第2章土中应力计算(土力学与地基基础教案)
- 格式:doc
- 大小:243.50 KB
- 文档页数:10
整体教学方案设计单元教学方案设计授课地点:2-205、2-605、1-106 授课时间:9 月日1 周1节课堂组织:第一部分:对本专业介绍进而引入本课程(时间:…10…分钟)首先自我介绍,进行点名,然后介绍建筑工程专业的特色,从业方向,主要接触哪些东西,进而引入本课程,对本课程的地位性质进行介绍。
第二部分:学习新内容(时间:…80…分钟)【步骤一】宣布教学内容、目的(时间:5…分钟)新课导入:土力学与地基基础是一门理论性与实践相结合且专业技术性较强的专业课,通过对土力学和地基基础概念的解读引出本学科的发展简史和学习的内容、方法及目标。
结合中外建筑在地基与基础工程上的实例,从不同方面阐述七重要性,激发雪上对本课程的学习热情。
教学内容:模块0绪论教学目的:1 、要求对地基与基础有基本的认识,明确本课程的任务和特点及在本专业中的地位,举例说明地基与基础的重要性。
【步骤二】新内容的引入(时间:…5…分钟)(一)绪论【步骤三】多媒体演示与换算演示(时间:…30…•分钟)(一)土力学与地基基础发展简史的展示【步骤四】学生互动训练(时间:…35…•分钟)让学生思考之前的知识,各自出一个题目,接下来等待抽取,学生之间可互相讨论。
【步骤五】小结(时间:…5…分钟)根据学生练习中反馈的问题进行归纳小结,强调本项内容的教学重点与难点,加强学生对本节课内容的的理解。
课后练习与教师答疑:利用所学相关知识,在课堂上换算。
对于有疑问的地方,老师辅之于课后针对性的指导与辅导答疑。
专业教研室主任:系、部主任:教学评控中心主任:单元教学方案设计授课地点:授课时间:9月日2 周1节新课导入:土的物理性质指标是本模块最基本的内容,也是学习后续模块的基础。
土是自然界中性质最为复杂多变的物质,有常用于隐蔽工程,一旦破坏,很难修复,所以掌握土的物理性质对建筑基础工程的设计和施工具有重要的意义。
教学内容:模块一土的物理性质和工程分类一、土的组成教学目的:1 、要求对地基与基础有基本的认识,明确本课程的任务和特点及在本专业中的地位,举例说明地基与基础的重要性。
《土力学与地基基础》教案第一章:土的性质与分类1.1 教学目标了解土的组成、性质和分类,掌握土的三相指标及土的密度、含水率和塑性指数的概念。
学会使用土工试验仪器进行土的物理性质试验。
理解土的工程特性及其对地基基础的影响。
1.2 教学内容土壤的组成与结构土壤的物理性质:密度、含水率、塑性指数土壤的力学性质:抗剪强度、压缩性、渗透性土的分类与工程特性土工试验:密度试验、含水率试验、塑性指数试验1.3 教学方法课堂讲授:讲解土壤的性质、分类和工程特性。
实验教学:指导学生使用土工试验仪器进行土的物理性质试验。
案例分析:分析实际工程案例,理解土壤性质对地基基础的影响。
第二章:土力学基本理论2.1 教学目标掌握土力学的基本概念、原理和定律,包括剪切强度理论、压缩理论和小应变弹性理论。
学会运用土力学理论分析土壤的力学行为。
土力学的基本概念:应力、应变、应力路径剪切强度理论:抗剪强度、库仑定律、莫尔-库仑准则压缩理论:压缩性、压缩系数、压缩模量小应变弹性理论:弹性模量、泊松比、弹性应变2.3 教学方法课堂讲授:讲解土力学的基本概念、原理和定律。
数值分析:运用数值方法分析土壤的力学行为。
案例分析:分析实际工程案例,运用土力学理论解决问题。
第三章:地基基础设计原理3.1 教学目标掌握地基基础的设计原理和方法,包括浅基础、深基础和地下工程的设计。
学会运用土力学和结构力学的知识进行地基基础的设计。
3.2 教学内容浅基础设计原理:承载力计算、基础尺寸确定、沉降计算深基础设计原理:桩基础、沉井基础、地下连续墙地下工程设计原理:隧道、地铁、地下室3.3 教学方法课堂讲授:讲解地基基础的设计原理和方法。
数值分析:运用数值方法分析地基基础的设计问题。
案例分析:分析实际工程案例,运用土力学和结构力学的知识进行地基基础设计。
