超级资源(12套)2018年云南全省 含所有市 高考数学模拟试卷汇总
- 格式:doc
- 大小:3.03 MB
- 文档页数:227
云南师大附中2018届高考适应性月考卷(七)文科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)题号123456789101112答案C D C D D A B B C A AB【解析】1.A =(33)-,,B 是自然数集,所以A B ={012},,,故选C .2.由反函数定义可知恒过点(21),,故选D .3.1z =,||z =∴C .4.由正弦定理可得外接圆半径22sin BC R A ==,故选D .5.S =,故选D .6.00m n =>,时表示直线,0m n >>时表示椭圆,0m n < 时表示双曲线,故选A .7.221q q =+且0q >,1q =∴,故选B .8.直线l :y x =与双曲线C 左右支各有一个交点,则1b a>,总基本事件数为16,满足条件的基本事件数为6,概率为38,故选B .9.由题可知若q 是假命题,则至少可选择BC ,与单选题矛盾,故q 是真命题;若p 是真命题,则至少可选择AB ,与单选题矛盾,故p 是假命题,故选C .10.由二进制数和十进制数的关系可得满足条件的数可表示为222 (04)a b c a b c ++<<≤≤,故10m =,故选A .11.设2112x A x ⎛⎫ ⎪⎝⎭,,2222x B x ⎛⎫ ⎪⎝⎭,,12AB l y kx =+:,联立得2210x kx --=,122x x k +=,121x x =-,2112AQ x l y x x =-:,2222BQ x l y x x =-:,121222x x x x Q +⎛⎫ ⎪⎝⎭,,QA QB ⊥,QF AB ⊥,所以①③正确,故选A .12.令()f x t =,由()f x 的图象可得,20t at b ++=的两根分别为1102t ⎛⎫∈ ⎪⎝⎭,,2112t ⎛⎫∈ ⎪⎝⎭,故01104210b a b a b >⎧⎪⎪++<⎨⎪++>⎪⎩,,,由线性规划可得5212a b ⎛⎫+∈-- ⎪⎝⎭,故选B .二、填空题(本大题共4小题,每小题5分,共20分)题号13141516答案125000π4π410π【解析】13.2500500=总数,故红嘴鸥总数为125000.14.π||||cos 4a b a b θθ== ,.15.令sin cos [1t t αα+=∈,,2sin 21t α=-,220t t -+=,解得t =11)2±=,t =,π4α=.16.可证A N BCN'⊥平面,π2BNC ∠=,BCN △外接圆半径为,外接球半径2r =,外接球的表面积为10π.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)解:(Ⅰ)已知1232n n n a a a ++++=,由于{}n a 是等差数列,设公差为d ,整理得212()33n n n n a a a a d +++-+-==,∴1d =,…………………………………(4分)∴1(1)n a a n d n =+-=.……………………………………………………………(6分)图2(Ⅱ)(1)n n n b a =-, n n n b n n ⎧=⎨-⎩,为偶数,,为奇数,数列{}n b 的前2018项和为20181009S =.……………………………………………(12分)18.(本小题满分12分)解:(Ⅰ) 116y y -≈, 2213y y -≈-, 339y y -≈-, 4417y y -≈,y981244 y3212127e 6−13−917残差图如图1.图1……………………………………………………………………………………(6分)(横坐标取为评分或因变量都给分)(Ⅱ)22121ˆ()575110.36892.75(ni i i n i i y y R y y ==∑-=-=-≈∑-,猫眼评分解释了36%的上座率.(若答模型拟合效果好坏也可以给分)………………………………………………(12分)19.(本小题满分12分)(Ⅰ)证明:如图2,取DC 中点M ,连接AM ,BM ,3AC BC AD BD ====∵,DC AM ⊥∴,DC BM ⊥,BM AM M = ,DC ABM ⊥∴平面,AB ABM ⊂平面,CD AB ⊥∴.……………………………………………………………………………(6分)(Ⅱ)解:13BEF ABC S S =△△,13E BDF D BEF D ABC V V V ---==,AM BM ==,2ABM S =△,18233D ABC C BAM D BAM ABM V V V CM S ---=+== △,1839E BDF D ABC V --==.………………………………………………………………(12分)20.(本小题满分12分)解:(Ⅰ)由(0)D a -,关于y b =-对称得到点(2)C a b --,,(2)C a b --,在光线直线方程上,CF的斜率为,222211b a c a b c ⎧=⎪-⎪=⎨⎪=+⎪⎩,,2a b ==∴,,∴椭圆Γ的方程为22143x y +=.……………………………………………………(4分)(Ⅱ)由||||FP FM MP += 得π2MFP ∠=,直线AB l y kx k =+:,联立22143y kx k x y =+⎧⎪⎨+=⎪⎩,,得2222(34)84120k x k x k +++-=,222433434k k M k k ⎛⎫- ++⎝⎭,,34OM l y x k =-:,34m P m k -⎛⎫ ⎪⎝⎭,,直线FP 与直线AB 垂直1m ≠-,314(1)m k k m -=-+ ,4m =-.………………………………………………………………………………(12分)21.(本小题满分12分)解:(Ⅰ)()sin f x x x =-+,()cos f x x x '=+,(0)1f '=,(0)0f =,故()f x 在(0(0))f ,处的切线方程为y x =.…………………………………………(4分)(Ⅱ)连续函数()sin h x x x ax =-+,(0)0h =,[0π]x ∀∈,都有()0h x ≥成立,则必须满足(0)0h '≥,()cos h x x x a '=+-,解得1a ≤,π()cos 2sin 6h x x x a x a ⎛⎫'=+-=+- ⎪⎝⎭,ππ7π[0π]666x x ⎡⎤∈+∈⎢⎥⎣⎦,,,,π2sin [12]6x ⎛⎫+∈- ⎪⎝⎭,.当1a -≤时,()0h x '≥,()h x 在[0π],上单调递增,()(0)0h x h =≥;当11a -<≤时,由于在2π03⎡⎫⎪⎢⎣⎭,上()0h x '≥恒成立,()h x '在2ππ3⎡⎤⎢⎥⎣⎦,上单调递减,(π)0h '<且2π03h ⎛⎫' ⎪⎝⎭≥,存在唯一02ππ3x ⎡⎤∈⎢⎥⎣⎦,使得0()0h x '=,在0[0)x ,上()h x 单调递增,在0[π)x ,上()h x 单调递减,()(0)0h x h =≥,()(π)ππ0h x h a =->≥≥,1a ∴≤.…………………………………(12分)22.(本小题满分10分)【选修4−4:坐标系与参数方程】解:(Ⅰ)2214C x y +=:,222194x y C +=:.………………………………………(5分)(Ⅱ)A B ,两点关于坐标原点O 对称,P 是曲线2C 上的动点,22222()()4444PA PB PA PB PO BA PA PB PO +---===- ,2[49]PO ∈ ,,所以PA PB 的取值范围为[05],.…………………………………………………(10分)23.(本小题满分10分)【选修4−5:不等式选讲】(Ⅰ)解:已知x y ≤,||x y y x -=-,01x ≤≤,10x --≤≤,12y ≤≤,解得02y x -≤≤,0||2x y -≤≤.………………………………………………(5分)(Ⅱ)证明:[01]x ∈,,[12]y ∈,,2x x ≤,(1)(2)0y y --≤成立,即223y y +≤,22161623x y x y +++≥成立,故16383x y x y +++≥,即2216832x y x y --++≥.………………………………(10分)。
2018年云南省高考数学模拟试卷(文科)(4月份)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合=,=,则=()A. B.C. D.2. 已知复数=,其中是虚数单位,则的模=()A. B. C. D.3. 若,满足,则=的最大值为()A. B. C. D.4. 已知,=,则=()A. B. C. D.5. 已知函数,则下列结论中正确的是()A.=的一个周期为B.=的图象关于点对称C.=的图象关于直线对称D.=在区间上单调递增6. 执行如图所示的程序框图,为使输出的值大于,则输入的正整数的最小值为()A. B. C. D.7. 在我国古代数学名著《九章算术》中,“堑堵”指的是底面为直角三角形,且侧棱垂直于底面的三棱柱.如图,网络图中小正方形的边长为,图中粗实线画出的是某堑堵的正视图与俯视图,则该堑堵的表面积为()A. B. C. D.8. 在正方体中,点是线段上任意一点,则下列结论中正确的是()A. B.C. D.9. 平面内到两个定点的距离之比为常数的点的轨迹是阿波罗尼斯圆.已知曲线是平面内到两个定点和的距离之比等于常数的阿波罗尼斯圆,则下列结论中正确的是()A.曲线关于轴对称B.曲线关于轴对称C.曲线关于坐标原点对称D.曲线经过坐标原点10. 已知函数=,则下列结论中正确的是()A. B. C. D.11. 定义:在区域内任取一点,则点满足=的概率为()A. B. C. D.12. 已知定义在的函数满足=,且当时,=.若函数在区间上有零点,则的值为()A.或B.或C.或D.或二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量,,若向量与垂直,则________=________.14. ________的内角________,________,________的对边分别为________,________,________.已知,,________=,则角________=________.15. 设椭圆的左右焦点分别为________内切圆的面积为,且________________=,则该椭圆的离心率是________.16. 已知函数若________(________(________)),则实数________的取值范围是________.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 设数列满足=,.Ⅰ求数列的通项公式;Ⅱ设=,求数列的前项和.18. 某公司为了解所经销商品的使用情况,随机问卷名使用者,然后根据这名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为,,,,,.Ⅰ求频率分布直方图中的值;Ⅱ求这名问卷评分数据的中位数;Ⅲ从评分在的问卷者中,随机抽取人,求此人评分都在的概率.19. 如图,已知四边形为矩形,四边形为直角梯形,,===,=,.Ⅰ求证:;Ⅱ求点到平面的距离.20. 已知分别过抛物线=上点、的两条切线交于点,直线与轴不平行,线段的中点为,抛物线的焦点为.Ⅰ求证:直线与轴平行;Ⅱ若点线段上,点的坐标为,求抛物线的方程.21. 设函数=.讨论的单调性;当时,对于,都有成立.①求的取值范围;②证明:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22. 在直角坐标系中,曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系.Ⅰ求曲线的极坐标方程;Ⅱ若,分别为曲线上的两点,且,求证:为定值.[选修4-5:不等式选讲]23. 已知函数=.求不等式的解集;若不等式的解集为,求的取值范围.参考答案与试题解析2018年云南省高考数学模拟试卷(文科)(4月份)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【考点】交集及其运算【解析】求出中不等式的解集确定出,找出与的交集即可.【解答】由中不等式解得:,即=,∵=,∴=,2.【答案】D【考点】复数的模【解析】利用复数代数形式的乘法运算化简,再由复数模的计算公式得答案.【解答】∵===,∴,3.【答案】B【考点】简单线性规划【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】由,满足作出可行域如图,化目标函数=为=,由图可知,当直线=过点时,直线在轴上的截距最大,有最大值为==故选:.4.【答案】C【考点】同角三角函数间的基本关系【解析】利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得的值.【解答】∵是第二象限角,且,,,=,∴,5.【答案】D【考点】正弦函数的单调性【解析】根据正弦型函数的图象与性质,对选项中的命题判断真假性即可.【解答】函数,其最小正周期为,错误;时,()=()=,∴的图象关于点,对称,且不关于直线对称,∴、都错误;,时,,,∴是单调递增函数,正确.6.【答案】C【考点】程序框图【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】模拟程序的运行,=,=,=满足条件,执行循环体,=,=满足条件,执行循环体,=,=满足条件,执行循环体,=,=此时,由题意应该不满足条件,退出循环,输出的值为(10)可得:,可得输入的正整数的最小值为(4)7.【答案】C【考点】由三视图求体积【解析】直接利用三视图判断几何体的形状,利用三视图的数据求解几何体的表面积即可.【解答】底面为直角三角形,且侧棱垂直于底面的三棱柱,底面斜边为,高为,棱柱的高为,所以棱柱的表面积为8.【答案】B【考点】直线与平面垂直【解析】推导出,,从而平面,由此能得到.【解答】在正方体中,∵,,=,∴平面,∵点是线段上任意一点,∴.9.【答案】A【考点】轨迹方程【解析】设动点,则曲线是平面内到两定点,距离之比等于常数,可得轨迹方程,利用.也满足方程,即可得出结论.【解答】设动点,则∵曲线是平面内到两定点,距离之比等于常数,∴∵.也满足方程,∴曲线关于轴对称,10.【答案】D【考点】利用导数研究函数的单调性【解析】分别计算(),,的值,判断其大小即可.【解答】∵=,∴()==,==,=,故(),故选:.11.【答案】A【考点】几何概型计算(与长度、角度、面积、体积有关的几何概型)【解析】求出试验包含的所有事件对应的集合以及满足条件的事件对应的面积,计算面积比就是要求的概率.【解答】试验包含的所有事件对应的集合为=,∵满足条件的事件=,即=,如图所示;由图可知,,,,;则由几何概型公式求得.12.【答案】A【考点】函数的零点与方程根的关系函数与方程的综合运用【解析】求出当时的零点范围,根据的对称性得出另一零点的范围.【解答】当时,令=可得=,即=,∵,∴在上有零点,∵=,∴的图象关于直线=对称,∴在上存在另一个零点.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【答案】,【考点】数量积判断两个平面向量的垂直关系【解析】根据两向量垂直,其数量积为,列方程求得的值.【解答】向量,,若向量与垂直,则(),=,解得=(1)14.【答案】,,,,,,,,,【考点】正弦定理【解析】利用正余弦定理化简可得答案.【解答】由,∴,可得,∴=,由正弦定理:=,∵可得:=.∵.∴,由,可得,∴,15.【答案】,,过焦点的直线交椭圆于,两点若,,,【考点】椭圆的离心率【解析】根据椭圆的定义及三角形的面积公式,即可表示出和的关系,根据椭圆离心率公式即可求得答案.【解答】过焦点的直线交椭圆于,两点,的内切圆的面积为,∴内切圆半径,面积=,∴面积=,∴=,则.16.【答案】,,,,【考点】分段函数的应用【解析】令=,即,讨论,由分段函数解不等式可得的范围,即或,讨论,,解不等式即可得到所求的范围.【解答】函数,若(),令=,即,可得或,解得或,即或,可得或或或,解得或或或,则的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【答案】(1)∵=,.∴=,,∴.当=时,=(2)∴数列的通项公式为.(2)∵,∴.∴.【考点】数列的求和数列递推式【解析】Ⅰ利用累加法可求出数列的通项公式,Ⅱ根据对数的运算性质和等差数列的求和公式可得,再根据裂项求和即可求出数列的前项和.【解答】(1)∵=,.∴=,,∴.当=时,=(2)∴数列的通项公式为.(2)∵,∴.∴.18.【答案】(1)由频率分布直方图,可得=,解得=(2)由频率分布直方图,可设中位数为,则有=,解得中位数=(76)Ⅲ由频率分布直方图,可知在内的人数:=,在内的人数:=(3)设在内的人分别为,,在内的人分别为,,,则从的问卷者中随机抽取人,基本事件有种,分别为:,,,,,,,,,,其中人评分都在内的基本事件有,,共种,故此人评分都在的概率为.【考点】频率分布直方图众数、中位数、平均数列举法计算基本事件数及事件发生的概率【解析】Ⅰ由频率分布直方图,能求出.Ⅱ由频率分布直方图,可设中位数为,则=,由此能求出中位数.Ⅲ由频率分布直方图,可知在内的人数:=,在内的人数:=(3)设在内的人分别为,,在内的人分别为,,,从的问卷者中随机抽取人,利用列举法能求出此人评分都在的概率.【解答】(1)由频率分布直方图,可得=,解得=(2)由频率分布直方图,可设中位数为,则有=,解得中位数=(76)Ⅲ由频率分布直方图,可知在内的人数:=,在内的人数:=(3)设在内的人分别为,,在内的人分别为,,,则从的问卷者中随机抽取人,基本事件有种,分别为:,,,,,,,,,,其中人评分都在内的基本事件有,,共种,故此人评分都在的概率为.19.【答案】证明:Ⅰ如图,连接.由题设可知,.∵=,∴.而,=,∴平面.∵平面,∴.(2)如图,连接,.∵,又,,∴.又=,∴平面,即平面.∴,.设点到平面的距离为,由=,得,解得.∴点到平面的距离为.【考点】直线与平面垂直点、线、面间的距离计算【解析】Ⅰ连接.推导出.,从而平面.由此能证明.Ⅱ连接,.推导出.从而平面,进而平面.设点到平面的距离为,由=,能求出点到平面的距离.【解答】证明:Ⅰ如图,连接.由题设可知,.∵=,∴.而,=,∴平面.∵平面,∴.(2)如图,连接,.∵,又,,∴.又=,∴平面,即平面.∴,.设点到平面的距离为,由=,得,解得.∴点到平面的距离为.20.【答案】(1)证明:设,,,,∵、两点在抛物线上,故,,两式相减得.化简得,即=.①∵切线的斜率为,∴切线的方程为.②同理得切线的方程为.③由②-③,化简得,即.④由①,④求解得=,故直线与轴平行.(2)由点在线段上,为中点,由①知,则,∴.又,则,解得=(1)∴抛物线的方程为=.【考点】直线与抛物线的位置关系【解析】(I)设各点坐标,求出切线方程得出点坐标,代入抛物线方程化简得出点横坐标得出结论;根据、、、四点共线求出点坐标满足的条件,从而解出的值,得出抛物线方程.【解答】(1)证明:设,,,,∵、两点在抛物线上,故,,两式相减得.化简得,即=.①∵切线的斜率为,∴切线的方程为.②同理得切线的方程为.③由②-③,化简得,即.④由①,④求解得=,故直线与轴平行.(2)由点在线段上,为中点,则、、、四点共线,故=.由①知,则,∴.又,则,解得=(1)∴抛物线的方程为=.21.【答案】解:∵,∴当时,易知∴的上单调递增.∴当时,由,得,由,得,∴在上单调递增.综上所述,当时,在上单调递增;当时,在上单调递增,在单调递减.①解:∵,都成立,∴.由知,当时,,由,得∴∴的取值范围是.②证明:由①知,当时,,即∴∴当时,.令时,则.且=时,∴∴.综上所述,【考点】函数恒成立问题利用导数研究函数的单调性【解析】求出函数的导数,通过讨论的范围,求出函数的单调区间即可;【解答】解:∵,∴当时,易知∴的上单调递增.∴当时,由,得,由,得,∴在上单调递增.综上所述,当时,在上单调递增;当时,在上单调递增,在单调递减.①解:∵,都成立,∴.由知,当时,,由,得∴∴的取值范围是.②证明:由①知,当时,,即∴∴当时,.令时,则.且=时,∴∴.综上所述,请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]【答案】(1)由曲线的参数方程(为参数)去参数后得曲线的直角坐标方程为.将代入后化简,得曲线的极坐标方程为.证明:Ⅱ由于,可设,.则,.于是.∴为定值.【考点】圆的极坐标方程参数方程与普通方程的互化【解析】Ⅰ由曲线的参数方程消去参数求出曲线的直角坐标方程,将代入后化简,能求出曲线的极坐标方程.Ⅱ由于,可设,.则,.由此能证明为定值.【解答】(1)由曲线的参数方程(为参数)去参数后得曲线的直角坐标方程为.将代入后化简,得曲线的极坐标方程为.证明:Ⅱ由于,可设,.则,.于是.∴为定值.[选修4-5:不等式选讲]23.【答案】解:由已知得①当时,,得,即.②当时,,得,即.③当时,,得,即.综上所述,不等式的解集为:.不等式解集为恒成立,设=,则,①当时,=;②当时,=;③当时,=∴=.由,得∴的取值范围是.【考点】函数恒成立问题绝对值不等式的解法与证明【解析】此题暂无解析【解答】解:由已知得①当时,,得,即.②当时,,得,即.③当时,,得,即.综上所述,不等式的解集为:.不等式解集为恒成立,设=,则,①当时,=;②当时,=;③当时,=∴=.∵恒成立,由,得∴的取值范围是.。
