
二项分布及其应用二项分布是概率论中最重要的几种分布之一,在实际应用和理论分析中都有着重要的地位:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生K 次的概率为P(X=k)=C n k p k (1-p)n-k ,k=0,1,2,…,n ,此时称随机变量X 服从二项分布,记作X ~B(n,p),并称p 为成功概率。
二项分布是一种常见的重要离散型随机变量分布列,其识别特点主要有两点:其一是概率的不变性;其二是试验的可重复性,下面加以例谈。
例题1 某车间有10台同类型的机床,每台机床配备的电动机功率为10千瓦,已知每台机床工作时,平均每小时实际开动12分钟,且开动与否是相互独立的。
现因当地电力供应紧张,供电部门只提供50千瓦电力,这10台机床能够不因电力不足而无法工作的概率为多大?在一个工作班的8小时内,不能正常工作的时间大约是多少?解析:设10台机床中实际开动的机床数为随机变量ξ,由题意知满足二项分布,即ξ~B (10,p ),其中p 是每台机床开动的概率,p=516012= ,从而)10,2,1,0()54()51()(1010 ===-k C k P k k k ξ , 50千瓦电力可同时供5台机床同时开动,因而10台中同时开动数不超过5台都可以正常工作,这一事件的概率55510644107331082210911010010)54()51()54()51()54()51()54()51()54)(51()54()5(C C C C C C P +++++=≤ξ994.0≈。
由以上知,在电力供应为50千瓦的条件下,机床不能正常工作的概率仅为0.006,从而一个工作班的8小时内不能正常工作的时间大约为8×60×0.006=2.88(分钟),这说明,10台机床的工作基本不受电力供应紧张的影响。