第四章:地基承载力与稳定性分析掌握地基承载力和稳定性的分析方法,包括极限平衡法、数值方法和实验方法。
学会运用地基承载力和稳定性分析方法解决实际工程问题。
地基中的应力计算地基是地下工程中最基本的构造部分,承受着上部结构的重量和荷载,承担着巨大的压力作用。
在地基设计中,应力计算是非常重要的一部分,它能够提供地基承载力和安全性的评估。
本文将介绍地基中应力计算的方法和计算公式。
首先,需要了解地基中的应力是如何形成的。
地基承受的主要应力有自重应力、活载荷载应力和附加应力。
自重应力是由于地基材料本身的重量所引起的应力,可以通过材料的密度和重力加速度计算得到。
活载荷载应力是由上部结构的荷载所引起的应力,可以根据上部结构的设计荷载计算得到。
附加应力是由于地基中存在的其他因素所引起的应力,比如建筑物的自身形变引起的应力。
接下来,我们介绍如何计算地基中的应力。
地基中的应力计算可以根据不同的地基类型和荷载情况采用不同的方法。
下面以均质土壤的地基为例,介绍几种常用的应力计算方法。
1.利用铁索计算应力:铁索是一种常用的应力计算工具,可以通过测量铁索的伸长量来计算地基中的应力。
首先,在地基中铺设一根长度合适的铁索,然后测量并记录铁索的伸长量。
根据该伸长量和铁索的初始长度,可以通过应力-应变关系计算得到地基中的应力。
2.利用试孔计算应力:试孔是另一种用于计算地基中应力的方法。
首先,在地基中进行试孔,并记录试孔的深度和直径。
然后,根据试孔的直径和土壤的剪切强度,可以计算得到地基中的应力分布情况。
3.利用数值模拟计算应力:数值模拟是一种常用的计算地基应力的方法,它可以通过建立地基的有限元模型来模拟地基的应力分布情况。
首先,需要根据地基的实际情况建立有限元模型,然后通过数值计算方法求解得到地基中的应力。
综上所述,地基中的应力计算是地基设计的重要环节,可以通过铁索、试孔和数值模拟等多种方法进行计算。
在进行应力计算时,需要考虑地基的类型、荷载情况和材料特性等因素,确保计算结果的准确性和可靠性。
地基中的应力计算对于确保地基的稳定性和安全性具有重要意义,是地基设计中不可或缺的一环。
土力学地基基础教案(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--土力学地基基础教案土力学地基基础教案《土力学与地基基础》授课教案深圳大学建筑与土木工程学院第一章绪论§本课程的内容和作用科与实践:国内外地基基础工程事故及分类举例并分析事故原因二、本门课程知识构架三、地基基础设计中需满足的技术条件要求:概括了解地基基础工程事故的种类及原因.对本学科需解决的问题有初步的总体认识.了解地基基础概念,建筑工程对地基基础的要求,了解本门课程的知识构架.了解地基基础设计中需满足的技术条件.授课方法:通过大量图片实例,让学生直观了解教学内容,提高学习和对本课程的兴趣,学生提早适应和入门.§本课程发展概况要求:了解本学科中关键理论的产生、发展情况及学科现状.授课方法:在强调学科的实验性时,要举例简要讲解.如:2个土压力理论,3种剪切试验方法.§本课程的特点和学习要求要求:了解本课程内容的广泛性和综合性及实验性,对本课程应掌握的内容要有总体的认识.授课方法:讲解本门课程知识构架时,对应土力学定义,结合教材目录.使学生清楚教材内容的编排顺序和原因.从而对本课程教学内容有宏观和总体的把握.第二章地基土(岩)的物理性质及分类§土的三相组成要求:了解土的矿物成分.掌握土的粒组、颗粒级配概念.理解颗粒级配曲线的含义及Cu、Cc与级配好坏的关系.理解毛细水分类与原理,强弱结合水的概念和特性.掌握土的结构和构造划分.重点:土的粒组,颗粒级配的概念.弱结合水的工程特性,毛细水对工程的影响.授课方法:结合生活与工程实际举例讲解毛细水的作用.使用图例讲解土的结构与构造.§土的物理性质指标要求:理解掌握三项基本指标的概念.了解基本实验方法.理解掌握六项换算指标的概念.了解和区别指标的常见值及工程应用.了解应用三相草图求解换算公式.记住有效重度与饱和重度关系公式.