云南省达标名校2018年高考五月仿真备考数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在平面直角坐标系xOy 中,已知,n n A B 是圆222x y n +=上两个动点,且满足()2*2nn n OA OB n N ⋅=-∈,设,n n A B 到直线()310x y n n +++=的距离之和的最大值为n a ,若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S m <恒成立,则实数m 的取值范围是( )A .3,4⎛⎫+∞ ⎪⎝⎭B .3,4⎡⎫+∞⎪⎢⎣⎭C .2,3⎛⎫+∞ ⎪⎝⎭D .3,2⎡⎫+∞⎪⎢⎣⎭2.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若(,)DE AB AD R λμλμ=+∈,则λμ+等于( ).A .12-B .12C .1D .1-3.已知x ,y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是( )A .4B .34C .211D .144.已知函数()32cos f x x x =+,若2(3a f =,(2)b f =,2(log 7)c f =,则a ,b ,c 的大小关系是( )A .a b c <<B .c b a <<C .b a c <<D .b c a <<5.在区间[]3,3-上随机取一个数x ,使得301xx -≥-成立的概率为等差数列{}n a 的公差,且264a a +=-,若0n a >,则n 的最小值为( ) A .8B .9C .10D .116.设m ,n 为非零向量,则“存在正数λ,使得λ=m n ”是“0m n ⋅>”的( ) A .既不充分也不必要条件 B .必要不充分条件 C .充分必要条件D .充分不必要条件7.已知三棱柱111ABC A B C -的所有棱长均相等,侧棱1AA ⊥平面ABC ,过1AB 作平面α与1BC 平行,设平面α与平面11ACC A 的交线为l ,记直线l 与直线,,AB BC CA 所成锐角分别为αβγ,,,则这三个角的大小关系为( )A .αγβ>>B .αβγ=>C .γβα>>D .αβγ>=8.在直角梯形ABCD 中,0AB AD ⋅=,30B ∠=︒,23AB =,2BC =,点E 为BC 上一点,且AE xAB y AD =+,当xy 的值最大时,||AE =( )A .5B .2C .302D .239.已知向量,a b 满足||1,||3a b ==,且a 与b 的夹角为6π,则()(2)a b a b +⋅-=( ) A .12B .32-C .12-D .3210.已知复数,则的共轭复数在复平面对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限11.已知抛物线220y x =的焦点与双曲线()222210,0x y a b a b-=>>的一个焦点重合,且抛物线的准线被双曲线截得的线段长为92,那么该双曲线的离心率为( ) A .54B .53C .52D 512.已知A ,B 是函数()2,0ln ,0x x a x f x x x a x ⎧++≤=⎨->⎩图像上不同的两点,若曲线()y f x =在点A ,B 处的切线重合,则实数a 的最小值是( ) A .1-B .12-C .12D .1二、填空题:本题共4小题,每小题5分,共20分。
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年12月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
通过我们的努力,能够为您解决问题,这是我们的宗旨,欢迎您下载使用!(12套)2018年云南全省含所有市高考数学模拟试卷汇总2018年云南省玉溪市高考数学模拟试卷(01)一、选择题(本大题共10小题.每小题5分.共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)集合A={x||x|≤4,x∈R},B={x|(x+5)(x﹣a)≤0},则“A⊆B”是“a >4”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(5分)下列命题中,m,n表示两条不同的直线,α、β、γ表示三个不同的平面.①若m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,则α∥β;③若m∥α,n∥α,则m∥n;④若α∥β,β∥γ,m⊥α,则m⊥γ.正确的命题是()A.①③B.②③C.①④D.②④3.(5分)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.64.(5分)已知等比数列{a n}公比为q,其前n项和为S n,若S3、S9、S6成等差数列,则q3等于()A.﹣ B.1 C.﹣或1 D.﹣1或5.(5分)下图是某次考试对一道题评分的算法框图,其中x1,x2,x3为三个评阅人对该题的独立评分,p为该题的最终得分,当x1=6,x2=9,p=8.5时,x3等于()A.11 B.10 C.8 D.76.(5分)图是函数y=Asin(ωx+φ)(x∈R)在区间上的图象,为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点()A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变7.(5分)若存在实数x∈[2,4],使x2﹣2x+5﹣m<0成立,则m的取值范围为()A.(13,+∞)B.(5,+∞)C.(4,+∞)D.(﹣∞,13)8.(5分)已知奇函数f(x)在[﹣1,0]上为单调递减函数,又α,β为锐角三角形两内角,下列结论正确的是()A.f(cosα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)>f(cosβ)D.f(sinα)<f(cosβ)9.(5分)△ABC所在平面上一点P满足++=,则△PAB的面积与△ABC 的面积比为()A.2:3 B.1:3 C.1:4 D.1:610.(5分)如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度h和时间t之间的关系,其中不正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共5个小题,每小题5分,共25分.把答案填写在题中横线上)11.(5分)已知命题p:“存在x∈R,使4x+2x+1+m=0”,若“非p”是假命题,则实数m的取值范围是.12.(5分)若a>3,则函数f(x)=x2﹣ax+1在区间(0,2)上恰好有个零点.13.(5分)已知函数f(x)=lnx,0<a<b<c<1,则,,的大小关系是.14.(5分)已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3)(3,2),(4,1),(1,5),(2,4)…则第57个数对是.15.(5分)如图是一个几何体的三视图,根据图中的数据,可得该几何体的体积是.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程和演算步骤)16.(12分)已知α∈(0,π)且cos(α﹣)=.求cosα17.(12分)已知向量=3i﹣4j,=6i﹣3j,=(5﹣m)i﹣(3+m)j,其中i,j分别是平面直角坐标系内x轴与y轴正方向上的单位向量.(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)对任意m∈[1,2],不等式2≤﹣x2+x+3恒成立,求x的取值范围.18.(12分)列车提速可以提高铁路运输量.列车运行时,前后两车必须要保持一个“安全间隔距离d(千米)”,“安全间隔距离d(千米)”与列车的速度v(千米/小时)的平方成正比(比例系数k=).假设所有的列车长度l均为0.4千米,最大速度均为v0(千米/小时).问:列车车速多大时,单位时间流量Q=最大?19.(12分)如图,边长为a的正方体ABCD﹣A1B1C1D1中,E为CC1的中点.(1)求直线A1E与平面BDD1B1所成的角的正弦值(2)求点E到平面A1DB的距离.20.(13分)在数列{a n}中,a1=1,a n=n2[1+++…+](n≥2,n∈N)(1)当n≥2时,求证:=(2)求证:(1+)(1+)…(1+)<4.21.(14分)已知函数f(x)=(x2+ax﹣2a﹣3)•e3﹣x(a∈R);(1)讨论f(x)的单调性;(2)设g(x)=(a2+)e x(a>0),若存在(a>0),x1,x2∈[0,4]使得|f (x1)﹣g(x2)|<1成立,求a的取值范围.2018年云南省玉溪市高考数学模拟试卷(01)参考答案与试题解析一、选择题(本大题共10小题.每小题5分.共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)集合A={x||x|≤4,x∈R},B={x|(x+5)(x﹣a)≤0},则“A⊆B”是“a >4”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:集合A={x||x|≤4,x∈R}={x|﹣4≤x≤4},B={x|(x+5)(x﹣a)≤0},由A⊆B,可得B≠∅,即有(5﹣4)(﹣4﹣a)≤0且(5+4)(4﹣a)≤0,解得a≥4,则则“A⊆B”是“a>4”的必要不充分条件,故选B.2.(5分)下列命题中,m,n表示两条不同的直线,α、β、γ表示三个不同的平面.①若m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,则α∥β;③若m∥α,n∥α,则m∥n;④若α∥β,β∥γ,m⊥α,则m⊥γ.正确的命题是()A.①③B.②③C.①④D.②④【解答】解:由题意,m,n是两条不同的直线,α,β,γ是三个不同的平面考察①选项,此命题正确,若m⊥α,则m垂直于α中所有直线,由n∥α,知m⊥n;考察②选项,此命题不正确,因为垂直于同一平面的两个平面的位置关系是平行或相交;考察③选项,此命题不正确,因为平行于同一平面的两条直线的位置关系是平行、相交或异面;考察④选项,此命题正确,因为α∥β,β∥γ,所以α∥γ,再由m⊥α,得到m ⊥γ.故选C.3.(5分)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.6【解答】解:联立方程得到两曲线的交点(4,2),因此曲线y=,直线y=x﹣2及y轴所围成的图形的面积为:S=.故选C.4.(5分)已知等比数列{a n}公比为q,其前n项和为S n,若S3、S9、S6成等差数列,则q3等于()A.﹣ B.1 C.﹣或1 D.﹣1或【解答】解:若S3、S9、S6成等差数列,则S3+S6=2S9,若公比q=1,则S3=3a1,S9=9a1,S6=6a1,即3a1+6a1=18a1,则方程不成立,即q≠1,则=,即1﹣q3+1﹣q6=2﹣2q9,即q3+q6=2q9,即1+q3=2q6,即2(q3)2﹣q3﹣1=0,解得q3=,故选:A.5.(5分)下图是某次考试对一道题评分的算法框图,其中x1,x2,x3为三个评阅人对该题的独立评分,p为该题的最终得分,当x1=6,x2=9,p=8.5时,x3等于()A.11 B.10 C.8 D.7【解答】解:根据框图的流程,当输入x1=6,x2=9时,不满足|x1﹣x2|=3<2,当输入x3<7.5时,满足|x3﹣x1|<|x3﹣x2|,则执行x2=x3.输出P==8.5⇒x3=11(舍去);当输入x3≥7.5时,不满足|x3﹣x1|<|x3﹣x2|,则执行x1=x3,输出P==8.5⇒x3=8.故选:C.6.(5分)图是函数y=Asin(ωx+φ)(x∈R)在区间上的图象,为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点()A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【解答】解:由图象可知函数的周期为π,振幅为1,所以函数的表达式可以是y=sin(2x+φ).代入(﹣,0)可得φ的一个值为,故图象中函数的一个表达式是y=sin(2x+),即y=sin2(x+),所以只需将y=sinx(x∈R)的图象上所有的点向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变.故选A.7.(5分)若存在实数x∈[2,4],使x2﹣2x+5﹣m<0成立,则m的取值范围为()A.(13,+∞)B.(5,+∞)C.(4,+∞)D.(﹣∞,13)【解答】解:存在实数x∈[2,4],使x2﹣2x+5﹣m<0成立,等价于x∈[2,4],m>(x2﹣2x+5)min.令f(x)=x2﹣2x+5=(x﹣1)2+4∴函数的图象开口向上,对称轴为直线x=1∵x∈[2,4],∴x=2时,f(x)min=f(2)=22﹣2×2+5=5∴m>5故选:B.8.(5分)已知奇函数f(x)在[﹣1,0]上为单调递减函数,又α,β为锐角三角形两内角,下列结论正确的是()A.f(cosα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)>f(cosβ)D.f(sinα)<f(cosβ)【解答】解:∵奇函数y=f(x)在[﹣1,0]上为单调递减函数∴f(x)在[0,1]上为单调递减函数,∴f(x)在[﹣1,1]上为单调递减函数,又α、β为锐角三角形的两内角,∴α+β>,∴>α>﹣β>0,∴1>sinα>sin(﹣β)=cosβ>0,∴f(sinα)<f(cosβ),故选:D.9.(5分)△ABC所在平面上一点P满足++=,则△PAB的面积与△ABC 的面积比为()A.2:3 B.1:3 C.1:4 D.1:6【解答】解:如图所示,∵点P满足++=,∴=,∴.∴△PAB的面积与△ABC的面积比=AP:AC=1:3.故选:B.10.(5分)如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度h和时间t之间的关系,其中不正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:A、因正方体的底面积是定值,故水面高度的增加是均匀的,即图象是直线型的,故A不对;B、因几何体下面窄上面宽,且相同的时间内注入的水量相同,所以下面的高度增加的快,上面增加的慢,即图象应越来越平缓,故B正确;C、球是个对称的几何体,下半球因下面窄上面宽,所以水的高度增加的越来越慢;上半球恰相反,所以水的高度增加的越来越快,则图象先平缓再变陡;故C 正确;D、图中几何体两头宽、中间窄,所以水的高度增加的越来越慢后再越来越慢快,则图象先平缓再变陡,故D正确.故选A.二、填空题(本大题共5个小题,每小题5分,共25分.把答案填写在题中横线上)11.(5分)已知命题p:“存在x∈R,使4x+2x+1+m=0”,若“非p”是假命题,则实数m的取值范围是(﹣∞,0).【解答】解:∵命题p:“存在x∈R,使4x+2x+1+m=0”,∴p为真时,m=﹣(2x)2﹣2×2x,存在x∈R成立∴m的取值范围是:m<0又∵非p”是假命题∴p是真命题∴m∈(﹣∞,0)故答案为:(﹣∞,0)12.(5分)若a>3,则函数f(x)=x2﹣ax+1在区间(0,2)上恰好有1个零点.【解答】解:当a>3时,由于次二次函数f(x)=x2﹣ax+1,可得f(0)=1>0,f(2)=5﹣2a<0,即f(0)f(2)<0,故函数f(x)=x2﹣ax+1在区间(0,2)上恰好有一个零点,故答案为:1.13.(5分)已知函数f(x)=lnx,0<a<b<c<1,则,,的大小关系是<<.【解答】解:函数f(x)=lnx,0<a<b<c<1,设g(x)==,g′(x)=,可得0<x<e时,g′(x)>0,g(x)递增,由0<a<b<c<1,可得g(a)<g(b)<g(c),即<<.故答案为:<<.14.(5分)已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3)(3,2),(4,1),(1,5),(2,4)…则第57个数对是(2,10).【解答】解:(1,1),两数的和为2,共1个,(1,2),(2,1),两数的和为3,共2个,(1,3),(2,2),(3,1),两数的和为4,共3个,(1,4),(2,3),(3,2),(4,1),两数的和为5,共4个…∵1+2+3+4+5+6+7+8+9+10=55,∴第57个数对在第11组之中的第2个数,从而两数之和为12,应为(2,10);故答案为:(2,10).15.(5分)如图是一个几何体的三视图,根据图中的数据,可得该几何体的体积是2.【解答】解:由三视图还原原几何体如图,该几何体为五面体ABCDEF,其中面ABCD为等腰梯形,EF∥BC∥AD,EF在平面ABCD上的射影在梯形ABCD的中位线上,分别过E、F作BC、AD的垂线,把原几何体分割为两个四棱锥及一个三棱柱,则几何体的体积V=.故答案为:2.