重点:9个指标的含义及区别.指标的工程应用.三项基本指标的实验方法.授课方法:通过指标定义公式的比较及强调各自的物理意义,区别9个物理性质指标.通过与实际工程中各种建筑材料的重度的比较,使学生记住各种重度的常见值,增强学生的量化概念.§土的物理状态指标一、无粘性土的密实度要求:掌握密实度的概念及各种密实度指标概念.了解各种指标的优缺点,适用范围及密实度划分结果.重点:砂土,碎石土密实度划分方法及划分结果.二、粘性土的稠度要求:掌握稠度及稠度界限含水量的概念.掌握界限含水量概念含义和实验方法.掌握塑性指数,液性指数概念含义及应用.掌握粘性土软硬状态的划分.了解粘性土灵敏度和触变性的概念.重点:指标的含义和应用.授课方法:对比强调无粘性土、粘性土在影响松密和软硬因素方面的差异.§土的压实性要求:了解压实原理.理解影响压实效果的因素.重点:最大干密度概念及室内试验方法.难点:影响压实效果的因素(最优含水量、击实功)§地基土的工程分类要求:掌握《地基规范》分类法划分结果.理解各类土的定义分类依据,定名.掌握碎石土,砂土,粘土工程特性.重点:砂土,粘土,粘性土定义、分类依据、定名及工程特性.第三章土的压缩性与地基沉降计算§地基中的自重应力一、均质地基情况二、成层地基情况三、有效应力分布规律四、地下水升降及隔水层对自重就力的影响.要求:掌握竖向自重应力的求解方法.理解侧向自重应力求解方法.掌握有效应力概念掌握自重应力分布曲线的变化规律.理解地下水位升降对自重应力的颢响.重点:有效应力原理.授课方法:重点解释粒间应力与土的变形和强度的内在关系.反复强调自重应力,一般指有效自重应力.要求学生课上先讨论均质和成层土自重应力求解公式和应力分布规律后,再给出授课内容.§基础底面接触压力基础底面接触压力的分布基础底面接触压力的简化计算(中心受压基础,偏心受压基础)基础底面附加压力要求:理解随荷载增加,柔性基础、刚性基础基底压力分布变化规律,架桥作用的概念.理解一般工业与民用建筑中基底压力分布图形.了解影响基底接触压力大小和分布的因素.掌握基底接触压力的计算方法.(中心受压和单向偏心受压)掌握基底附加压力概念及计算方法.重点:基底接触压力和附加压力的计算.授课方法:强调基底附加压力为新增应力,再由同学讨论埋深取值问题.§地基中的附加应力一、附加应力的定义和假设二、不同面积上受各种荷载作用下,附加应力的计算方法.集中力作用下地基中附加应力的计算.矩形均布荷载作用下地基中附加应力的计算及角点法.三、附加应力分布规律要求:理解附加应力计算的基本假设.了解竖向集中力作用下地基中附加应力的布辛奈斯克解答.了解均布的矩形荷载角点下的地基附加应力的求解方法.并掌握求解任意点地基附加应力的角点法.了解其它荷载作用下地基中附加应力求解方法(三角形分布的矩形荷载,均布圆形荷载中心点下,线性和条形荷载下).理解掌握附加应力分布规律.重点:应用角点法求地基中任一点附加应力的方法.附加应力分布规律.难点:附加应力分布规律.授课方法:对各种荷载作用下附加应力的求解仅在引入布辛奈斯克解后,讲明利用积分方法求解,不讲具体推导过程,只给出结果σz=KP0,并对K做定性解释;对条形均布荷载作用下地基中附加应力给出大、小主应力公式,以备后用;通过例题讲解归纳出附加应力分布规律;通过应力分布图形比较条形,矩形荷载作用下附加应力影响范围的不同.§土的压缩性一、压缩试验及压缩性指标二、静载荷试验及变形模量.要求:掌握土压缩性和固结的概念.掌握压缩试验方法、假定,压缩曲线的绘制,压缩系数,压缩指数,压缩模量的含义及公式,土压缩性的评价.理解土的回弹和再压缩曲线.了解静载荷试验方法和变形模量E0的确定.理解Es与E0的关系.重点:压缩试验及压缩性指标的公式及含义.难点:公式e=e0-s(1+e0)/h0及Es=(1+e)/a的推导.授课方法:对Es和E0重点做定性的比较,简单介绍定量公式.§地基最终沉降量的计算一、分层总和法二、规范推荐法要求:理解地基最终沉降量概念.理解分层总和法假定、计算方法及步骤.理解规范推荐法计算公式及计算方法和步骤.重点:沉降量计算公式的含义、推导,两种方法中地基沉降计算深度的确定方法,αv、Cc的含义.授课方法:通过课堂上对例题的讲解加强学生对两种沉降计算方法的理解.§应力历史对地基沉降的影响要求:掌握先期固结压力的概念;正常固结土、超固结土、欠固结土概念.了解先期固结压力的'求解方法—卡萨格兰德法.了解原始压缩曲线的概念和考虑应力历史影响的地基最终沉降计算方法.重点:先期固结压力的概念.§建筑物沉降观测与地基容许变形值一、建筑物的沉降观测二、地基变形特征要求:理解沉降观测的意义和范围.授课方法:让学生先自己看书,然后加以解释.第四章土的抗剪强度及地基承载力§土的抗剪强度一、抗剪强度的基本概念二、直剪试验与库仑定律要求:理解掌握土的抗剪强度的概念.掌握库仑定律.了解抗剪强度的来源和影响因素.重点:抗剪强度的来源.孔隙水压力对实验的影响,3种实验方法:排水剪,不排水剪,固结不排水剪.授课方法:孔隙水压力对土体强度的影响,结合三种实验方法来讲解.§土的极限平衡理论一、土中一点的应力状态二、土的极限平衡状态与极限平衡理论要求:掌握莫尔应力圆概念.掌握极限平衡概念及条件.重点:莫尔应力圆概念及极限平衡概念、条件.难点:莫尔应力圆的含义与抗剪强度包线的关系.授课方法:结合抗剪强度包线与莫尔应力圆重叠图形,分析土体中某一载面上剪应力与抗剪强度的关系,指出并非抗剪强度最大,则一定先破坏,从而加深同学对抗剪强度的理解.通过例题加深学生对极限平衡概念的认识与应用.§抗剪强度指标的测定方法一、直剪试验二、三轴压缩试验三、无侧限抗压强度试验四、十字板剪切试验要求:了解试验原理,熟悉依据排水条件而产生的不同试验方法.理解各种试验优缺点及适用条件.重点:实际工程中如何依据不同的排水条件选择相适应的试验方法.授课方法:结合土力学实验室内直剪、三轴压缩、无侧限抗压强度试验的演示来加深学生对土体抗剪强度理论、公式等的认识.§地基破坏类型及承载力的确定一、地基破坏类型二、地基临塑荷载、临界荷载、极限荷载概念及地基承载力的确定要求:熟悉地基剪切破坏三种型式(整体剪切破坏、局部剪切破坏、冲剪破坏)及破坏发生的条件.理解临塑荷载,临界荷载的含义,了解公式推导原理和方法.简单了解地基极限承载力理论.理解地基承载力的理论确定方法.重点:地基剪切破坏的三种型式.临塑荷载、临界荷载、极限荷载的含义.授课方法:结合P—S曲线讲授Pcr、Pu、P1/3的概念第五章土的塑性和土的临界状态§土的塑性一、土的塑性二、塑性力学的基本概念(屈服准则、流动法则、硬化规律)要求:理解掌握屈服准则、流动法则、硬化规律的概念.理解土体屈服的概念.重点:屈服准则、流动法则、硬化规律的概念.授课方法:采用讨论的方式,让学生总结土体与一般的建筑材料的力学特性的差异,教师补充并引出土体是弹塑性材料,需要研究土体的塑性.通过试验曲线来讲解把握土体塑性的三个准则(屈服、流动、硬化).§土的临界状态与临界状态线一、土的临界状态二、土的临界状态线要求:理解三维p-q-e空间的屈服面及其在二维平面上的投影.理解临界状态的概念及条件.重点:土体在三维p-q-e空间的屈服面形式.授课方法:首先和学生一起复习正常固结土的p-q曲线、e-p曲线,然后逐渐引入体在三维p-q-e 空间的屈服面.§临界状态模型一、典型的砂土行为二、典型的粘土行为要求:理解模型中参数M、G、N、l、k、参数的含义及其确定方法.重点:参数M、G、N、l、k、参数的含义及其确定方法.§粘性土屈服面的形状湿面与干面粘性土屈服面形状要求:理解粘性土屈服面形状在干面、湿面不同.认真理解粘性土的强度包络线由拉伸断裂线、Hvorslev面、临界状态线这三部分组成.重点:参数M、G、N、l。
土木工程课程:土力学与地基基础关键信息项:1、课程名称:土力学与地基基础2、课程目标3、教学内容4、教学方法5、考核方式6、教材选用7、课程时间安排11 课程目标本课程旨在使学生掌握土力学与地基基础的基本理论和知识,具备分析和解决土力学与地基基础相关工程问题的能力。