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程和演算步骤)16.(12分)已知α∈(0,π)且cos(α﹣)=.求cosα【解答】解:∵α∈(0,π),∴,又,∴,∴=.17.(12分)已知向量=3i﹣4j,=6i﹣3j,=(5﹣m)i﹣(3+m)j,其中i,j分别是平面直角坐标系内x轴与y轴正方向上的单位向量.(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)对任意m∈[1,2],不等式2≤﹣x2+x+3恒成立,求x的取值范围.【解答】解:(1)依题意,以O为坐标原点建立直角坐标系,则A(3,﹣4),B (6,﹣3),C(5﹣m,﹣3﹣m),∵A,B,C能构成三角形,则A、B、C三点不共线,若A、B、C三点共线,则=t⇔(3,1)=t(2﹣m,1﹣m),即,解得;∴当m≠时,A,B,C能构成三角形;(2)∵=(2﹣m,1﹣m),m∈[1,2],∴2=(2﹣m)2+(1﹣m)2=2m2﹣6m+5=2(m﹣)2+,其对称轴为m=,当m∈[1,]时,该函数单调递减,当m∈[,2]时,该函数单调递增,∴当m=1或m=2时,2取得最大值1.∵对任意m∈[1,2],不等式2≤﹣x2+x+3恒成立,∴﹣x2+x+3≥=1,即x2﹣x﹣2≤0,解得:﹣1≤x≤2.∴x的取值范围为[﹣1,2].18.(12分)列车提速可以提高铁路运输量.列车运行时,前后两车必须要保持一个“安全间隔距离d(千米)”,“安全间隔距离d(千米)”与列车的速度v(千米/小时)的平方成正比(比例系数k=).假设所有的列车长度l均为0.4千米,最大速度均为v0(千米/小时).问:列车车速多大时,单位时间流量Q=最大?【解答】解:因为,所以…(4分)≥2=,当且仅当v=40时取等号;当v0≥40时,Q≤50,所以v=40,Q max=50…(8分)当0<v0<40时,…(12分)19.(12分)如图,边长为a的正方体ABCD﹣A1B1C1D1中,E为CC1的中点.(1)求直线A1E与平面BDD1B1所成的角的正弦值(2)求点E到平面A1DB的距离.【解答】解:以DA、DC、DD1所在的直线分别为x轴、y轴、z轴,建立空间直角坐标系如图,则D(0,0,0),A(a,0,0).B(a,a,0),C(0,a,0),E(0,a,),A1(a,0,a).…(3分)(1)设直线A1E与平面BDD1B1所成的角为α.因为AC⊥平面BDD1B1,所以平面BDD1B1的法向量为,又.,所以s.…(6分)(2)设=(x,y,1)为平面A1DB的法向量,∵,∴x=﹣1,y=1…(8分)∴又…(11分)即点E到平面A1DB的距离为.…(12分)20.(13分)在数列{a n}中,a1=1,a n=n2[1+++…+](n≥2,n∈N)(1)当n≥2时,求证:=(2)求证:(1+)(1+)…(1+)<4.【解答】(1)证明:当n≥2时,,…(1分)所以…(4分)故…(5分)(2)证明:当n≥2时,…(6分)=…(8分)=…(10分)=.…(11分)当n=1时,…(12分)综上所述,对任意n∈N*,不等式都成立.…(13分)21.(14分)已知函数f(x)=(x2+ax﹣2a﹣3)•e3﹣x(a∈R);(1)讨论f(x)的单调性;(2)设g(x)=(a2+)e x(a>0),若存在(a>0),x1,x2∈[0,4]使得|f (x1)﹣g(x2)|<1成立,求a的取值范围.【解答】.解:(1)f'(x)=﹣[x2+(a﹣2)x﹣3a﹣3]e3﹣x=﹣(x﹣3)(x+a+1)e3﹣x由﹣a﹣1=3得a=﹣4,当a=﹣4时,f′(x)=﹣(x﹣3)2e3﹣x≤0,此时函数在(﹣∞,+∞)上为减函数,当a<﹣4时,﹣a﹣1>3,由f'(x)<0⇒x<3或x>﹣a﹣1,f'(x)>0⇒3<x <﹣a﹣1.∴f(x)单调减区间为(﹣∞,3),(﹣a﹣1,+∞),单调增区间为(3,﹣a﹣1).当a>﹣4时,﹣a﹣1<3,f'(x)<0⇒x>3或x<﹣a﹣1,f'(x)>0⇒﹣a﹣1<x<3.∴f(x)单调减区间为(﹣∞,﹣a﹣1),(3,+∞),单调增区间为(﹣a﹣1,3).(2)由(1)知,当a>0时,﹣a﹣1<0,f(x)在区间[0,3]上的单调递增,在区间[3,4)]单调递减,而f(0)=﹣(2a+3)e3<0,f(4)=(2a+13)e﹣1>0,f(3)=a+6.那么f(x)在区间[0,4]上的值域是F=[﹣(2a+3)e3,a+6]又g(x)=(a2+)e x(a>0),在[0,4]上是增函数,对应的值域为G=[a2+,(a2+)e4],∵a>0,∴﹣(2a+3)e3<a+6≤a2+<(a2+)e4,|f(x1)﹣g(x2)|<1等价为g(x2)﹣f(x1)<1若存在(a>0),x1,x2∈[0,4]使得|f(x1)﹣g(x2)|<1成立,只需要g min(x)﹣f max(x)<1,∴a2+﹣a﹣6<1,得4a2﹣4a﹣3<0,得﹣<a<∵a>0,∴0<a<∴a的取值范围为(0,).2018年云南省玉溪市高考数学模拟试卷(02)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若全集U=R,集合,则M∩(∁U N)等于()A.{x|x<﹣2}B.{x|x<﹣2或x≥3}C.{x|x≥3}D.{x|﹣2≤x<3} 2.(5分)与函数y=10lg(x﹣1)的图象相同的函数是()A.y=x﹣1 B.y=|x﹣1|C. D.3.(5分)若a∈R,则a=2是(a﹣1)(a﹣2)=0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件4.(5分)在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B.C.D.5.(5分)对于定义在R上的函数y=f(x),若f(a)•f(b)<0(a,b∈R,且a<b),则函数y=f(x)在区间(a,b)内()A.只有一个零点B.至少有一个零点C.无零点D.无法判断6.(5分)二次函数f(x)满足f(x+2)=f(﹣x+2),又f(0)=3,f(2)=1,若在[0,m]上有最大值3,最小值1,则m的取值范围是()A.(0,+∞)B.[2,+∞)C.(0,2]D.[2,4]7.(5分)设奇函数f (x )的定义域为R,且f(x+4)=f(x),当x∈[4,6]时f (x)=2x+1,则f (x )在区间[﹣2,0]上的表达式为()A.f(x)=2x+1 B.f(x)=﹣2﹣x+4﹣1 C.f(x)=2﹣x+4+1 D.f(x)=2﹣x+1 8.(5分)正实数x1,x2及函数f(x)满足,且f(x1)+f(x2)=1,则f(x1+x2)的最小值为()A.4 B.2 C.D.二、填空题:本大题共6小题,每小题5分,满分30分.9.(5分)已知命题P:“对任何x∈R,x2+2x+2>0”的否定是.10.(5分)函数f(x)=+lg(3x+1)的定义域是.11.(5分)设g(x)=,则g(g())=.12.(5分)下列命题:(1)梯形的对角线相等;(2)有些实数是无限不循环小数;(3)有一个实数x,使x2+2x+3=0;(4)x2≠y2⇔x≠y或x≠﹣y;(5)命题“a、b都是偶数,则a+b是偶数”的逆否命题“若a+b不是偶数,则a、b都不是偶数”;(6)若p或q”为假命题,则“非p且非q”是真命题;(7)已知a、b、c是实数,关于x的不等式ax2+bx+c≤0的解集是空集,必有a>0且△≤0.其中真命题的序号是.(把符合要求的命题序号都填上)13.(5分)若直线y=x+b与曲线有公共点,则b的取值范围是.14.(5分)函数f(x)的图象与函数g(x)=()x的图象关于直线y=x对称,则f(2x﹣x2)的单调减区间为.三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤.15.(12分)已知函数f(x)=sin2x+sinx•cosx+2cos2x,x∈R(1)求函数f(x)的最小正周期和单调递减区间;(2)函数f(x)的图象可以由函数y=sin2x的图象经过怎样的变换得到?16.(12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.(I)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;(Ⅱ)当销售商一次订购了450件服装时,该服装厂获得的利润是多少元?(服装厂售出一件服装的利润=实际出厂单价﹣成本)17.(14分)如图,棱锥P﹣ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=2.(1)求证:BD⊥平面PAC;(2)求二面角P﹣CD﹣B的大小;(3)求点C到平面PBD的距离.18.(14分)已知函数f(x)对任意x,y∈R,满足f(x)+f(y)=f(x+y)+2,当x>0时,f(x)>2.(1)求证:f(x)在R上是增函数;(2)当f(3)=5时,解不等式:f(a2﹣2a﹣2)<3.19.(14分)若函数f(x)对定义域中任意x均满足f(x)+f(2a﹣x)=2b,则函数f(x)的图象关于点(a,b)对称.(1)已知函数f(x)=的图象关于点(0,1)对称,求实数m的值;(2)已知函数g(x)在(﹣∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(﹣∞,0)上的解析式;(3)在(1)、(2)的条件下,若对实数x<0及t>0,恒有g(x)<f(t)成立,求实数a的取值范围.20.(14分)设M是满足下列条件的函数构成的集合:①方程f(x)﹣x=0有实数根;②函数f(x)的导数f'(x)满足0<f'(x)<1.(1)若函数f(x)为集合M中的任意一个元素,证明:方程f(x)﹣x=0只有一个实根;(2)判断函数是否是集合M中的元素,并说明理由;(3)设函数f(x)为集合M中的元素,对于定义域中任意α,β,当|α﹣2012|<1,|β﹣2012|<1时,证明:|f(α)﹣f(β)|<2.2018年云南省玉溪市高考数学模拟试卷(02)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若全集U=R,集合,则M∩(∁U N)等于()A.{x|x<﹣2}B.{x|x<﹣2或x≥3}C.{x|x≥3}D.{x|﹣2≤x<3}【解答】解:∵全集U=R,M={x|x>2,或x<﹣2 },N={x|﹣1<x<3},∴C U N={x|x≤﹣1,或x≥3},M∩(C U N)={x|x<﹣2,或x≥3},故选B.2.(5分)与函数y=10lg(x﹣1)的图象相同的函数是()A.y=x﹣1 B.y=|x﹣1|C. D.【解答】解:函数y=10lg(x﹣1)的定义域为{x|x>1},且y=x﹣1对于A,它的定义域为R,故错;对于B,它的定义域为R,故错;对于C,它的定义域为{x|x>1},解析式也相同,故正确;对于D,它的定义域为{x|x≠﹣1},故错;故选C.3.(5分)若a∈R,则a=2是(a﹣1)(a﹣2)=0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件【解答】解:∵(a﹣1)(a﹣2)=0,∴a=1或a=2,根据充分必要条件的定义可判断:若a∈R,则a=2是(a﹣1)(a﹣2)=0的充分不必要条件,故选:A4.(5分)在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B.C.D.【解答】解:根据指数函数y=()x可知a,b同号且不相等则二次函数y=ax2+bx的对称轴<0可排除B与D选项C,a﹣b>0,a<0,∴>1,则指数函数单调递增,故C不正确故选:A5.(5分)对于定义在R上的函数y=f(x),若f(a)•f(b)<0(a,b∈R,且a<b),则函数y=f(x)在区间(a,b)内()A.只有一个零点B.至少有一个零点C.无零点D.无法判断【解答】解:函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,“f(a)•f(b)<0”∴函数f(x)在区间[a,b]上至少有一个零点,也可能有2,3或多个零点,但是如果函数不是连续函数,在区间(a,b)上可能没有零点;f(x)=,函数不是列出函数,定义域为R,没有零点.则函数y=f(x)在区间(a,b)内的零点个数,无法判断.故选:D.6.(5分)二次函数f(x)满足f(x+2)=f(﹣x+2),又f(0)=3,f(2)=1,若在[0,m]上有最大值3,最小值1,则m的取值范围是()A.(0,+∞)B.[2,+∞)C.(0,2]D.[2,4]【解答】解:∵二次函数f(x)满足f(2+x)=f(2﹣x),∴其对称轴是x=2,可设其方程为y=a(x﹣2)2+b∵f(0)=3,f(2)=1∴解得a=,b=1函数f(x)的解析式是y=(x﹣2)2+1∵f(0)=3,f(2)=1,f(x)在[0,m]上的最大值为3,最小值为1,∴m≥2又f(4)=3,由二次函数的性质知,m≤4综上得2≤m≤4故选D7.(5分)设奇函数f (x )的定义域为R,且f(x+4)=f(x),当x∈[4,6]时f (x)=2x+1,则f (x )在区间[﹣2,0]上的表达式为()A.f(x)=2x+1 B.f(x)=﹣2﹣x+4﹣1 C.f(x)=2﹣x+4+1 D.f(x)=2﹣x+1【解答】解:当x∈[﹣2,0]时,﹣x∈[0,2],∴﹣x+4∈[4,6],又∵当x∈[4,6]时,f(x)=2x+1,∴f(﹣x+4)=2﹣x+4+1.又∵f(x+4)=f(x),∴函数f(x)的周期为T=4,∴f(﹣x+4)=f(﹣x),又∵函数f(x)是R上的奇函数,∴f(﹣x)=﹣f(x),∴﹣f(x)=2﹣x+4+1,∴当x∈[﹣2,0]时,f(x)=﹣2﹣x+4﹣1.故选:B.8.(5分)正实数x1,x2及函数f(x)满足,且f(x1)+f(x2)=1,则f(x1+x2)的最小值为()A.4 B.2 C.D.【解答】解:由已知得,由f(x1)+f(x2)=+=1于是可得:,所以得:=≥2,①设=t,则①式可得:t2﹣2t﹣3≥0,又因为t>0,于是有:t≥3或t≤﹣1(舍),从而得≥3,即:≥9,所以得:f(x1+x2)===≥1﹣=.所以有:f(x1+x2)的最小值为.故应选:C二、填空题:本大题共6小题,每小题5分,满分30分.9.(5分)已知命题P:“对任何x∈R,x2+2x+2>0”的否定是∃x∈R,x2+2x+2≤0.【解答】解:因为全称命题的否定是特称命题,所以,命题“对任何x∈R,x2+2x+2>0”的否定为:∃x∈R,x2+2x+2≤0.故答案为:∃x∈R,x2+2x+2≤010.(5分)函数f(x)=+lg(3x+1)的定义域是(﹣,1).【解答】解:由,解得:﹣.∴函数f(x)=+lg(3x+1)的定义域是(﹣,1).故答案为:(﹣,1).11.(5分)设g(x)=,则g(g())=.【解答】解:∵g(x)=,∴g()=ln=﹣ln2<0,∴g(g())=g(﹣ln2)=e﹣ln2==2﹣1=.故答案为:.12.(5分)下列命题:(1)梯形的对角线相等;(2)有些实数是无限不循环小数;(3)有一个实数x,使x2+2x+3=0;(4)x2≠y2⇔x≠y或x≠﹣y;(5)命题“a、b都是偶数,则a+b是偶数”的逆否命题“若a+b不是偶数,则a、b都不是偶数”;(6)若p或q”为假命题,则“非p且非q”是真命题;(7)已知a、b、c是实数,关于x的不等式ax2+bx+c≤0的解集是空集,必有a>0且△≤0.其中真命题的序号是(2)(6).(把符合要求的命题序号都填上)【解答】解:对于(1),梯形的对角线不一定相等,∴(1)错误;对于(2),无理数是无限不循环小数,无理数是实数,∴(2)正确;对于(3),△=22﹣4×1×3<0,方程x2+2x+3=0无实根,∴(3)错误;对于(4),x2≠y2⇔x≠y且x≠﹣y,∴(4)错误;对于(5),命题“a、b都是偶数,则a+b是偶数”的逆否命题“若a+b不是偶数,则a、b不都是偶数”,∴(5)错误;对于(6),“若p或q”为假命题,则它的否定“非p且非q”是真命题,(6)正确;对于(7),a、b、c是实数,关于x的不等式ax2+bx+c≤0的解集是空集,则必有a>0且△<0,∴(7)错误;综上,以上真命题的序号是(2)(6).故答案为:(2)(6).13.(5分)若直线y=x+b与曲线有公共点,则b的取值范围是.【解答】解:如图所示:曲线,即(x﹣2)2+(y﹣3)2=4(3≤y≤5,0≤x≤4),表示以A(2,3)为圆心,以2为半径的一个半圆.由圆心到直线y=x+b的距离等于半径2,可得=2,∴b=1+2,或b=1﹣2.结合图象可得﹣1≤b≤1+2,故答案为:.14.(5分)函数f(x)的图象与函数g(x)=()x的图象关于直线y=x对称,则f(2x﹣x2)的单调减区间为(0,1).【解答】解:由y=g(x)=()x,得x=,∴函数g(x)=()x的反函数为,该函数为定义域内的减函数,由2x﹣x2>0,得0<x<2,函数y=2x﹣x2在(0,1)内为增函数,由复合函数的单调性可得,f(2x﹣x2)的单调减区间为(0,1).故答案为:(0,1).三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤.15.(12分)已知函数f(x)=sin2x+sinx•cosx+2cos2x,x∈R(1)求函数f(x)的最小正周期和单调递减区间;(2)函数f(x)的图象可以由函数y=sin2x的图象经过怎样的变换得到?【解答】解:(1)f(x)=sin2x+x,=,=,=,函数的最小正周期为:T=.令:(k∈Z),解得:(k∈Z),函数的单调递减区间为:(k∈Z).(2)函数y=sin2x的图象向左平移个单位得到函数y=sin(2x+)的图象,再将函数图象向上平移各单位得到f(x)=sin(2x+)+的图象.16.(12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.(I)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;(Ⅱ)当销售商一次订购了450件服装时,该服装厂获得的利润是多少元?(服装厂售出一件服装的利润=实际出厂单价﹣成本)【解答】解:(I)当0<x≤100时,P=60当100<x≤500时,所以(II)设销售商的一次订购量为x件时,工厂获得的利润为L元,则此函数在[0,450]上是增函数,故当x=450时,函数取到最大值因此,当销售商一次订购了450件服装时,该厂获利的利润是5850元.17.(14分)如图,棱锥P﹣ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=2.(1)求证:BD⊥平面PAC;(2)求二面角P﹣CD﹣B的大小;(3)求点C到平面PBD的距离.【解答】(1)证明:建立如图所示的直角坐标系,则A(0,0,0)、D(0,2,0)、P(0,0,2).在Rt△BAD中,AD=2,BD=2,∴AB=2.∴B(2,0,0)、C(2,2,0),∴=(0,0,2),=(2,2,0),=(﹣2,2,0)∴•=0,•=0,即BD⊥AP,BD⊥AC,又因为AP∩AC=A,∴BD⊥平面PAC.(2)解:由(1)得=(0,2,﹣2),=(﹣2,0,0).设平面PCD的法向量为=(x,y,z),即,故平面PCD的法向量可取为=(0,1,1)∵PA⊥平面ABCD,∴=(0,0,2)为平面ABCD的法向量.