通过本课程的学习,学生应达到以下目标:111 理解土的物理性质、力学性质和工程分类,能够进行土的物理指标计算和工程性质评价。
112 掌握土中应力的计算方法,包括自重应力、附加应力的计算,能够分析土中应力分布规律。
113 熟悉土的压缩性和固结理论,能够进行地基沉降计算和预测。
114 掌握土的抗剪强度理论和测试方法,能够进行土坡稳定性分析和挡土墙设计。
115 了解地基基础的类型和设计原则,能够进行浅基础和桩基础的设计计算。
12 教学内容121 土的物理性质与工程分类土的三相组成、土的颗粒级配、土的物理性质指标、土的工程分类方法。
122 土中应力计算土的自重应力计算、基底压力计算、地基中的附加应力计算。
123 土的压缩性与地基沉降计算土的压缩性指标、单向固结理论、地基最终沉降量计算方法。
124 土的抗剪强度莫尔库仑强度理论、土的抗剪强度指标测定方法、土坡稳定性分析。
125 地基承载力地基破坏模式、地基承载力的确定方法。
126 浅基础设计浅基础的类型、基础埋置深度的确定、基础底面尺寸的计算、基础内力分析与配筋设计。
127 桩基础设计桩的类型与特点、单桩竖向承载力的确定、桩基础的设计计算。
13 教学方法131 课堂讲授采用多媒体教学手段,结合工程实例,讲解土力学与地基基础的基本概念、原理和方法。
132 实验教学安排土的物理性质实验、土的压缩实验、土的抗剪强度实验等,使学生通过实验加深对课程内容的理解和掌握。
133 课程设计布置课程设计任务,要求学生综合运用所学知识,完成地基基础的设计计算,培养学生的工程实践能力。
134 案例分析通过分析实际工程中的土力学与地基基础问题,培养学生解决复杂工程问题的能力。
《土力学与地基基础》教案第一章:土的性质与分类1.1 教学目标了解土的组成、物理性质、力学性质及其影响因素。
掌握土的分类方法及其工程意义。
1.2 教学内容土的组成与结构土的物理性质(密度、含水率、粒径分布等)土的力学性质(抗剪强度、压缩性、渗透性等)土的分类(按照粒径、塑性、有机质含量等)1.3 教学方法采用讲授法介绍土的性质与分类的基本概念。
利用图像、案例等方式展示土的组成与结构。
通过实验或现场考察,让学生亲手操作,加深对土的物理性质与力学性质的理解。
1.4 教学活动引入话题:土地与建筑物的基础关系。
讲授土的组成与结构,配合图像与案例。
学生实验:土的密度、含水率、粒径分布等测试。
小组讨论:土的分类方法及其在工程中的应用。
第二章:土的力学性质2.1 教学目标理解土的力学性质及其在土力学分析中的重要性。
学会应用土的抗剪强度、压缩性和渗透性等力学性质进行工程计算。
2.2 教学内容土的抗剪强度(抗剪断强度、抗剪摩尔圆)土的压缩性(压缩系数、压缩模量)土的渗透性(渗透系数、达西定律)2.3 教学方法采用讲解和案例分析相结合的方式,让学生理解土的力学性质。
利用实验数据,讲解土的抗剪强度、压缩性和渗透性的测定方法。
2.4 教学活动复习土的分类,引入土的力学性质的重要性。
讲解土的抗剪强度、压缩性和渗透性的基本概念。
学生实验:土的抗剪强度、压缩性和渗透性的测定。
案例分析:应用土的力学性质进行实际工程问题的计算。
第三章:土压力与支撑力3.1 教学目标理解土压力和支撑力的概念及其在工程中的应用。
学会计算静止土压力、主动土压力和被动土压力。
3.2 教学内容土压力(静止土压力、主动土压力、被动土压力)支撑力(挡土墙、地下墙、支护结构)3.3 教学方法采用讲授法,结合实例讲解土压力和支撑力的概念。
利用公式和计算实例,让学生掌握土压力和支撑力的计算方法。
3.4 教学活动引入土压力和支撑力的概念,讲解其在工程中的应用。
讲解静止土压力、主动土压力和被动土压力的计算方法。
土体中的应力计算1.格令法格令法是土力学中常用的一种计算土体中应力的方法,它基于土体中的格令应力体系。
格令应力体系是指土体中各个方向上的应力分量。
常见的格令应力体系包括水平应力(σ_h),垂直应力(σ_v)和剪应力(τ)。
格令法计算土体中应力的基本过程如下:(1)确定水平应力(σ_h):水平应力是以土体排列方向为基准的应力分量,通过土体中的外加荷载和支持条件来计算。
常见的计算方法有:a.一维法:当土体受到轴对称荷载时,可以使用一维法计算水平应力。
其中σ_h=P/A,其中P为荷载大小,A为土体的横截面积。
b.二维法:当土体受到平面荷载时,可以使用二维法计算水平应力。
其中σ_h=P/A,P为荷载大小,A为土体的接触面积。
c.三维法:当土体受到体力荷载时,可以使用三维法计算水平应力。
其中σ_h=F/A,F为荷载大小,A为土体的接触面积。
(2)确定垂直应力(σ_v):垂直应力是指土体中垂直于排列方向的应力分量。
垂直应力的计算方法如下:a.压力传递原理:假设土体为均质、无阻性及无滑动的情况下,垂直应力可通过压力传递原理计算。
垂直应力由上层土体通过土粒间的压缩传递给下层土体,下层土体又继续传递给更下层土体,以此类推。
b.常用公式:经验公式计算垂直应力可使用τ=kσ_v,其中k为土体的地层系数,可以根据实际情况选择合适的数值。
(3)确定剪应力(τ):剪应力是土体中沿一定面域内的剪力分量。
剪应力的计算方法如下:a.剪切试验:通过进行剪切试验,可以直接测得土体中的剪应力。
b.运动原理:当土体处于平衡状态时,土粒间的剪应力满足平衡条件。
可以根据平衡条件求解土体中剪应力的大小和方向。
2.应变法应变法是另一种常用的计算土体中应力的方法,它基于土体中的应变体系。
应变是指在外力作用下,土体中产生的形变量。
常见的应变体系包括线性应变和体积应变。
应变法计算土体中应力的基本过程如下:(1)确定线性应变(ε):线性应变是土体中只考虑线性部分的应变。
第2章土中应力计算一、知识点:2.1 概述 2.2 土中自重应力 2.3 基底压力(接触应力)2.3.1 基底压力的简化计算 2.3.2 基底附加压力2.4 地基附加应力2.4.1 竖向集中力下的地基附加应力 2.4.2 矩形基础下的地基附加应力2.4.3 线荷载和条形荷载下的地基附加应力 2.4.4 非均质和各向异性地基中的附加应力2.5 地基沉降的弹性力学公式二、考试内容:重点掌握内容1.自重应力在地基土中的分布规律,均匀土、分层土和有地下水位时土中自重应力的计算方法。
2.基底接触压力的概念,基底附加压力的概念及计算方法。
3.基底附加压力的概念,基底附加压力在地基土中的分布规律。
应用角点法计算地基土中任意一点的竖向附加应力。
三、本章内容:§2.1 概述建筑物的建造使地基土中原有的应力状态发生变化,从而引起地基变形,出现基础沉降。
由于建筑物荷载差异和地基不均匀等原因,基础各部分的沉降或多或少总是不均匀的,使得上部结构之中相应地产生额外的应力和变形。
基础不均匀沉降超过了一定的限度,将导致建筑物的开裂、歪斜甚至破坏,例如砖墙出现裂缝、吊车轮子出现卡轨或滑轨、高耸构筑物倾斜、机器转轴偏斜以及与建筑物连接管道断裂等等。
因此,研究地基变形,对于保证建筑物的正常使用、经济和牢固,都具有很大的意义。
地基的沉降,必须要从土的应力与应变的基本关系出发来研究。
对于地基土的应力一般要考虑基底附加应力、地基自重应力和地基附加应力。
地基的变形是由地基的附加应力导致,变形都有一个由开始到稳定的过程。
我们把地基稳定后的累计变形量称为最终沉降量。
地基应力一般包括由土自重引起的自重应力和由建筑物引起的附加应力,这两种应力的产生条件不相同,计算方法也有很大差别。
此外,以常规方法计算由建筑物引起的地基附加应力时,事先确定基础底面的压力分布是不可缺少的条件。
从地基和基础相互作用的假设出发,来分析地基上梁或板的内力和变形,以便设计这类结构复杂的连续基础时,也要以本章的有关内容为前提。
地基土的变形都有一个由开始到稳定的过程,各种土随着荷载大小等条件的不同,其所需时间的差别很大,关于地基变形随时间而增长的过程是土力学中固结理论的研究内容。
它是本章的一个重要组成部分。
在工程实践中,往往需要确定施工期间和完工后某一时间的基础沉降量,以便控制施工速度,确定建筑物的使用措施,并要考虑建筑物有关部分之间的预留净空和连接方式,还必须考虑地基沉降与时间的关系。