设二面角P﹣CD﹣B的大小为θ,依题意可得cosθ=,∴二面角P﹣CD﹣B的大小是45°.(3)解:由(1)得=(2,0,﹣2),=(0,2,﹣2),同理,可得平面PBD的法向量为=(1,1,1).∵=(2,2,﹣2),∴C到面PBD的距离为d=||=.18.(14分)已知函数f(x)对任意x,y∈R,满足f(x)+f(y)=f(x+y)+2,当x>0时,f(x)>2.(1)求证:f(x)在R上是增函数;(2)当f(3)=5时,解不等式:f(a2﹣2a﹣2)<3.【解答】解:(1)设x1<x2,则x2﹣x1>0,∵x>0,f(x)>2;∴f(x2﹣x1)>2;又f(x2)=f[(x2﹣x1)+x1]=f(x2﹣x1)+f(x1)﹣2>2+f(x1)﹣2=f(x1),即f(x2)>f(x1).所以:函数f(x)为单调增函数(2)∵f(3)=f(2+1)=f(2)+f(1)﹣2=[f(1)+f(1)﹣2]+f(1)﹣2=3f (1)﹣4=5∴f(1)=3.即f(a2﹣2a﹣2)<3⇒f(a2﹣2a﹣2)<f(1)∴a2﹣2a﹣2<1⇒a2﹣2a﹣3<0解得:﹣1<a<3.19.(14分)若函数f(x)对定义域中任意x均满足f(x)+f(2a﹣x)=2b,则函数f(x)的图象关于点(a,b)对称.(1)已知函数f(x)=的图象关于点(0,1)对称,求实数m的值;(2)已知函数g(x)在(﹣∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(﹣∞,0)上的解析式;(3)在(1)、(2)的条件下,若对实数x<0及t>0,恒有g(x)<f(t)成立,求实数a的取值范围.【解答】解:(1)因为函数f(x)的图象关于点(0,1)对称,∴f(x)+f(﹣x)=2,即,所以2m=2,∴m=1.(2)因为函数g(x)在(﹣∞,0)∪(0,+∞)上的图象关于点(0,1)对称,则g(x)+g(﹣x)=2,∴g(x)=2﹣g(﹣x),∴当x<0时,则﹣x>0,∴g(﹣x)=x2﹣ax+1,∴g(x)=2﹣g(﹣x)=﹣x2+ax+1;(3)由(1)知,,∴f(t)min=3,又当x<0时,g(x)=﹣x2+ax+1∴g(x)=﹣x2+ax+1<3,∴ax<2+x2又x<0,∴,∴.20.(14分)设M是满足下列条件的函数构成的集合:①方程f(x)﹣x=0有实数根;②函数f(x)的导数f'(x)满足0<f'(x)<1.(1)若函数f(x)为集合M中的任意一个元素,证明:方程f(x)﹣x=0只有一个实根;(2)判断函数是否是集合M中的元素,并说明理由;(3)设函数f(x)为集合M中的元素,对于定义域中任意α,β,当|α﹣2012|<1,|β﹣2012|<1时,证明:|f(α)﹣f(β)|<2.【解答】解:(1)证明:令h(x)=f(x)﹣x,则h′(x)=f′(x)﹣1<0,故h (x)是单调递减函数,所以,方程h(x)=0,即f(x)﹣x=0至多有一解,又由题设①知方程f(x)﹣x=0有实数根,所以,方程f(x)﹣x=0有且只有一个实数根…..(4分)(2)易知,,满足条件②;令,则,…..(7分)又F(x)在区间[e,e2]上连续,所以F(x)在[e,e2]上存在零点x0,即方程g(x)﹣x=0有实数根,故g(x)满足条件①,综上可知,g(x)∈M…(9分)(3)证明:不妨设α<β,∵f′(x)>0,∴f(x)单调递增,∴f(α)<f(β),即f(β)﹣f(α)>0,令h(x)=f(x)﹣x,则h′(x)=f′(x)﹣1<0,故h(x)是单调递减函数,∴f(β)﹣β<f(α)﹣α,即f(β)﹣f(α)<β﹣α,∴0<f(β)﹣f(α)<β﹣α,则有|f(α)﹣f(β)|<|α﹣β|≤|α﹣2012|+|β﹣2012|<2.(14分)2018年云南省玉溪市高考数学模拟试卷(03)一.选择题:本卷共12小题每题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)函数f(x)=+lg(x+1)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)D.(﹣1,1)∪(1,+∞)2.(5分)下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.y= D.y=x|x|3.(5分)已知为纯虚数,则实数a的值为()A.2 B.﹣2 C.﹣ D.4.(5分)曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是()A.﹣9 B.﹣3 C.9 D.155.(5分)公比为的等比数列{a n}的各项都是正数,且a3a11=16,则log2a16=()A.4 B.5 C.6 D.76.(5分)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6]D.7.(5分)设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π9.(5分)△ABC中,AB边的高为CD,若=,=,•=0,||=1,||=2,则=()A. B. C. D.10.(5分)设a>b>c>0,则2a2++﹣10ac+25c2的最小值是()A.2 B.4 C.D.511.(5分)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f (x)=x3﹣x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为()A.6 B.7 C.8 D.912.(5分)函数y=x2(x>0)的图象在点(a k,a k2)处的切线与x轴交点的横坐,k为正整数,a1=16,则a1+a3+a5=()标为a k+1A.18 B.21 C.24 D.30二.填空题:本大题共4个小题,每小题5分,共20分,把答案填在题中横线上. 13.(5分)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以S n表示{a n}的前项和,则使得S n达到最大值的是.14.(5分)在正三角形ABC中,D是BC上的点.若AB=3,BD=1,则=.15.(5分)设,则f(1)+f(2)+…+f(n)+f1(1)+f2(1)+…+f n(1)=.16.(5分)不等式|x+3|﹣|x﹣1|≤a2﹣3a对任意实数x恒成立,则实数a的取值范围为.三.解答题:(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.(10分)在△ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1﹣sin(1)求sinC的值(2)若a2+b2=4(a+b)﹣8,求边c的值.18.(12分)设函数f(x)=2|x+1|﹣|x﹣1|,求使f(x)≥2的x的取值范围.19.(12分)已知等差数列{a n}满足:a3=7,a5+a7=26,{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.20.(12分)设x,y都是正数,且x+y>2,求证:<2中至少有一个成立.21.(12分)已知函数f(x)=x3+ax2+bx+c的一个零点为x=1,另外两个零点分别在(0,1)和(1,+∞)内.(1)求a+b+c;(2)求的取值范围.22.(12分)(理)已知函数f(x)=ax﹣,曲线y=f(x)在点(2,f(2))处的切线方程为:7x﹣4y﹣12=0(1)求f(x)的解析式(2)曲线f(x)上任一点的切线与直线x=0和直线y=x所围成的三角形面积的定值,并求出此定值.2018年云南省玉溪市高考数学模拟试卷(03)参考答案与试题解析一.选择题:本卷共12小题每题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)函数f(x)=+lg(x+1)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)D.(﹣1,1)∪(1,+∞)【解答】解:要使函数f(x)有意义,则,即,解得x>﹣1且x≠1,即函数的定义域为(﹣1,1)∪(1,+∞),故选:D2.(5分)下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.y= D.y=x|x|【解答】解:A.y=x+1为非奇非偶函数,不满足条件.B.y=﹣x2是偶函数,不满足条件.C.y=是奇函数,但在定义域上不是增函数,不满足条件.D.设f(x)=x|x|,则f(﹣x)=﹣x|x|=﹣f(x),则函数为奇函数,当x>0时,y=x|x|=x2,此时为增函数,当x≤0时,y=x|x|=﹣x2,此时为增函数,综上在R上函数为增函数.故选:D3.(5分)已知为纯虚数,则实数a的值为()A.2 B.﹣2 C.﹣ D.。
2018年云南省高考数学一模试卷(文科)一选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合(){}{}22|lg 1,|21xxA x y xB x -==-=<,则A B =A.{}|1x x >B. {}|0x x >C. {}|02x x <<D.{}|12x x <<2.已知复数z 满足()11z i i ⋅-=+,则z 的共轭复数的虚部为 A. 1 B. i - C. i D.-13.已知向量()()1,2,,2a b x ==-,若a b +与a b -垂直,则实数x 的值是 A. 1± B. 1 C. -1 D.-44.设,则“()0a a b -<”是“a b <”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件5.已知,m n 是两条不同的直线,α是平面,则下列命题中是真命题的是 A. 若//,//m m n α,则//n α B. 若,m n αα⊥⊥,则//m n C. 若//,m m n α⊥,则//n α D. 若,m m n α⊥⊥,则//n α6.已知等比数列{}n a 为递增数列,若10,a >且()2123n n n a a a ++-=,则数列{}n a 的公比q = A. 2或12 B. 2 C. 12D.-2 7.若,2παπ⎛⎫∈ ⎪⎝⎭,且3cos 2cos 4παα⎛⎫=+ ⎪⎝⎭,则sin 2α的值为A.118 B. 118- C. 1718 D.1718-8.图1中的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的,,a b i 的值分别为8,10,0,则输出的a 和i 的值分别为A. 2,5B. 2,4C. 0,4D. 0,59.函数()2x f x xe x =--的零点的个数为A.0B. 1C. 2D. 3 10.某四棱锥的三视图如图2所示,则该四棱锥的外接球的表面积为A. 3πB. 4πC. 12πD.8π11.已知函数()243,1ln ,1x x x f x x x ⎧-+-≤=⎨>⎩,若()f x a a x +≥,则a的取值范围是A. [)2,0-B. []0,1C. (]0,1D.[]2,0-12.已知P 是椭圆()2211221110x y a b a b +=>>和双曲线()2222222210,0x y a b a b -=>>的一个交点,12,F F 是椭圆和双曲线的公共焦点,123F PF π∠,则12b b 的值是 A. 3 B. 3-C.二、填空题:本大题共4小题,每小题5分,共20分).13.若实数x ,y 满足约束条件,则z=2x ﹣y 的最大值为.14.已知函数f (x )=axlnx +b (a ,b ∈R ),若f (x )的图象在x=1处的切线方程为2x ﹣y=0,则a +b= .15.设P ,Q 分别为圆x 2+y 2﹣8x +15=0和抛物线y 2=4x 上的点.则P ,Q 两点间的最小距离是 .16.已知y=f (x )是R 上的偶函数,对于任意的x ∈R ,均有f (x )=f (2﹣x ),当x ∈[0,1]时,f (x )=(x ﹣1)2,则函数g (x )=f (x )﹣log 2017|x ﹣1|的所有零点之和为 .三、解答题:本大题共5小题,共48分.解答写出文字说明、证明过程或演算过程.17.(12分)已知数列{a n}中,a n2+2a n﹣n2+2n=0(n∈N+)(Ⅰ)求数列{a n}的通项公式(Ⅱ)求数列{a n}的前n项和S n.18.(12分)某校开展“翻转合作学习法”教学实验,经过一年的实践后,对“翻转班”和“对照班”的全部220名学生的数学学习情况进行测试,按照大于或等于120分为“成绩优秀”,120分以下为“成绩一般”统计,得到如下的2×2列联表.(Ⅰ)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为“成绩优秀与翻转合作学习法”有关;(Ⅱ)为了交流学习方法,从这次测试数学成绩优秀的学生中,用分层抽样方法抽出6名学生,再从这6名学生中抽3名出来交流学习方法,求至少抽到一名“对照班”学生交流的概率.2=:附:K(Ⅰ)求证:平面BED⊥平面PAC;(Ⅱ)求点E到平面PBC的距离.20.(12分)在圆x2+y2=9上任取一点P,过点P作x轴的垂线段PD,D为垂足,点M在线段DP上,满足=,当点P在圆上运动时,设点M的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)若直线y=m(x+5)上存在点Q,使过点Q作曲线C的两条切线互相垂直,求实数m的取值范围.21.(12分)设函数f(x)=e2x+ae x,a∈R.(Ⅰ)当a=﹣4时,求f(x)的单调区间;(Ⅱ)若对x∈R,f(x)≥a2x恒成立,求实数a的取值范围.[选修4-4:坐标系与参数方程选讲]22.(10分)已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.2017年云南省高考数学一模试卷(文科)参考答案与试题解析二、填空题:本大题共4小题,每小题5分,共20分).13.若实数x,y满足约束条件,则z=2x﹣y的最大值为2.【考点】简单线性规划.【分析】作出可行域,变形目标函数,平移直线找出最优解可得结论.【解答】解:作出,所对应可行域(如图△ABC),变形目标函数z=2x﹣y可得y=2x﹣z,平移直线y=2x可得当直线经过点A(1,0)时,直线的截距最小,z取最大值,代值计算可得最大值为:2.故答案为:2.【点评】本题考查简单线性规划,准确作图是解决问题的关键,属中档题.14.已知函数f(x)=axlnx+b(a,b∈R),若f(x)的图象在x=1处的切线方程为2x﹣y=0,则a+b=4.【考点】利用导数研究曲线上某点切线方程.【分析】求出函数的导数,由题意可得f(1)=2,f′(1)=2,计算即可得到所求.【解答】解:f(x)=axlnx+b的导数为f′(x)=a(1+lnx),由f(x)的图象在x=1处的切线方程为2x﹣y=0,易知f(1)=2,即b=2,f′(1)=2,即a=2,则a+b=4.故答案为:4.【点评】本题考查导数的运用:求切线的斜率,考查运算能力,正确求导和运用直线方程是解题的关键.15.设P,Q分别为圆x2+y2﹣8x+15=0和抛物线y2=4x上的点.则P,Q两点间的最小距离是2﹣1.【考点】抛物线的简单性质.【分析】由题意可得圆的圆心和半径,由二次函数可得P与圆心距离的最小值,减半径即可.【解答】解:∵圆x2+y2﹣8x+15=0可化为(x﹣4)2+y2=1,∴圆的圆心为(4,0),半径为1,设P(x0,y0)为抛物线y2=4x上的任意一点,∴y02=4x0,∴P与(4,0)的距离d==,∴由二次函数可知当x0=2时,d取最小值2,∴所求最小值为:2﹣1.故答案为:2﹣1.【点评】本题考查两点间的距离公式,涉及抛物线和圆的知识,属中档题.16.已知y=f(x)是R上的偶函数,对于任意的x∈R,均有f(x)=f(2﹣x),当x∈[0,1]时,f(x)=(x﹣1)2,则函数g(x)=f(x)﹣log2017|x﹣1|的所有零点之和为2016.【考点】函数奇偶性的性质.【分析】由题意可求得函数是一个周期函数,且周期为2,故可以研究出一个周期上的函数图象,再研究所给的区间包含了几个周期即可知道函数g(x)=f(x)﹣log2017|x﹣1|的所有零点之和.【解答】解:由题意可得函数f(x)是R上的偶函数,可得f(﹣x)=f(x),f (2﹣x)=f(x),故可得f(﹣x)=f(2﹣x),即f(x)=f(x﹣2),即函数的周期是2,y=log2017|x﹣1|在(1,+∞)上单调递增函数,当x=2018时,log2017|x﹣1|=1,∴当x>2018时,y=log2017|x﹣1|>1,此时与函数y=f(x)无交点.根据周期性,利用y=log5|x﹣1|的图象和f(x)的图象都关于直线x=1对称,则函数g(x)=f(x)﹣log2017|x﹣1|的所有零点之和为﹣2015﹣2013﹣ (3)1+3+5…+2017=2016,故答案为:2016.【点评】本题考查函数的零点,求解本题,关键是研究出函数f(x)性质.三、解答题:本大题共5小题,共48分.解答写出文字说明、证明过程或演算过程.17.(12分)(2017•云南一模)已知数列{a n}中,a n2+2a n﹣n2+2n=0(n∈N+)(Ⅰ)求数列{a n}的通项公式(Ⅱ)求数列{a n}的前n项和S n.【考点】数列递推式;数列的求和.),可得(a n﹣n)(a n﹣n+2)=0.即可【分析】(I)a n2+2a n﹣n2+2n=0(n∈N+解出.(II)利用等差数列的求和公式即可得出.),∴(a n﹣n)(a n﹣n+2)=0.【解答】解:(I)∵a n2+2a n﹣n2+2n=0(n∈N+∴a n=n,或a n=n﹣2.(II)a n=n时,S n=.a n=n﹣2时,S n==.【点评】本题考查了一元二次方程的解法、等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.18.(12分)(2017•云南一模)某校开展“翻转合作学习法”教学实验,经过一年的实践后,对“翻转班”和“对照班”的全部220名学生的数学学习情况进行测试,按照大于或等于120分为“成绩优秀”,120分以下为“成绩一般”统计,得到如下的2×2列联表.(Ⅰ)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为“成绩优秀与翻转合作学习法”有关;(Ⅱ)为了交流学习方法,从这次测试数学成绩优秀的学生中,用分层抽样方法抽出6名学生,再从这6名学生中抽3名出来交流学习方法,求至少抽到一名“对照班”学生交流的概率.2=:附:K【分析】(Ⅰ)根据列联表中的数据计算K2,对照临界值表得出结论;(Ⅱ)求出用分层抽样方法抽出6人,对照班2人,翻转班4人,用列举法计算基本事件数,求出概率直.【解答】解:(Ⅰ)根据列联表中的数据,计算K2=≈9.167<10.828,对照临界值表知,不能在犯错误的概率不超过0.001的前提下认为“成绩优秀与翻转合作学习法”有关;(Ⅱ)这次测试数学成绩优秀的学生中,对照班有20人,翻转班有40人,用分层抽样方法抽出6人,对照班抽2人,记为A、B,翻转班抽4人记为c、d、e、f;再从这6人中抽3人,基本事件是ABc、ABd、ABe、ABf、Acd、Ace、Acf、Ade、Adf、Aef、Bcd、Bce、Bcf、Bde、Bdf、Bef、cde、cdf、cef、def共20种不同取法;至少抽到一名“对照班”学生的基本事件是ABc、ABd、ABe、ABf、Acd、Ace、Acf、Ade、Adf、Aef、Bcd、Bce、Bcf、Bde、Bdf、Bef共16种,故所求的概率为P==.