§2.2 土中自重应力土是由土粒、水和气所组成的非连续介质。
若把土体简化为连续体,而应用连续体力学(例如弹性力学)来研究土中应力的分布时,应注意到,土中任意截面上都包括有骨架和孔隙的面积在内,所以在地基应力计算时都只考虑土中某单位面积上的平均应力。
在计算土中自重应力时,假设天然地面是一个无限大的水平面,因而在任意竖直面和水平面上均无剪应力存在。
如果地面下土质均匀,天然重度为γ(kN/m³),则在天然地面下任意深度z(m)处a-a 水平面上的竖向自重应力CZ σ(kPa),可取作用于该水平面上任一单位面积的土柱体自重γz×1计算,即:CZ σ=γz (书33页2-1)CZ σ沿水平面均匀分布,且与Z 成正比,即随深度按直线规律分布[书34页图2-1(a)]。
地基中除有作用于水平面上的竖向自重应力外,在竖直面上还作用有水平向的侧向自重应力。
由于CZ σ沿任一水平面上均匀地无限分布,所以地基土在自重作用下只能产生竖向变形,而不能有侧向变形和剪切变形。
从这个条件出发,根据弹性力学,侧向自重应力cx σ和cy σ应与cz σ成正比,而剪应力均为零,即:cz cy cx K σσσ0== (书34页2-3)===zx yz xy τττ (书34页2-4) 式中比例系数0K 称为土的侧压力系数或静止土压力系数,见34页表2-1。
必须指出,只有通过土粒接触点传递的粒间应力,才能使土粒彼此挤紧,从而引起土体的变形,而且粒间应力又是影响土体强度的一个重要因素,所以粒间应力又称为有效应力。
因此,土中自重应力可定义为土自身有效重力在土体中引起的应力。
土中竖向和侧向的自重应力一般均指有效自重应力。
对地下水位以下土层必须以有效重度γ′代替天然重度γ。
为了简便起见,以后各章节中把常用的竖向有效自重应力cz σ,简称为自重应力,并改用符号c σ表示。
地基土往往是成层的,因而各层土具有不同的重度。
如地下水位位于同一土层中,计算自重应力时,地下水位面也应作为分层的界面。
如书34页图2-1(b )所示,天然地面下深度z 范围内各层土的厚度自上而下分别为n i h h h h ,,,21,计算出高度为z 的土柱体中各层土重的总和后,可得到成层土自重应力计算公式:∑==n i ii c h 1γσ (书34页2-2)式中 c σ—天然地下面任意深度z 处的竖向有效自重应力,kPa ;n —深度z 范围内的土层总数;i h —第i 层土的厚度,m ;i γ—第i 层土的天然重度,对地下水位以下的土层取有效重度i 'γ,kN/m³。
在地下水位以下,如埋藏有不透水层(例如岩层或只含结合水的坚硬粘土层),由于不透水层中不存在水的浮力,所以层面及层面以下的自重应力应按上覆土层的水土总重计算。
自然界中的天然土层,一般形成至今已有很长的地质年代,它在自重作用下的变形早巳稳定。
但对于近期沉积或堆积的土层,应考虑它在自重应力作用下的变形。
此外,地下水位的升降会引起土中自重应力的变化(书35页图2-2)。
例如在软土地区,常因大量抽取地下水,以致地下水位长期大幅度下降,使地基中原水位以下的有效自重应力增加[书35页图2-2(a)],而造成地表大面积下沉的严重后果。
至于地下水位的长时期上升[书35页图2-2(b)],常发生在人工抬高蓄水水位地区(如筑坝蓄水)或工业用水大量渗入地下的地区,如果该地区土层具有遇水后发生湿陷的性质,必须引起注意。
§2.3基底压力(接触应力)建筑物荷载通过基础传递给地基,在基础底面与地基之间便产生了接触应力。
它既是基础作用于地基的基底压力,同时又是地基反作用于基础的基底反力。
因此,在计算地基中的附加应力以及设计基础结构时,都必须研究基底压力的分布规律。
基底压力分布是与基础的大小和刚度,作用于基础上荷载的大小和分布、地基土的力学性质以及基础的埋深等许多因素有关。
根据弹性力学中圣维南原理,在地表下一定深度处,土中应力分布与基础底面上荷载分布的影响并不显著,而只决定于荷载合力的大小和作用点位置。
因此,对于具有一定刚度以及尺寸较小的柱下单独基础和墙下条形基础等,其基底压力可近似地按直线分布的图形计算,即按下述材料力学公式进行简化计算。
2.3.1 基底压力的简化计算2.3.1.1 中心荷载下的基底压力中心荷载下的基础,其所受荷载的合力通过基底形心。
基底压力假定为均匀分布(书37页图3-5),此时基底平均压力设计值(kPa)按下式计算:A GF p +=(书37页2-5)式中 F —作用在基础上的竖向力设计值,kN ,G —基础自重设计值及其上回填土重标准值的总重,kN ,G=Ad G γ 其中 G γ—为基础及回填土之平均重度,一般取20kN /m ³,但在地下水位以下部分应扣去浮力为10kN /m ³,d —为基础埋深,必须从设计地面或室内外平均设计地面算起,m ;A —基底面积,m ²,对矩形基础lb A =,l 和b 分别为矩形基底的长度和宽度。
对于荷载沿长度方向均匀分布的条形基础,则沿长度方向截取一单位长度的截条进行基底平均压力设计值P(kPa)的计算,此时式(2-5)中A 改为b(m),而F 及G 则为基础截条内的相应值(kN /m)。
2.3.1.2 偏心荷载下的基底压力对于单向偏心荷载下的矩形基础如37页图2-7所示。
设计时,通常基底长边方向取与偏心方向一致,此时两短边边缘最大压力设计值m ax p 与最小压力设计值min p (kPa)按材料力学短柱偏心受压公式计算:W M lb G F p p ±+=⎭⎬⎫min max (书37页2-6)式中F 、G 、l 、b 符号意义同式(2-5);M —作用于矩形基底的力矩设计值,kN ·m ;W —基础底面的抵抗矩,32,6m bl W =。
把偏心荷载(如图中虚线所示)的偏心矩G F M e +=引入式(2-6)得: )61(min max l e lb G F p p ±+=⎭⎬⎫由上式可见,当e <l /6时,基底压力分布图呈梯形[图2-7(a)];当e =l /6时,则呈三角形[图2-7(b)];当e >l /6时,按上式计算结果,距偏心荷载较远的基底边缘反力为负值,即0min <p [如图2-7(c)中虚线所示]。
由于基底与地基之间不能承受拉力,此时基底与地基局部脱开,而使基底压力重新分布。
因此,根据偏心荷载应与基底反力相平衡的条件,荷载合力F+G 应通过三角形反力分布图的形心[见图2-7(c)中实线所示分布图形],由此可得基底边缘的最大压力m ax p 为:bk G F 3)(2p max += (书38页2-7)式中k —单向偏心荷载作用点至具有最大压力的基底边缘的距离,m 。
2.3.2 基底附加压力建筑物建造前,土中早已存在着自重应力。
如果基础砌置在天然地面上,那未全部基底压力就是新增加于地基表面的基底附加压力。
一般天然土层在自重作用下的变形早已结束,因此只有基底附加压力才能引起地基的附加应力和变形。
实际上,一般浅基础总是埋置在天然地面下一定深度处,该处原有的自重应力由于开挖基坑而卸除。
因此,由建筑物建造后的基底压力中扣除基底标高处原有的土中自重应力后,才是基底平面处新增加于地基的基底附加压力。
基底平均附加压力设计值0p 值(kPa)按下式计算(书38页图2-8):d p p p c 00γσ-=-= (书38页2-8)式中p —基底平均压力设计值,kPa ,c σ—土中自重应力标准值,基底处c σ=d 0γ,kPa;0γ—基础底面标高以上天然土层的加权平均重度,0γ=()2211 ++h h γγ/)(21 ++h h ,kN/m ³,其中地下水位下的重度取有效重度,d —基础埋深,必须从天然地面算起,对于新填土场地则应从老天然地面起算,++=21h h d ,m 。
有了基底附加压力,即可把它作为作用在弹性半空间表面上的局部荷载,由此根据弹性力学求算地基中的附加应力。
实际上,基底附加压力一般作用在地表下一定深度(指浅基础的埋深)处,因此,假设它作用在半空间表面上,而运用弹性力学解答所得的结果只是近似的,不过,对于一般浅基础来说,这种假设所造成的误差可以忽略不计。