【点评】本题考查了独立性检验与列举法求概率的计算问题,是基础题目.19.(12分)(2017•云南一模)如图,在四棱锥P﹣ABCD中,PC⊥平面ABCD,底面ABCD是平行四边形,AB=BC=2a,AC=2a,E的PA的中点.(Ⅰ)求证:平面BED⊥平面PAC;(Ⅱ)求点E到平面PBC的距离.【考点】点、线、面间的距离计算;平面与平面垂直的判定.【分析】(Ⅰ)设AC∩BD=O,证明AC⊥平面BED,即可证明平面BED⊥平面PAC;(Ⅱ)点E到平面PBC的距离=点O到平面PBC的距离,作OF⊥BC,垂足为F,证明OF⊥平面PBC,即可求出求点E到平面PBC的距离.【解答】(Ⅰ)证明:设AC∩BD=O,则EO∥AC,AC⊥BD,∵PC⊥平面ABCD,∴EO⊥平面ABCD,∵AC⊥平面ABCD,∴AC⊥EO,∵BD∩EO=O,∴AC⊥平面BED,∵AC⊂平面PAC,∴平面BED⊥平面PAC;(Ⅱ)解:点E到平面PBC的距离=点O到平面PBC的距离,作OF⊥BC,垂足为F,∵PC⊥平面ABCD,OF⊂平面ABCD,∴PC⊥OF,∵BC∩PC=C,∴OF⊥平面PBC∵AB=BC=2a,AC=2a,∴∠ABC=120°,∴O到BC的距离为OF=a,即点E到平面PBC的距离为a.【点评】本题考查线面垂直、平面与平面垂直的证明,考查点到平面距离的计算,考查学生分析解决问题的能力,属于中档题.20.(12分)(2017•云南一模)在圆x2+y2=9上任取一点P,过点P作x轴的垂线段PD,D为垂足,点M在线段DP上,满足=,当点P在圆上运动时,设点M的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)若直线y=m(x+5)上存在点Q,使过点Q作曲线C的两条切线互相垂直,求实数m的取值范围.【考点】直线与椭圆的位置关系;轨迹方程.【分析】(Ⅰ)设出P(x0,y0),M(x,y),D(x0,0),由点M在线段PD 上,且满足DM=DP,M的坐标用P的坐标表示,代入圆的方程得答案;(Ⅱ)设过点Q(x0,y0)的椭圆的切线方程为y﹣y0=k(x﹣x0),由y=kx﹣kx0+y0,,整理得:(4+9k2)x2+18k(﹣kx0+y0)x+9(﹣kx0+y0)2﹣36=0,由△=324k2(﹣kx+y0)2﹣36(4+9k2)[(﹣kx0+y0)2﹣4]=0,整理得:(9﹣)k2+2kx0y0+4﹣=0.由k1k2=⇒,点Q是圆x2+y2=9与y=m(x+5)的公共点,∴O(0,0)到直线y=m(x+5)的距离d即可.【解答】解:(Ⅰ)设P(x0,y0),M(x,y),D(x0,0),∵点M在线段PD上,且满足满足=,∴x0=x,y0=y,又P在圆x2+y2=9上,∴x02+y02=9,∴x2+y2=9,曲线C的方程为:.(2)假设在直线y=m(x+5)上存在点Q(x0,y0),设过点Q(x0,y0)的椭圆的切线方程为y﹣y0=k(x﹣x0),即y=kx﹣kx0+y0.由y=kx﹣kx0+y0,,整理得:(4+9k2)x2+18k(﹣kx0+y0)x+9(﹣kx0+y0)2﹣36=0,由△=324k2(﹣kx0+y0)2﹣36(4+9k2)[(﹣kx0+y0)2﹣4]=0,整理得:(9﹣)k2+2kx0y0+4﹣=0.故过点Q(x0,y0)的椭圆的两条切线斜率k1,k2分别是:(9﹣)k2+2kx0y0+4﹣=0的两解故k1k2=⇒,∴点Q是圆x2+y2=9与y=m(x+5)的公共点,∴O(0,0)到直线y=m(x+5)的距离d即可.解得12m2≤13,即﹣,实数m的取值范围:[].【点评】本题考查了轨迹方程的求法,考查了代入法求曲线的轨迹方程,椭圆的切线问题,属于难题.21.(12分)(2017•云南一模)设函数f(x)=e2x+ae x,a∈R.(Ⅰ)当a=﹣4时,求f(x)的单调区间;(Ⅱ)若对x∈R,f(x)≥a2x恒成立,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(I)当a=﹣4时,f′(x)=2e x(e x﹣2),令f′(x)=0,解得x=ln2.分别解出f′(x)>0,f′(x)<0,即可得出函数f(x)单调区间.(Ⅱ)对x∈R,f(x)≥a2x恒成立⇔e2x+ae x﹣a2x≥0,令g(x)=e2x+ae x﹣a2x,则f(x)≥a2x恒成立⇔g(x)min≥0.g′(x)=2e2x+ae x﹣a2=2 [e x﹣(﹣a)],对a分类讨论,利用导数研究函数的单调性极值与最值即可得出.【解答】解:(I)当a=﹣4时,函数f(x)=e2x﹣4e x,f′(x)=2e2x﹣4e x=2e x(e x﹣2),令f′(x)=0,解得x=ln2.当x∈(ln2,+∞)时,f′(x)>0,此时函数f(x)单调递增;当x∈(﹣∞,ln2)时,f′(x)<0,此时函数f(x)单调递减.∴函数f(x)的单调递增区间为:[ln2,+∞)时,单调递减区间为(﹣∞,ln2).(Ⅱ)对x∈R,f(x)≥a2x恒成立⇔e2x+ae x﹣a2x≥0,令g(x)=e2x+ae x﹣a2x,则f(x)≥a2x恒成立⇔g(x)min≥0.g′(x)=2e2x+ae x﹣a2=2 [e x﹣(﹣a)],①a=0时,g′(x)=2e2x>0,此时函数g(x)在R上单调递增,g(x)=e2x>0恒成立,满足条件.②a>0时,令g′(x)=0,解得x=ln,则x>ln时,g′(x)>0,此时函数g(x)在R上单调递增;x<ln时,g′(x)<0,此时函数g(x)在R上单调递减.∴当x=ln时,函数g(x)取得极小值即最小值,则g(ln)=a2(1﹣ln)≥0,解得0<a≤2e.③a<0时,令g′(x)=0,解得x=ln(﹣a),则x>ln(﹣a)时,g′(x)>0,此时函数g(x)在R上单调递增;x<ln(﹣a)时,g′(x)<0,此时函数g(x)在R上单调递减.∴当x=ln(﹣a)时,函数g(x)取得极小值即最小值,则g(ln(﹣a))=﹣a2ln(﹣a)≥0,解得﹣1≤a<0.综上可得:a的求值范围是[﹣1,2e].【点评】本题考查了利用导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题.[选修4-4:坐标系与参数方程选讲]22.(10分)(2017•云南一模)已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.【考点】简单曲线的极坐标方程.【分析】(Ⅰ)利用三种方程的转化方法,即可写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,利用正弦函数的单调性即可得出最值.【解答】解:(Ⅰ)直线L的参数方程为(t为参数),普通方程为2x+y ﹣6=0,极坐标方程为2ρcosθ+ρsinθ﹣6=0,曲线C的极坐标方程为ρ=,即ρ2+3ρ2cos2θ=4,曲线C的普通方程为=1;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,当sin(θ+45°)=﹣1时,|PA|取得最大值,最大值为.【点评】本题考查了参数方程化为普通方程、点到直线的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]23.(2017•云南一模)已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(Ⅰ)当a=5,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)由题意可得B⊆A,区间B的端点在集合A中,由此求得a的范围.【解答】解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得x>3.综上可得,原不等式的解集为{x|x<﹣6,或x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].【点评】本题主要考查绝对值不等式的解法,集合间的包含关系,属于中档题.。
2018年云南省高考数学一模试卷(理科)一选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.设,P Q 是两个集合,定义集合{}|,P Q x x P x Q -=∈∉为,P Q 的差集.已知{}2|10,|21P x Q x xx ⎧⎫=-<=-<⎨⎬⎩⎭,那么Q P -等于 A.{}|01x x <<B.{}|01x x <≤C.{}|12x x ≤< D.{}|23x x ≤<2.已知()22a i i -=-,其中i 是虚数单位,是实数,则ai = A. 2 B. 1 C. 1- D.2- 3.同时具有性质:①图象的相邻两条对称轴间的距离为2π;②在,63ππ⎡⎤-⎢⎥⎣⎦上是增函数的一个函数为 A.sin 26x y π⎛⎫=+ ⎪⎝⎭B.cos 23y x π⎛⎫=+ ⎪⎝⎭ C.sin 26y x π⎛⎫=+ ⎪⎝⎭ D.cos 26x y π⎛⎫=- ⎪⎝⎭4.若向量()()()1,2,2,1,4,2a b c =-==--,则下列说法正确的个数使①a b ⊥;②向量a 与向量c 的夹角为90;③对同一平面内的向量d 都存在一对实数12,k k ,使得12.d k b k c =+A. 3B. 2C. 1D. 05.已知函数()()1,321,3xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪+<⎩,则()2log 3f 的值为 A.13 B. 16 C. 112 D.1246.直线(:l y k x =+与曲线()22:10C x y x +=<相交于P,Q 两点,则直线l 的倾斜角的取值范围是A. 3,,4224ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭B. 3,44ππ⎛⎫ ⎪⎝⎭C. 0,,22πππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭D.()0,π7. 执行如图1所示的程序框图,若输入的,a b 分别为36,28,则输出a = A. 4 B. 8 C. 12 D. 208.某几何体的三视图如图2所示,且其俯视图是一个等边三角形,则这个几何体的表面积为A.(82π+ B.(86π+C.42π++D.382++9.图3所示的阴影部分由坐标轴、直线1x =及曲线ln x y e e =-围成,现向矩形区域OABC 内随机投掷一点,则该点落在非阴影区域的概率是A. 1eB. 11e -C. 11e- D. 111e --10.设ABC ∆的三个内角A,B,C 的对边分别为,,,a b c 若()()3a b c b c a bc +++-=,且sin 2sin cos A B C =,那么ABC ∆的外接圆面积与内切圆面积比值为A. 4B. 2C.D. 111.已知A 是抛物线()2:20M y px p =>与圆C 在第一象限内的公共点,其中圆心()0,4C ,点A 到M 的焦点F 的距离与C 的半径相等,M 上一动点到其准线与到点C 的距离之和的最小值的等于C 的直径,O 为坐标原点,则直线OA 被圆C 所截得的弦长为A. 2B.C. 6D.312.已知函数()21cos 2f x x t x =-,若其导函数()f x '在R 上单调递增,则实数t 的取值范围是A. 11,3⎡⎤--⎢⎥⎣⎦ B.11,33⎡⎤-⎢⎥⎣⎦C. []1,1-D. 11,3⎡⎤-⎢⎥⎣⎦二、填空题(共4小题,每小题5分,满分20分)13.某校1000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N(90,σ2),若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70分的人数为人.14.过双曲线﹣=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率的取值范围为.15.计算=(用数字作答)16.已知f(x)=,若f(x﹣1)<f(2x+1),则x的取值范围为.三、解答题(共5小题,满分60分)17.设数列{a n}的前n项和为S n,a1=1,当n≥2时,a n=2a n S n﹣2S n2.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k对一切正整数n 都成立?若存在,求k的取值范围,若不存在,请说明理由.18.云南省2016年高中数学学业水平考试的原始成绩采用百分制,发布成绩使用等级制,各登记划分标准为:85分及以上,记为A等,分数在[70,85)内,记为B等,分数在[60,70)内,记为C等,60分以下,记为D等,同时认定等级分别为A,B,C都为合格,等级为D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D的所有数据茎叶图.(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲、乙两校C等级的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中甲校的学生人数,求随机变量X的分布列和数学期望.19.如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,平面ABCD⊥平面SBC,SB=SC,M是BC的中点,AB=1,BC=2.(1)求证:AM⊥SD;(2)若二面角B﹣SA﹣M的正弦值为,求四棱锥S﹣ABCD的体积.20.已知椭圆E的中心在原点,焦点F1、F2在y轴上,离心率等于,P是椭圆E上的点,以线段PF1为直径的圆经过F2,且9•=1.(1)求椭圆E的方程;(2)做直线l与椭圆E交于两个不同的点M、N,如果线段MN被直线2x+1=0平分,求l的倾斜角的取值范围.21.已知e是自然对数的底数,实数a是常数,函数f(x)=e x﹣ax﹣1的定义域为(0,+∞).(1)设a=e,求函数f(x)在切点(1,f(1))处的切线方程;(2)判断函数f(x)的单调性;(3)设g(x)=ln(e x+x3﹣1)﹣lnx,若∀x>0,f(g(x))<f(x),求a的取值范围.[选修4-4:坐标系与参数方程选讲]22.已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.2018年云南省高考数学一模试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)二、填空题(共4小题,每小题5分,满分20分)13.某校1000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N(90,σ2),若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70分的人数为325人.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】利用正态分布曲线的对称性结合已知求得P(X≤70),乘以1000得答案.【解答】解:由X服从正态分布N(90,σ2)(σ>0),且P(70≤X≤110)=0.35,得P(X≤70)=(1﹣0.35)=.∴估计这次考试分数不超过70分的人数为1000×=325.故答案为:325.14.过双曲线﹣=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率的取值范围为[,+∞).【考点】双曲线的简单性质.【分析】设出双曲线的右焦点和渐近线方程,令x=c,联立方程求出A,B,C,D的坐标,结合距离关系和条件,运用离心率公式和a,b,c的关系,进行求解即可.【解答】解:设双曲线﹣=1(a>0,b>0)的右焦点为(c,0),当x=c时代入双曲线﹣=1得y=±,则A(c,),B(c,﹣),则AB=,将x=c代入y=±x得y=±,则C(c,),D(c,﹣),则|CD|=,∵|AB|≥|CD|,∴≥•,即b≥c,则b2=c2﹣a2≥c2,即c2≥a2,则e2=≥,则e≥.故答案为:[,+∞).15.计算=(用数字作答)【考点】三角函数的化简求值.【分析】利用诱导公式化简cos(﹣100°)=﹣sin10°,同角三角函数关系式1﹣sin10°=sin25°+cos25°﹣2sin5°cos5°代入化简.根据两角和与差的公式可得答案.【解答】解:由===.故答案为:.16.已知f(x)=,若f(x﹣1)<f(2x+1),则x的取值范围为{x|x>0,或x<﹣2 } .【考点】奇偶性与单调性的综合.【分析】由题意可得f(x)为偶函数,f(x)在[0,+∞)上单调递增.由不等式f(x﹣1)<f(2x+1),可得|x﹣1|<|2x+1|,由此求得x的范围.【解答】解:∵已知f(x)=,∴满足f(﹣x)=f(x),且f(0)=0,故f(x)为偶函数,f(x)在[0,+∞)上单调递增.若f(x﹣1)<f(2x+1),则|x﹣1|<|2x+1|,∴(x﹣1)2<(2x+1)2,即x2+2x>0,∴x>0,或x<﹣2,故答案为:{x|x>0,或x<﹣2}.三、解答题(共5小题,满分60分)17.设数列{a n}的前n项和为S n,a1=1,当n≥2时,a n=2a n S n﹣2S n2.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k对一切正整数n 都成立?若存在,求k的取值范围,若不存在,请说明理由.【考点】数列与不等式的综合;数列递推式.【分析】(1)由数列的性质对其经行变形整理出可以判断数列为等差数列的形式即可,求出S n,再根据a n=S n﹣S n﹣1,即可求出数列的通项公式,(2)先构造函数f(n)并判断其单调性,然后再由函数的单调性解决函数恒成立的,求出参数k的取值范围.【解答】解:(1)∵当n≥2时,a n=2a n S n﹣2S n2,∴a n=,n≥2,∴(S n﹣S n﹣1)(2S n﹣1)=2S n2,∴S n﹣S n﹣1=2S n S n﹣1,∴﹣2,n≥2,∴数列{}是以=1为首项,以2为公差的等差数列,∴=1+2(n﹣1)=2n﹣1,∴S n=,∴n≥2时,a n=S n﹣S n﹣1=﹣=﹣,∵a1=S1=1,∴a n=,(2)设f(n)=,则==>1,∴f(n)在n∈N*上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,∵f(n)min=f(1)=,∴0<k≤18.云南省2016年高中数学学业水平考试的原始成绩采用百分制,发布成绩使用等级制,各登记划分标准为:85分及以上,记为A等,分数在[70,85)内,记为B等,分数在[60,70)内,记为C等,60分以下,记为D等,同时认定等级分别为A,B,C都为合格,等级为D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D的所有数据茎叶图.(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲、乙两校C等级的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中甲校的学生人数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;茎叶图;离散型随机变量及其分布列.【分析】(1)利用频率分布直方图的性质可得x,进而定点甲校的合格率.由茎叶图可得乙校的合格率.(2)甲乙两校的C等级的学生数分别为:0.012×10×50=6,4人.X=0,1,2,3.利用P(X=k)=,即可得出.【解答】解:(1)由频率分布直方图可得:(x+0.012+0.056+0.018+0.010)×10=1,解得x=0.004.甲校的合格率P1=(1﹣0.004)×10=0.96=96%,乙校的合格率P2==96%.可得:甲乙两校的合格率相同,都为96%.(2)甲乙两校的C等级的学生数分别为:0.012×10×50=6,4人.X=0,1,2,3.则P(X=k)=,P(X=0)==,P(X=1)==,P(X=2)= =,P(X=3)==.∴X的分布列为:E(X)=0+1×+2×+3×=.19.如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,平面ABCD⊥平面SBC,SB=SC,M是BC的中点,AB=1,BC=2.(1)求证:AM⊥SD;(2)若二面角B﹣SA﹣M的正弦值为,求四棱锥S﹣ABCD的体积.【考点】棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系;平面与平面垂直的性质.【分析】(1)推导出SM⊥BC,SM⊥AM,由勾股定理得AM⊥DM,从而AM⊥平面DMS,由此能证明AM⊥SD.(2)以M为原点,MC为x轴,MS为y轴,过M作平面BCS的垂线为z轴,建立空间直角坐标系,利用向量法能求出四棱锥S﹣ABCD的体积.【解答】证明:(1)∵SB=SC,M是BC的中点,∴SM⊥BC,∵平面ABCD⊥平面SBC,平面ABCD∩平面SBC=BC,∴SM⊥平面ABCD,∵AM⊂平面ABCD,∴SM⊥AM,∵底面ABCD是矩形,M是BC的中点,AB=1,BC=2,∴AM2=BM2==,AD=2,∴AM2+BM2=AD2,∴AM⊥DM,∵SM∩DM=M,∴AM⊥平面DMS,∵SD⊂平面DMS,∴AM⊥SD.解:(2)∵SM⊥平面ABCD,∴以M为原点,MC为x轴,MS为y轴,过M作平面BCS的垂线为z轴,建立空间直角坐标系,设SM=t,则M(0,0,0),B(﹣1,0,0),S(0,t,0),A(﹣1,0,1),=(0,0,1),=(1,t,0),=(﹣1,0,1),=(0,t,0),设平面ABS的法向量=(x,y,z),则,取x=1,得=(1,﹣,0),设平面MAS的法向量=(a,b,c),则,取a=1,得=(1,0,1),设二面角B﹣SA﹣M的平面角为θ,∵二面角B﹣SA﹣M的正弦值为,∴sinθ=,cosθ==,∴cosθ===,解得t=,∵SM⊥平面ABCD,SM=,∴四棱锥S﹣ABCD的体积:===.V S﹣ABCD20.已知椭圆E的中心在原点,焦点F1、F2在y轴上,离心率等于,P是椭圆E上的点,以线段PF1为直径的圆经过F2,且9•=1.(1)求椭圆E的方程;(2)做直线l与椭圆E交于两个不同的点M、N,如果线段MN被直线2x+1=0平分,求l的倾斜角的取值范围.【考点】直线与椭圆的位置关系.(1)由题意可知:设椭圆的标准方程,c=a,则利用椭圆的定义m+n=2a,【分析】勾股定理n2+(2c)2=m2,及向量数量积,即可求得a和b的值,求得椭圆方程;(2)假设存在直线l,设出方程与椭圆方程联立,利用韦达定理,结合根的判别式,即可得到结论.【解答】解:(1)由题意可知:设题意的方程:(a>b>0),e==,则c=a,设丨PF1丨=m,丨PF2丨=n,则m+n=2a,线段PF1为直径的圆经过F2,则PF2⊥F1F2,则n2+(2c)2=m2,9m•n×cos∠F1PF2=1,由9n2=1,n=,解得:a=3,c=,则b==1,∴椭圆标准方程:;(2)假设存在直线l,依题意l交椭圆所得弦MN被x=﹣平分,∴直线l的斜率存在.设直线l:y=kx+m,则由消去y,整理得(k2+9)x2+2kmx+m2﹣9=0∵l与椭圆交于不同的两点M,N,∴△=4k2m2﹣4(k2+9)(m2﹣9)>0,即m2﹣k2﹣9<0①设M(x1,y1),N(x2,y2),则x1+x2=﹣∴=﹣=﹣,∴m=②把②代入①式中得()2﹣(k2+9)<0∴k>或k<﹣,∴直线l倾斜角α∈(,)∪(,).21.已知e是自然对数的底数,实数a是常数,函数f(x)=e x﹣ax﹣1的定义域为(0,+∞).(1)设a=e,求函数f(x)在切点(1,f(1))处的切线方程;(2)判断函数f(x)的单调性;(3)设g(x)=ln(e x+x3﹣1)﹣lnx,若∀x>0,f(g(x))<f(x),求a的取值范围.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算f(1),f′(1),求出切线方程即可;(2)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;(3)设F(x)=e x﹣x﹣1,求出函数的导数,问题转化为x>0时,e x+x3﹣1>x,设h(x)=xe x﹣e x﹣x3+1,根据函数的单调性确定a的范围即可.【解答】解:(1)a=e时,f(x)=e x﹣ex﹣1,f(1)=﹣1,f′(x)=e x﹣e,可得f′(1)=0,故a=e时,函数f(x)在切点(1,f(1))处的切线方程是y=﹣1;(2)f(x)=e x﹣ax﹣1,f′(x)=e x﹣a,当a≤0时,f′(x)>0,则f(x)在R上单调递增;当a>0时,令f′(x)=e x﹣a=0,得x=lna,则f(x)在(﹣∞,lna]上单调递减,在(lna,+∞)上单调递增.(3)设F(x)=e x﹣x﹣1,则F′(x)=e x﹣1,∵x=0时,F′(x)=0,x>0时,F′(x)>0,∴F(x)在[0,+∞)递增,∴x>0时,F(x)>F(0),化简得:e x﹣1>x,∴x>0时,e x+x3﹣1>x,设h(x)=xe x﹣e x﹣x3+1,则h′(x)=x(e x﹣ex),设H(x)=e x﹣ex,H′(x)=e x﹣e,由H′(x)=0,得x=1时,H′(x)>0,x<1时,H′(x)<0,∴x>0时,H(x)的最小值是H(1),x>0时,H(x)≥H(1),即H(x)≥0,∴h′(x)≥0,可知函数h(x)在(0,+∞)递增,∴h(x)>h(0)=0,化简得e x+x3﹣1<xe x,∴x>0时,x<e x+x3﹣1<xe x,∴x>0时,lnx<ln(e x+x3﹣1)<lnx+x,即0<ln(e x+x3﹣1)﹣lnx<x,即x>0时,0<g(x)<x,当a≤1时,由(2)得f(x)在(0,+∞)递增,得f(g(x))<f(x)满足条件,当a>1时,由(2)得f(x)在(0,lna)递减,∴0<x≤lna时,f(g(x))>f(x),与已知∀x>0,f(g(x))<f(x)矛盾,综上,a的范围是(﹣∞,1].[选修4-4:坐标系与参数方程选讲]22.已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.【考点】简单曲线的极坐标方程.【分析】(Ⅰ)利用三种方程的转化方法,即可写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,利用正弦函数的单调性即可得出最值.【解答】解:(Ⅰ)直线L的参数方程为(t为参数),普通方程为2x+y ﹣6=0,极坐标方程为2ρcosθ+ρsinθ﹣6=0,曲线C的极坐标方程为ρ=,即ρ2+3ρ2cos2θ=4,曲线C的普通方程为=1;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,当sin(θ+45°)=﹣1时,|PA|取得最大值,最大值为.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(Ⅰ)当a=5,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)由题意可得B⊆A,区间B的端点在集合A中,由此求得a的范围.【解答】解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得x>3.综上可得,原不等式的解集为{x|x<﹣6,或x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].。
2018年云南省高考理科数学第二次模拟试题及答案( 满分150分,时长120分钟)第Ⅰ卷(选择题 共60分)一、选择题:本大题共有12小题,每小题5分,共60分。
在每小题所给出的四个选项中有且只有一个选项是符合题目要求的1.若U={1,2,3,4},M={1,2},N={2,3},则C ∪(M ∪N )=A.{1,2,3}B.{2}C.{1,3,4}D.{4} 2. 复数(32)z i i =-(i 为虚数单位)的共轭复数z 等于A .2+3iB .-2+3iC .2-3iD .-2-3i3. 已知,x y 满足约束条件30260102x y y x y x ⎧⎪+-≥⎪-+≥⎨⎪⎪-≤⎩,则z x y =-的最小值为 A. 1 B. 3 C. -3 D. -1 4. 已知正四面体ABCDA .3πB .43π CD.3 5.已知函数f(x )定义域为R ,命题:p:f(x)为奇函数,q :,则p 是q 的A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件6. 现有16张不同卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一颜色,且红色卡片至多1张,不同的取法为A. 252种B. 484种C. 472种D. 232种7.函数222,1,()log (1),1,x x f x x x ⎧-≤=⎨-⎩>则52f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦A .12-B .12C .1-D .5- 8. 已知函数2ln ||(),x f x x x=-则函数()y f x =的大致图象为9. 某个长方体被一个平面所截,得到几何体的三视图如图所示,则这个几何体的体积为 A .8 B .203C. 4 D .2 210. 已知P 为抛物线24y x =上一个动点,Q 为圆()2241x y +-=上一个动点,当点P 到点Q 的距离与点P 到抛物线的准线的距离之和最小时,点P 的横坐标为A B C D .9811. 已知函数x x f πsin )(=和函数x x g πcos )(=在区间[]2,0上的图象交于A,B 两点,则OAB ∆面积是( )A.B.C.D.12. 已知定义在R 上的奇函数)(x f y =的图像关于直线1=x 对称,当01<≤-x 时,)(log )(21x x f --=,则函数21)(-=x f y 在(0,6)内的零点之和为 A. 16 B. 8 C.12 D. 10第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分. 共20分。
云南省达标名校2018年高考二月仿真备考数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数f(x)=21xx e -的图象大致为()A .B .C .D .2.已知函数()()cos 0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的最小正周期为π,且满足()()f x f x ϕϕ+=-,则要得到函数()f x 的图像,可将函数()sin g x x ω=的图像( ) A .向左平移12π个单位长度 B .向右平移12π个单位长度C .向左平移512π个单位长度 D .向右平移512π个单位长度 3.下列命题是真命题的是( )A .若平面α,β,γ,满足αγ⊥,βγ⊥,则//αβ;B .命题p :x R ∀∈,211x -≤,则p ⌝:0x R ∃∈,2011x -≤;C .“命题p q ∨为真”是“命题p q ∧为真”的充分不必要条件;D .命题“若()110xx e -+=,则0x =”的逆否命题为:“若0x ≠,则()110xx e -+≠”.4.已知三棱锥P ABC -中,O 为AB 的中点,PO ⊥平面ABC ,90APB ∠=︒,2PA PB ==,则有下列四个结论:①若O 为ABC 的外心,则2PC =;②ABC 若为等边三角形,则⊥AP BC ;③当90ACB ∠=︒时,PC 与平面PAB 所成的角的范围为0,4π⎛⎤ ⎥⎝⎦;④当4PC =时,M 为平面PBC 内一动点,若OM ∥平面PAC ,则M 在PBC 内轨迹的长度为1.其中正确的个数是( ). A .1B .1C .3D .45.把满足条件(1)x R ∀∈,()()f x f x -=,(2)1x R ∀∈,2x R ∃∈,使得()()12f x f x =-的函数称为“D 函数”,下列函数是“D 函数”的个数为( )①2||y x x =+ ②3y x = ③x x y e e -=+ ④cos y x = ⑤sin y x x = A .1个B .2个C .3个D .4个6.二项式22()nx x+的展开式中只有第六项的二项式系数最大,则展开式中的常数项是( ) A .180B .90C .45D .3607.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为( )A 3B 3C .33D 238.曲线312ln 3y x x =+上任意一点处的切线斜率的最小值为( ) A .3B .2C .32D .19.大衍数列,米源于我国古代文献《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,…,则大衍数列中奇数项的通项公式为( )A .22n n -B .212n -C .212n (-)D .22n10.已知等差数列{}n a 的前n 项和为n S ,37a =,39S =,则10a =( ) A .25B .32C .35D .4011.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若2a =,ABC 的面积为21),则b c +=( ) A .5B .22C .4D .1612.设a ,b ,c 分别是ABC ∆中A ∠,B ,C ∠所对边的边长,则直线sin 0A x ay c ⋅--=与sin sin 0bx B y C +⋅+=的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直二、填空题:本题共4小题,每小题5分,共20分。
(12套)2018年云南全省含所有市高考数学模拟试卷汇总2018年云南省玉溪市高考数学模拟试卷(01)一、选择题(本大题共10小题.每小题5分.共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)集合A={x||x|≤4,x∈R},B={x|(x+5)(x﹣a)≤0},则“A⊆B”是“a >4”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(5分)下列命题中,m,n表示两条不同的直线,α、β、γ表示三个不同的平面.①若m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,则α∥β;③若m∥α,n∥α,则m∥n;④若α∥β,β∥γ,m⊥α,则m⊥γ.正确的命题是()A.①③B.②③C.①④D.②④3.(5分)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.64.(5分)已知等比数列{a n}公比为q,其前n项和为S n,若S3、S9、S6成等差数列,则q3等于()A.﹣ B.1 C.﹣或1 D.﹣1或5.(5分)下图是某次考试对一道题评分的算法框图,其中x1,x2,x3为三个评阅人对该题的独立评分,p为该题的最终得分,当x1=6,x2=9,p=8.5时,x3等于()A.11 B.10 C.8 D.76.(5分)图是函数y=Asin(ωx+φ)(x∈R)在区间上的图象,为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点()A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变7.(5分)若存在实数x∈[2,4],使x2﹣2x+5﹣m<0成立,则m的取值范围为()A.(13,+∞)B.(5,+∞)C.(4,+∞)D.(﹣∞,13)8.(5分)已知奇函数f(x)在[﹣1,0]上为单调递减函数,又α,β为锐角三角形两内角,下列结论正确的是()A.f(cosα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)>f(cosβ)D.f(si nα)<f(cosβ)9.(5分)△ABC所在平面上一点P满足++=,则△PAB的面积与△ABC 的面积比为()A.2: 3 B.1: 3 C.1: 4 D.1: 610.(5分)如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度h和时间t之间的关系,其中不正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共5个小题,每小题5分,共25分.把答案填写在题中横线上)11.(5分)已知命题p: “存在x∈R,使4x+2x+1+m=0”,若“非p”是假命题,则实数m的取值范围是.12.(5分)若a>3,则函数f(x)=x2﹣ax+1在区间(0,2)上恰好有个零点.13.(5分)已知函数f(x)=lnx,0<a<b<c<1,则,,的大小关系是.14.(5分)已知整数对的序列如下: (1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3)(3,2),(4,1),(1,5),(2,4)…则第57个数对是.15.(5分)如图是一个几何体的三视图,根据图中的数据,可得该几何体的体积是.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程和演算步骤)16.(12分)已知α∈(0,π)且cos(α﹣)=.求cosα17.(12分)已知向量=3i﹣4j,=6i﹣3j,=(5﹣m)i﹣(3+m)j,其中i,j分别是平面直角坐标系内x轴与y轴正方向上的单位向量.(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)对任意m∈[1,2],不等式2≤﹣x2+x+3恒成立,求x的取值范围.18.(12分)列车提速可以提高铁路运输量.列车运行时,前后两车必须要保持一个“安全间隔距离d(千米)”,“安全间隔距离d(千米)”与列车的速度v(千米/小时)的平方成正比(比例系数k=).假设所有的列车长度l均为0.4千米,最大速度均为v0(千米/小时).问: 列车车速多大时,单位时间流量Q=最大?19.(12分)如图,边长为a的正方体ABCD﹣A1B1C1D1中,E为CC1的中点.(1)求直线A1E与平面BDD1B1所成的角的正弦值(2)求点E到平面A1DB的距离.20.(13分)在数列{a n}中,a1=1,a n=n2[1+++…+](n≥2,n∈N)(1)当n≥2时,求证: =(2)求证: (1+)(1+)…(1+)<4.21.(14分)已知函数f(x)=(x2+ax﹣2a﹣3)•e3﹣x(a∈R);(1)讨论f(x)的单调性;(2)设g(x)=(a2+)e x(a>0),若存在(a>0),x1,x2∈[0,4]使得|f (x1)﹣g(x2)|<1成立,求a的取值范围.2018年云南省玉溪市高考数学模拟试卷(01)参考答案与试题解析一、选择题(本大题共10小题.每小题5分.共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)集合A={x||x|≤4,x∈R},B={x|(x+5)(x﹣a)≤0},则“A⊆B”是“a >4”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解: 集合A={x||x|≤4,x∈R}={x|﹣4≤x≤4},B={x|(x+5)(x﹣a)≤0},由A⊆B,可得B≠∅,即有(5﹣4)(﹣4﹣a)≤0且(5+4)(4﹣a)≤0,解得a≥4,则则“A⊆B”是“a>4”的必要不充分条件,故选B.2.(5分)下列命题中,m,n表示两条不同的直线,α、β、γ表示三个不同的平面.①若m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,则α∥β;③若m∥α,n∥α,则m∥n;④若α∥β,β∥γ,m⊥α,则m⊥γ.正确的命题是()A.①③B.②③C.①④D.②④【解答】解: 由题意,m,n是两条不同的直线,α,β,γ是三个不同的平面考察①选项,此命题正确,若m⊥α,则m垂直于α中所有直线,由n∥α,知m⊥n;考察②选项,此命题不正确,因为垂直于同一平面的两个平面的位置关系是平行或相交;考察③选项,此命题不正确,因为平行于同一平面的两条直线的位置关系是平行、相交或异面;考察④选项,此命题正确,因为α∥β,β∥γ,所以α∥γ,再由m⊥α,得到m ⊥γ.故选C.3.(5分)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.6【解答】解: 联立方程得到两曲线的交点(4,2),因此曲线y=,直线y=x﹣2及y轴所围成的图形的面积为:S=.故选C.4.(5分)已知等比数列{a n}公比为q,其前n项和为S n,若S3、S9、S6成等差数列,则q3等于()A.﹣ B.1 C.﹣或1 D.﹣1或【解答】解: 若S3、S9、S6成等差数列,则S3+S6=2S9,若公比q=1,则S3=3a1,S9=9a1,S6=6a1,即3a1+6a1=18a1,则方程不成立,即q≠1,则=,即1﹣q3+1﹣q6=2﹣2q9,即q3+q6=2q9,即1+q3=2q6,即2(q3)2﹣q3﹣1=0,解得q3=,故选: A.5.(5分)下图是某次考试对一道题评分的算法框图,其中x1,x2,x3为三个评阅人对该题的独立评分,p为该题的最终得分,当x1=6,x2=9,p=8.5时,x3等于()A.11 B.10 C.8 D.7【解答】解: 根据框图的流程,当输入x1=6,x2=9时,不满足|x1﹣x2|=3<2,当输入x3<7.5时,满足|x3﹣x1|<|x3﹣x2|,则执行x2=x3.输出P==8.5⇒x3=11(舍去);当输入x3≥7.5时,不满足|x3﹣x1|<|x3﹣x2|,则执行x1=x3,输出P==8.5⇒x3=8.故选: C.6.(5分)图是函数y=Asin(ωx+φ)(x∈R)在区间上的图象,为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点()A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【解答】解: 由图象可知函数的周期为π,振幅为1,所以函数的表达式可以是y=sin(2x+φ).代入(﹣,0)可得φ的一个值为,故图象中函数的一个表达式是y=sin(2x+),即y=sin2(x+),所以只需将y=sinx(x∈R)的图象上所有的点向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变.故选A.7.(5分)若存在实数x∈[2,4],使x2﹣2x+5﹣m<0成立,则m的取值范围为()A.(13,+∞)B.(5,+∞)C.(4,+∞)D.(﹣∞,13)【解答】解: 存在实数x∈[2,4],使x2﹣2x+5﹣m<0成立,等价于x∈[2,4],m>(x2﹣2x+5)min.令f(x)=x2﹣2x+5=(x﹣1)2+4∴函数的图象开口向上,对称轴为直线x=1∵x∈[2,4],∴x=2时,f(x)min=f(2)=22﹣2×2+5=5∴m>5故选: B.8.(5分)已知奇函数f(x)在[﹣1,0]上为单调递减函数,又α,β为锐角三角形两内角,下列结论正确的是()A.f(cosα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)>f(cosβ)D.f(sinα)<f(cosβ)【解答】解: ∵奇函数y=f(x)在[﹣1,0]上为单调递减函数∴f(x)在[0,1]上为单调递减函数,∴f(x)在[﹣1,1]上为单调递减函数,又α、β为锐角三角形的两内角,∴α+β>,∴>α>﹣β>0,∴1>sinα>sin(﹣β)=cosβ>0,∴f(sinα)<f(cosβ),故选: D.9.(5分)△ABC所在平面上一点P满足++=,则△PAB的面积与△ABC 的面积比为()A.2: 3 B.1: 3 C.1: 4 D.1: 6【解答】解: 如图所示,∵点P满足++=,∴=,∴.∴△PAB的面积与△ABC的面积比=AP: AC=1: 3.故选: B.10.(5分)如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度h和时间t之间的关系,其中不正确的有()A.1个 B.2个 C.3个 D.4个【解答】解: A、因正方体的底面积是定值,故水面高度的增加是均匀的,即图象是直线型的,故A不对;B、因几何体下面窄上面宽,且相同的时间内注入的水量相同,所以下面的高度增加的快,上面增加的慢,即图象应越来越平缓,故B正确;C、球是个对称的几何体,下半球因下面窄上面宽,所以水的高度增加的越来越慢;上半球恰相反,所以水的高度增加的越来越快,则图象先平缓再变陡;故C 正确;D、图中几何体两头宽、中间窄,所以水的高度增加的越来越慢后再越来越慢快,则图象先平缓再变陡,故D正确.故选A.二、填空题(本大题共5个小题,每小题5分,共25分.把答案填写在题中横线上)11.(5分)已知命题p: “存在x∈R,使4x+2x+1+m=0”,若“非p”是假命题,则实数m的取值范围是(﹣∞,0).【解答】解: ∵命题p: “存在x∈R,使4x+2x+1+m=0”,∴p为真时,m=﹣(2x)2﹣2×2x,存在x∈R成立∴m的取值范围是: m<0又∵非p”是假命题∴p是真命题∴m∈(﹣∞,0)故答案为: (﹣∞,0)12.(5分)若a>3,则函数f(x)=x2﹣ax+1在区间(0,2)上恰好有1个零点.【解答】解: 当a>3时,由于次二次函数f(x)=x2﹣ax+1,可得f(0)=1>0,f(2)=5﹣2a<0,即f(0)f(2)<0,故函数f(x)=x2﹣ax+1在区间(0,2)上恰好有一个零点,故答案为: 1.13.(5分)已知函数f(x)=lnx,0<a<b<c<1,则,,的大小关系是<<.【解答】解: 函数f(x)=lnx,0<a<b<c<1,设g(x)==,g′(x)=,可得0<x<e时,g′(x)>0,g(x)递增,由0<a<b<c<1,可得g(a)<g(b)<g(c),即<<.故答案为: <<.14.(5分)已知整数对的序列如下: (1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3)(3,2),(4,1),(1,5),(2,4)…则第57个数对是(2,10).【解答】解: (1,1),两数的和为2,共1个,(1,2),(2,1),两数的和为3,共2个,(1,3),(2,2),(3,1),两数的和为4,共3个,(1,4),(2,3),(3,2),(4,1),两数的和为5,共4个…∵1+2+3+4+5+6+7+8+9+10=55,∴第57个数对在第11组之中的第2个数,从而两数之和为12,应为(2,10);故答案为: (2,10).15.(5分)如图是一个几何体的三视图,根据图中的数据,可得该几何体的体积是2.【解答】解: 由三视图还原原几何体如图,该几何体为五面体ABCDEF,其中面ABCD为等腰梯形,EF∥BC∥AD,EF在平面ABCD上的射影在梯形ABCD的中位线上,分别过E、F作BC、AD的垂线,把原几何体分割为两个四棱锥及一个三棱柱,则几何体的体积V=.故答案为: 2.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程和演算步骤)16.(12分)已知α∈(0,π)且cos(α﹣)=.求cosα【解答】解: ∵α∈(0,π),∴,又,∴,∴=.17.(12分)已知向量=3i﹣4j,=6i﹣3j,=(5﹣m)i﹣(3+m)j,其中i,j分别是平面直角坐标系内x轴与y轴正方向上的单位向量.(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)对任意m∈[1,2],不等式2≤﹣x2+x+3恒成立,求x的取值范围.【解答】解: (1)依题意,以O为坐标原点建立直角坐标系,则A(3,﹣4),B(6,﹣3),C(5﹣m,﹣3﹣m),∵A,B,C能构成三角形,则A、B、C三点不共线,若A、B、C三点共线,则=t⇔(3,1)=t(2﹣m,1﹣m),即,解得;∴当m≠时,A,B,C能构成三角形;(2)∵=(2﹣m,1﹣m),m∈[1,2],∴2=(2﹣m)2+(1﹣m)2=2m2﹣6m+5=2(m﹣)2+,其对称轴为m=,当m∈[1,]时,该函数单调递减,当m∈[,2]时,该函数单调递增,∴当m=1或m=2时,2取得最大值1.∵对任意m∈[1,2],不等式2≤﹣x2+x+3恒成立,∴﹣x2+x+3≥=1,即x2﹣x﹣2≤0,解得: ﹣1≤x≤2.∴x的取值范围为[﹣1,2].18.(12分)列车提速可以提高铁路运输量.列车运行时,前后两车必须要保持一个“安全间隔距离d(千米)”,“安全间隔距离d(千米)”与列车的速度v(千米/小时)的平方成正比(比例系数k=).假设所有的列车长度l均为0.4千米,最大速度均为v0(千米/小时).问: 列车车速多大时,单位时间流量Q=最大?【解答】解: 因为,所以…(4分)≥2=,当且仅当v=40时取等号;当v0≥40时,Q≤50,所以v=40,Q max=50…(8分)当0<v0<40时,…(12分)19.(12分)如图,边长为a的正方体ABCD﹣A1B1C1D1中,E为CC1的中点.(1)求直线A1E与平面BDD1B1所成的角的正弦值(2)求点E到平面A1DB的距离.【解答】解: 以DA、DC、DD1所在的直线分别为x轴、y轴、z轴,建立空间直角坐标系如图,则D(0,0,0),A(a,0,0).B(a,a,0),C(0,a,0),E(0,a,),A1(a,0,a).…(3分)(1)设直线A1E与平面BDD1B1所成的角为α.因为AC⊥平面BDD1B1,所以平面BDD1B1的法向量为,又.,所以s.…(6分)(2)设=(x,y,1)为平面A1DB的法向量,∵,∴x=﹣1,y=1…(8分)∴又…(11分)即点E到平面A1DB的距离为.…(12分)20.(13分)在数列{a n}中,a1=1,a n=n2[1+++…+](n≥2,n∈N)(1)当n≥2时,求证: =(2)求证: (1+)(1+)…(1+)<4.【解答】(1)证明: 当n≥2时,,…(1分)所以…(4分)故…(5分)(2)证明: 当n≥2时,…(6分)=…(8分)=…(10分)=.…(11分)当n=1时,…(12分)综上所述,对任意n∈N*,不等式都成立.…(13分)21.(14分)已知函数f(x)=(x2+ax﹣2a﹣3)•e3﹣x(a∈R);(1)讨论f(x)的单调性;(2)设g(x)=(a2+)e x(a>0),若存在(a>0),x1,x2∈[0,4]使得|f (x1)﹣g(x2)|<1成立,求a的取值范围.【解答】.解: (1)f'(x)=﹣[x2+(a﹣2)x﹣3a﹣3]e3﹣x=﹣(x﹣3)(x+a+1)e3﹣x由﹣a﹣1=3得a=﹣4,当a=﹣4时,f′(x)=﹣(x﹣3)2e3﹣x≤0,此时函数在(﹣∞,+∞)上为减函数,当a<﹣4时,﹣a﹣1>3,由f'(x)<0⇒x<3或x>﹣a﹣1,f'(x)>0⇒3<x <﹣a﹣1.∴f(x)单调减区间为(﹣∞,3),(﹣a﹣1,+∞),单调增区间为(3,﹣a﹣1).当a>﹣4时,﹣a﹣1<3,f'(x)<0⇒x>3或x<﹣a﹣1,f'(x)>0⇒﹣a﹣1<x<3.∴f(x)单调减区间为(﹣∞,﹣a﹣1),(3,+∞),单调增区间为(﹣a﹣1,3).(2)由(1)知,当a>0时,﹣a﹣1<0,f(x)在区间[0,3]上的单调递增,在区间[3,4)]单调递减,而f(0)=﹣(2a+3)e3<0,f(4)=(2a+13)e﹣1>0,f(3)=a+6.那么f(x)在区间[0,4]上的值域是F=[﹣(2a+3)e3,a+6]又g(x)=(a2+)e x(a>0),在[0,4]上是增函数,对应的值域为G=[a2+,(a2+)e4],∵a>0,∴﹣(2a+3)e3<a+6≤a2+<(a2+)e4,|f(x1)﹣g(x2)|<1等价为g(x2)﹣f(x1)<1若存在(a>0),x1,x2∈[0,4]使得|f(x1)﹣g(x2)|<1成立,只需要g min(x)﹣f max(x)<1,∴a2+﹣a﹣6<1,得4a2﹣4a﹣3<0,得﹣<a<∵a>0,∴0<a<∴a的取值范围为(0,).2018年云南省玉溪市高考数学模拟试卷(02)一、选择题: 本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若全集U=R,集合,则M∩(∁U N)等于()A.{x|x<﹣2}B.{x|x<﹣2或x≥3}C.{x|x≥3}D.{x|﹣2≤x<3} 2.(5分)与函数y=10lg(x﹣1)的图象相同的函数是()A.y=x﹣1 B.y=|x﹣1|C. D.3.(5分)若a∈R,则a=2是(a﹣1)(a﹣2)=0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件4.(5分)在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B.C.D.5.(5分)对于定义在R上的函数y=f(x),若f(a)•f(b)<0(a,b∈R,且a<b),则函数y=f(x)在区间(a,b)内()A.只有一个零点B.至少有一个零点C.无零点D.无法判断6.(5分)二次函数f(x)满足f(x+2)=f(﹣x+2),又f(0)=3,f(2)=1,若在[0,m]上有最大值3,最小值1,则m的取值范围是()A.(0,+∞)B.[2,+∞)C.(0,2]D.[2,4]7.(5分)设奇函数f (x )的定义域为R,且f(x+4)=f(x),当x∈[4,6]时f (x)=2x+1,则f (x )在区间[﹣2,0]上的表达式为()A.f(x)=2x+1 B.f(x)=﹣2﹣x+4﹣1 C.f(x)=2﹣x+4+1 D.f(x)=2﹣x+1 8.(5分)正实数x1,x2及函数f(x)满足,且f(x1)+f(x2)=1,则f(x1+x2)的最小值为()A.4 B.2 C.D.二、填空题: 本大题共6小题,每小题5分,满分30分.9.(5分)已知命题P: “对任何x∈R,x2+2x+2>0”的否定是.10.(5分)函数f(x)=+lg(3x+1)的定义域是.11.(5分)设g(x)=,则g(g())=.12.(5分)下列命题: (1)梯形的对角线相等;(2)有些实数是无限不循环小数;(3)有一个实数x,使x2+2x+3=0;(4)x2≠y2⇔x≠y或x≠﹣y;(5)命题“a、b都是偶数,则a+b是偶数”的逆否命题“若a+b不是偶数,则a、b都不是偶数”;(6)若p或q”为假命题,则“非p且非q”是真命题;(7)已知a、b、c是实数,关于x的不等式ax2+bx+c≤0的解集是空集,必有a>0且△≤0.其中真命题的序号是.(把符合要求的命题序号都填上)13.(5分)若直线y=x+b与曲线有公共点,则b的取值范围是.14.(5分)函数f(x)的图象与函数g(x)=()x的图象关于直线y=x对称,则f(2x﹣x2)的单调减区间为.三、解答题: 本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤.15.(12分)已知函数f(x)=sin2x+sinx•cosx+2cos2x,x∈R(1)求函数f(x)的最小正周期和单调递减区间;(2)函数f(x)的图象可以由函数y=sin2x的图象经过怎样的变换得到?16.(12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.(I)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;(Ⅱ)当销售商一次订购了450件服装时,该服装厂获得的利润是多少元?(服装厂售出一件服装的利润=实际出厂单价﹣成本)17.(14分)如图,棱锥P﹣ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=2.(1)求证: BD⊥平面PAC;(2)求二面角P﹣CD﹣B的大小;(3)求点C到平面PBD的距离.18.(14分)已知函数f(x)对任意x,y∈R,满足f(x)+f(y)=f(x+y)+2,当x>0时,f(x)>2.(1)求证: f(x)在R上是增函数;(2)当f(3)=5时,解不等式: f(a2﹣2a﹣2)<3.19.(14分)若函数f(x)对定义域中任意x均满足f(x)+f(2a﹣x)=2b,则函数f(x)的图象关于点(a,b)对称.(1)已知函数f(x)=的图象关于点(0,1)对称,求实数m的值;(2)已知函数g(x)在(﹣∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(﹣∞,0)上的解析式;(3)在(1)、(2)的条件下,若对实数x<0及t>0,恒有g(x)<f(t)成立,求实数a的取值范围.20.(14分)设M是满足下列条件的函数构成的集合: ①方程f(x)﹣x=0有实数根;②函数f(x)的导数f'(x)满足0<f'(x)<1.(1)若函数f(x)为集合M中的任意一个元素,证明: 方程f(x)﹣x=0只有一个实根;(2)判断函数是否是集合M中的元素,并说明理由;(3)设函数f(x)为集合M中的元素,对于定义域中任意α,β,当|α﹣2012|<1,|β﹣2012|<1时,证明: |f(α)﹣f(β)|<2.2018年云南省玉溪市高考数学模拟试卷(02)参考答案与试题解析一、选择题: 本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若全集U=R,集合,则M∩(∁U N)等于()A.{x|x<﹣2}B.{x|x<﹣2或x≥3}C.{x|x≥3}D.{x|﹣2≤x<3}【解答】解: ∵全集U=R,M={x|x>2,或x<﹣2 },N={x|﹣1<x<3},∴C U N={x|x≤﹣1,或x≥3},M∩(C U N)={x|x<﹣2,或x≥3},故选B.2.(5分)与函数y=10lg(x﹣1)的图象相同的函数是()A.y=x﹣1 B.y=|x﹣1|C. D.【解答】解: 函数y=10lg(x﹣1)的定义域为{x|x>1},且y=x﹣1对于A,它的定义域为R,故错;对于B,它的定义域为R,故错;对于C,它的定义域为{x|x>1},解析式也相同,故正确;对于D,它的定义域为{x|x≠﹣1},故错;故选C.3.(5分)若a∈R,则a=2是(a﹣1)(a﹣2)=0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件【解答】解: ∵(a﹣1)(a﹣2)=0,∴a=1或a=2,根据充分必要条件的定义可判断:若a∈R,则a=2是(a﹣1)(a﹣2)=0的充分不必要条件,故选: A4.(5分)在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B.C.D.【解答】解: 根据指数函数y=()x可知a,b同号且不相等则二次函数y=ax2+bx的对称轴<0可排除B与D选项C,a﹣b>0,a<0,∴>1,则指数函数单调递增,故C不正确故选: A5.(5分)对于定义在R上的函数y=f(x),若f(a)•f(b)<0(a,b∈R,且a<b),则函数y=f(x)在区间(a,b)内()A.只有一个零点B.至少有一个零点C.无零点D.无法判断【解答】解: 函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,“f(a)•f(b)<0”∴函数f(x)在区间[a,b]上至少有一个零点,也可能有2,3或多个零点,但是如果函数不是连续函数,在区间(a,b)上可能没有零点;f(x)=,函数不是列出函数,定义域为R,没有零点.则函数y=f(x)在区间(a,b)内的零点个数,无法判断.故选: D.6.(5分)二次函数f(x)满足f(x+2)=f(﹣x+2),又f(0)=3,f(2)=1,若在[0,m]上有最大值3,最小值1,则m的取值范围是()A.(0,+∞)B.[2,+∞)C.(0,2]D.[2,4]【解答】解: ∵二次函数f(x)满足f(2+x)=f(2﹣x),∴其对称轴是x=2,可设其方程为y=a(x﹣2)2+b∵f(0)=3,f(2)=1∴解得a=,b=1函数f(x)的解析式是y=(x﹣2)2+1∵f(0)=3,f(2)=1,f(x)在[0,m]上的最大值为3,最小值为1,∴m≥2又f(4)=3,由二次函数的性质知,m≤4综上得2≤m≤4故选D7.(5分)设奇函数f (x )的定义域为R,且f(x+4)=f(x),当x∈[4,6]时f (x)=2x+1,则f (x )在区间[﹣2,0]上的表达式为()A.f(x)=2x+1 B.f(x)=﹣2﹣x+4﹣1 C.f(x)=2﹣x+4+1 D.f(x)=2﹣x+1【解答】解: 当x∈[﹣2,0]时,﹣x∈[0,2],∴﹣x+4∈[4,6],又∵当x∈[4,6]时,f(x)=2x+1,∴f(﹣x+4)=2﹣x+4+1.又∵f(x+4)=f(x),∴函数f(x)的周期为T=4,∴f(﹣x+4)=f(﹣x),又∵函数f(x)是R上的奇函数,∴f(﹣x)=﹣f(x),∴﹣f(x)=2﹣x+4+1,∴当x∈[﹣2,0]时,f(x)=﹣2﹣x+4﹣1.故选: B.8.(5分)正实数x1,x2及函数f(x)满足,且f(x1)+f(x2)=1,则f(x1+x2)的最小值为()A.4 B.2 C.D.【解答】解: 由已知得,由f(x1)+f(x2)=+=1于是可得: ,所以得: =≥2,①设=t,则①式可得: t2﹣2t﹣3≥0,又因为t>0,于是有: t≥3或t≤﹣1(舍),从而得≥3,即: ≥9,所以得: f(x1+x2)===≥1﹣=.所以有: f(x1+x2)的最小值为.故应选: C二、填空题: 本大题共6小题,每小题5分,满分30分.9.(5分)已知命题P: “对任何x∈R,x2+2x+2>0”的否定是∃x∈R,x2+2x+2≤0.【解答】解: 因为全称命题的否定是特称命题,所以,命题“对任何x∈R,x2+2x+2>0”的否定为: ∃x∈R,x2+2x+2≤0.故答案为: ∃x∈R,x2+2x+2≤010.(5分)函数f(x)=+lg(3x+1)的定义域是(﹣,1).【解答】解: 由,解得: ﹣.∴函数f(x)=+lg(3x+1)的定义域是(﹣,1).故答案为: (﹣,1).11.(5分)设g(x)=,则g(g())=.【解答】解: ∵g(x)=,∴g()=ln=﹣ln2<0,∴g(g())=g(﹣ln2)=e﹣ln2==2﹣1=.故答案为: .12.(5分)下列命题: (1)梯形的对角线相等;(2)有些实数是无限不循环小数;(3)有一个实数x,使x2+2x+3=0;(4)x2≠y2⇔x≠y或x≠﹣y;(5)命题“a、b都是偶数,则a+b是偶数”的逆否命题“若a+b不是偶数,则a、b都不是偶数”;(6)若p或q”为假命题,则“非p且非q”是真命题;(7)已知a、b、c是实数,关于x的不等式ax2+bx+c≤0的解集是空集,必有a>0且△≤0.其中真命题的序号是(2)(6).(把符合要求的命题序号都填上)【解答】解: 对于(1),梯形的对角线不一定相等,∴(1)错误;对于(2),无理数是无限不循环小数,无理数是实数,∴(2)正确;对于(3),△=22﹣4×1×3<0,方程x2+2x+3=0无实根,∴(3)错误;对于(4),x2≠y2⇔x≠y且x≠﹣y,∴(4)错误;对于(5),命题“a、b都是偶数,则a+b是偶数”的逆否命题“若a+b不是偶数,则a、b不都是偶数”,∴(5)错误;对于(6),“若p或q”为假命题,则它的否定“非p且非q”是真命题,(6)正确;对于(7),a、b、c是实数,关于x的不等式ax2+bx+c≤0的解集是空集,则必有a>0且△<0,∴(7)错误;综上,以上真命题的序号是(2)(6).故答案为: (2)(6).13.(5分)若直线y=x+b与曲线有公共点,则b的取值范围是.【解答】解: 如图所示: 曲线,即(x﹣2)2+(y﹣3)2=4(3≤y≤5,0≤x≤4),表示以A(2,3)为圆心,以2为半径的一个半圆.由圆心到直线y=x+b的距离等于半径2,可得=2,∴b=1+2,或b=1﹣2.结合图象可得﹣1≤b≤1+2,故答案为: .14.(5分)函数f(x)的图象与函数g(x)=()x的图象关于直线y=x对称,则f(2x﹣x2)的单调减区间为(0,1).【解答】解: 由y=g(x)=()x,得x=,∴函数g(x)=()x的反函数为,该函数为定义域内的减函数,由2x﹣x2>0,得0<x<2,函数y=2x﹣x2在(0,1)内为增函数,由复合函数的单调性可得,f(2x﹣x2)的单调减区间为(0,1).故答案为: (0,1).三、解答题: 本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤.15.(12分)已知函数f(x)=sin2x+sinx•cosx+2cos2x,x∈R(1)求函数f(x)的最小正周期和单调递减区间;(2)函数f(x)的图象可以由函数y=sin2x的图象经过怎样的变换得到?【解答】解: (1)f(x)=sin2x+x,=,=,=,函数的最小正周期为: T=.令: (k∈Z),解得: (k∈Z),函数的单调递减区间为: (k∈Z).(2)函数y=sin2x的图象向左平移个单位得到函数y=sin(2x+)的图象,再将函数图象向上平移各单位得到f(x)=sin(2x+)+的图象.16.(12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.(I)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;(Ⅱ)当销售商一次订购了450件服装时,该服装厂获得的利润是多少元?(服装厂售出一件服装的利润=实际出厂单价﹣成本)【解答】解: (I)当0<x≤100时,P=60当100<x≤500时,所以(II)设销售商的一次订购量为x件时,工厂获得的利润为L元,则此函数在[0,450]上是增函数,故当x=450时,函数取到最大值因此,当销售商一次订购了450件服装时,该厂获利的利润是5850元.17.(14分)如图,棱锥P﹣ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=2.(1)求证: BD⊥平面PAC;(2)求二面角P﹣CD﹣B的大小;(3)求点C到平面PBD的距离.【解答】(1)证明: 建立如图所示的直角坐标系,则A(0,0,0)、D(0,2,0)、P(0,0,2).在Rt△BAD中,AD=2,BD=2,∴AB=2.∴B(2,0,0)、C(2,2,0),∴=(0,0,2),=(2,2,0),=(﹣2,2,0)∴•=0,•=0,即BD⊥AP,BD⊥AC,又因为AP∩AC=A,∴BD⊥平面PAC.(2)解: 由(1)得=(0,2,﹣2),=(﹣2,0,0).设平面PCD的法向量为=(x,y,z),即,故平面PCD的法向量可取为=(0,1,1)∵PA⊥平面ABCD,∴=(0,0,2)为平面ABCD的法向量.设二面角P﹣CD﹣B的大小为θ,依题意可得cosθ=,∴二面角P﹣CD﹣B的大小是45°.(3)解: 由(1)得=(2,0,﹣2),=(0,2,﹣2),同理,可得平面PBD的法向量为=(1,1,1).∵=(2,2,﹣2),∴C到面PBD的距离为d=||=.18.(14分)已知函数f(x)对任意x,y∈R,满足f(x)+f(y)=f(x+y)+2,当x>0时,f(x)>2.(1)求证: f(x)在R上是增函数;(2)当f(3)=5时,解不等式: f(a2﹣2a﹣2)<3.【解答】解: (1)设x1<x2,则x2﹣x1>0,∵x>0,f(x)>2;∴f(x2﹣x1)>2;又f(x2)=f[(x2﹣x1)+x1]=f(x2﹣x1)+f(x1)﹣2>2+f(x1)﹣2=f(x1),即f(x2)>f(x1).所以: 函数f(x)为单调增函数(2)∵f(3)=f(2+1)=f(2)+f(1)﹣2=[f(1)+f(1)﹣2]+f(1)﹣2=3f (1)﹣4=5∴f(1)=3.即f(a2﹣2a﹣2)<3⇒f(a2﹣2a﹣2)<f(1)∴a2﹣2a﹣2<1⇒a2﹣2a﹣3<0解得: ﹣1<a<3.19.(14分)若函数f(x)对定义域中任意x均满足f(x)+f(2a﹣x)=2b,则函数f(x)的图象关于点(a,b)对称.(1)已知函数f(x)=的图象关于点(0,1)对称,求实数m的值;(2)已知函数g(x)在(﹣∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(﹣∞,0)上的解析式;(3)在(1)、(2)的条件下,若对实数x<0及t>0,恒有g(x)<f(t)成立,求实数a的取值范围.【解答】解: (1)因为函数f(x)的图象关于点(0,1)对称,∴f(x)+f(﹣x)=2,即,所以2m=2,∴m=1.(2)因为函数g(x)在(﹣∞,0)∪(0,+∞)上的图象关于点(0,1)对称,则g(x)+g(﹣x)=2,∴g(x)=2﹣g(﹣x),∴当x<0时,则﹣x>0,∴g(﹣x)=x2﹣ax+1,∴g(x)=2﹣g(﹣x)=﹣x2+ax+1;(3)由(1)知,,∴f(t)min=3,又当x<0时,g(x)=﹣x2+ax+1∴g(x)=﹣x2+ax+1<3,∴ax<2+x2又x<0,∴,∴.20.(14分)设M是满足下列条件的函数构成的集合: ①方程f(x)﹣x=0有实数根;②函数f(x)的导数f'(x)满足0<f'(x)<1.(1)若函数f(x)为集合M中的任意一个元素,证明: 方程f(x)﹣x=0只有一个实根;(2)判断函数是否是集合M中的元素,并说明理由;(3)设函数f(x)为集合M中的元素,对于定义域中任意α,β,当|α﹣2012|<1,|β﹣2012|<1时,证明: |f(α)﹣f(β)|<2.【解答】解: (1)证明: 令h(x)=f(x)﹣x,则h′(x)=f′(x)﹣1<0,故h (x)是单调递减函数,所以,方程h(x)=0,即f(x)﹣x=0至多有一解,又由题设①知方程f(x)﹣x=0有实数根,所以,方程f(x)﹣x=0有且只有一个实数根…..(4分)(2)易知,,满足条件②;令,则,…..(7分)又F(x)在区间[e,e2]上连续,所以F(x)在[e,e2]上存在零点x0,即方程g(x)﹣x=0有实数根,故g(x)满足条件①,综上可知,g(x)∈M…(9分)(3)证明: 不妨设α<β,∵f′(x)>0,∴f(x)单调递增,∴f(α)<f(β),即f(β)﹣f(α)>0,令h(x)=f(x)﹣x,则h′(x)=f′(x)﹣1<0,故h(x)是单调递减函数,∴f(β)﹣β<f(α)﹣α,即f(β)﹣f(α)<β﹣α,∴0<f(β)﹣f(α)<β﹣α,则有|f(α)﹣f(β)|<|α﹣β|≤|α﹣2012|+|β﹣2012|<2.(14分)2018年云南省玉溪市高考数学模拟试卷(03)一.选择题: 本卷共12小题每题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)函数f(x)=+lg(x+1)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)D.(﹣1,1)∪(1,+∞)2.(5分)下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.y= D.y=x|x|3.(5分)已知为纯虚数,则实数a的值为()A.2 B.﹣2 C.﹣ D.4.(5分)曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是()A.﹣9 B.﹣3 C.9 D.155.(5分)公比为的等比数列{a n}的各项都是正数,且a3a11=16,则log2a16=()A.4 B.5 C.6 D.76.(5分)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6]D.7.(5分)设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π9.(5分)△ABC中,AB边的高为CD,若=,=,•=0,||=1,||=2,则=()A. B. C. D.10.(5分)设a>b>c>0,则2a2++﹣10ac+25c2的最小值是()A.2 B.4 C.D.511.(5分)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f (x)=x3﹣x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为()A.6 B.7 C.8 D.912.(5分)函数y=x2(x>0)的图象在点(a k,a k2)处的切线与x轴交点的横坐,k为正整数,a1=16,则a1+a3+a5=()标为a k+1A.18 B.21 C.24 D.30二.填空题: 本大题共4个小题,每小题5分,共20分,把答案填在题中横线上. 13.(5分)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以S n表示{a n}的前项和,则使得S n达到最大值的是.14.(5分)在正三角形ABC中,D是BC上的点.若AB=3,BD=1,则=.15.(5分)设,则f(1)+f(2)+…+f(n)+f1(1)+f2(1)+…+f n(1)=.16.(5分)不等式|x+3|﹣|x﹣1|≤a2﹣3a对任意实数x恒成立,则实数a的取值范围为.三.解答题: (本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.(10分)在△ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1﹣sin(1)求sinC的值(2)若a2+b2=4(a+b)﹣8,求边c的值.18.(12分)设函数f(x)=2|x+1|﹣|x﹣1|,求使f(x)≥2的x的取值范围.19.(12分)已知等差数列{a n}满足: a3=7,a5+a7=26,{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.20.(12分)设x,y都是正数,且x+y>2,求证: <2中至少有一个成立.21.(12分)已知函数f(x)=x3+ax2+bx+c的一个零点为x=1,另外两个零点分别在(0,1)和(1,+∞)内.(1)求a+b+c;(2)求的取值范围.22.(12分)(理)已知函数f(x)=ax﹣,曲线y=f(x)在点(2,f(2))处的切线方程为: 7x﹣4y﹣12=0(1)求f(x)的解析式(2)曲线f(x)上任一点的切线与直线x=0和直线y=x所围成的三角形面积的定值,并求出此定值.2018年云南省玉溪市高考数学模拟试卷(03)参考答案与试题解析一.选择题: 本卷共12小题每题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)函数f(x)=+lg(x+1)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)D.(﹣1,1)∪(1,+∞)【解答】解: 要使函数f(x)有意义,则,即,解得x>﹣1且x≠1,即函数的定义域为(﹣1,1)∪(1,+∞),故选: D2.(5分)下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.y= D.y=x|x|【解答】解: A.y=x+1为非奇非偶函数,不满足条件.B.y=﹣x2是偶函数,不满足条件.C.y=是奇函数,但在定义域上不是增函数,不满足条件.D.设f(x)=x|x|,则f(﹣x)=﹣x|x|=﹣f(x),则函数为奇函数,当x>0时,y=x|x|=x2,此时为增函数,当x≤0时,y=x|x|=﹣x2,此时为增函数,综上在R上函数为增函数.故选: D3.(5分)已知为纯虚数,则实数a的值为()A.2 B.﹣2 C.﹣ D.【解答】解: 已知==为纯虚数,∴2﹣a=0,且1+2a≠0,解得a=2,故选A.4.(5分)曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是()A.﹣9 B.﹣3 C.9 D.15【解答】解: ∵y=x3+11∴y'=3x2则y'|x=1=3x2|x=1=3∴曲线y=x3+11在点P(1,12)处的切线方程为y﹣12=3(x﹣1)即3x﹣y+9=0令x=0解得y=9∴曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是9故选C5.(5分)公比为的等比数列{a n}的各项都是正数,且a3a11=16,则log2a16=()A.4 B.5 C.6 D.7【解答】解: ∵公比为的等比数列{a n}的各项都是正数,且a3a11=16,∴,∴a7=4,∴=32,∴log2a16=log232=5.故选B.6.(5分)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()。