大学物理实验-导热系数的测定
- 格式:ppt
- 大小:1.53 MB
- 文档页数:42
实验4—7 导热系数的测定热传导是热量交换(热传导、对流、辐射)的三种基本方式之一,导热系数(又称热导率)是反映材料热传导性质的物理量,表示材料导热能力的大小。
材料的导热机理在很大程度上取决于它的微观结构,热量的传递依靠原子、分子绕平衡位置的振动以及自由电子的迁移。
在金属中电子流起支配作用,在绝缘体和大部分半导体中则以晶格振动起主导作用。
因此,某种材料的导热系数不仅与构成材料的物质种类密切相关,而且还与它的微观结构、温度、压力及杂质含量有关。
在科学实验和工程设计中,所用材料的导热系数都需要用实验的方法精确测定。
物体按导热性能可分为良导体和不良导体。
对于良导体一般用瞬态法测量其导热系数,即通过测量正在导热的流体在某段时间内通过的热量。
对于不良导体则用稳态平板法测量其导热系数。
所谓稳态即样品内部形成稳定的温度分布。
本实验就是用稳态法测量不良导体的导热系数。
【实验目的】1. 了解热传导现象的物理过程,巩固和深化热传导的基本理论。
2. 学习用稳态平板法测量不良导体的导热系数。
3. 学会用作图法求冷却速率。
4. 了解实验材料的导热系数与温度的关系。
【实验原理】1. 导热系数根据1882年傅立叶(J.Fourier )建立的热传导理论,当材料内部有温度梯度存在时,就有热量从高温处传向低温处,这时,在dt 时间内通过dS 面积的热量dQ ,正比于物体内的温度梯度,其比例系数是导热系数,即:dS dzdT dt dQ λ-= (4-7-1) 式中,dtdQ 为传热速率;dz dT 为与面积dS 相垂直方向上的温度梯度,负号则表示热量从高温处传到低温处;λ为导热系数。
在国际单位制中,导热系数的单位为-1-1W m K ⋅⋅。
2. 用稳态平板法测不良导体的导热系数设圆盘B 为待测样品,如图4-7-1所示,待测样品B 、散热盘C 二者的规格相同(其位置如图4-7-2所示),厚度均为h 、截面积均为S (2S D π=,D 为圆盘直径),圆盘B大学物理实验 78 上下两面的温度1T 和2T 保持稳定,侧面近似绝热,则根据(4-7-1)式可知传热速率为: S h T T S h T T dt dQ 2112-=--=λλ (4-7-2) 为了减小侧面散热的影响,圆盘B 的厚度h 不能太大。
实验1 测定不良导体的导热系数一 引语 (Introduction )热量的传输方式有多种,如辐射、对流、传导等。
对于固体材料而言,热传导是热量传输的方式之一,它是物体直接接触温度不均匀时而产生的。
导热系数是反映材料的导热性能的重要参数之一;在工程技术方面是不可缺少的。
如熔炼炉、传热管道、散热器、加热器,以及日常生活中水瓶、冰箱等都要考虑它们的导热程度大小。
所以,对导热系数的研究和测量就显得很有必要。
我们把导热系数大、导热性能较好的材料称为良导体;而把导热系数小,导热性能较差的材料称为不良导体。
一般说来,金属的导热系数比非金属的要大;固体的导热系数比液体的要大;气体的导热系数最小。
本实验仅介绍一种比较简单的利用稳态法测不良导体的导热系数的实验方法。
稳态法是通过热源在样品内部形成一稳定的温度分布后,用热电偶测出其温度的方法。
二 实验目的 (Purpose)1.掌握稳态法测不良导体的导热系数的方法。
2.了解物体散热速率和传热速率的关系。
3.理解温差热电偶特性。
三 实验仪器 (Instruments)红外灯、传热筒、杜瓦瓶、温差电偶、待测橡胶样品、调压器、数字电压表、硅油、停表。
图 1 导热系数测定仪装置图杜瓦瓶样品数字电压表热电偶四 实验原理 (principle)1. 热传导方程当物体内部各处的温度不均匀时,就会有热量从温度较高处传递到温度较低处,这种现象叫热传导现象。
测定导热系数的原理是法国数学、物理学家约瑟夫·傅立叶给出的导热方程式。
该方程式指出,在物体内部,垂直于导热方向上,二个相距为h ,面积为A ,温度分别为1θ、2θ的平行平面,在t ∆秒内,从一个平面传到另一平面的热量Q ∆,满足下述表达式:ht QA 21θθ∆∆λ-= (2-6-1)式中tQ ∆∆为传热速率,A 为样品面积,h 为样品厚度,1θ、2θ分别为样品上下表面温度,λ为该物体的导热系数,其值等于相距单位长度的两平面的温度相差一个单位时,在单位时间内,垂直通过单位面积所传递的热量。
实验1 导热系数的测量【实验目的】1、了解热传导现象的物理过程2、学习用稳态平板法测量材料的导热系数 3.学习用作图法求冷却速率4、掌握一种用热电转换方式进行温度测量的方法 【实验仪器】1、YBF-3导热系数测试仪 一台2、冰点补偿装置 一台3、测试样品(硬铝、硅橡胶、胶木板) 一组4、塞尺 一把 【实验原理】导热系数(热导率)是反映材料热性能的物理量,导热是热交换三种(导热、对流和辐射)基本形式之一,是工程热物理、材料科学、固体物理及能源、环保等各个研究领域的课题之一,要认识导热的本质和特征,需了解粒子物理而目前对导热机理的理解大多数来自固体物理的实验。
材料的导热机理在很大程度上取决于它的微观结构,热量的传递依靠原子、分子围绕平衡位置的振动以及自由电子的迁移,在金属中电子流起支配作用,在绝缘体和大部分半导体中则以晶格振动起主导作用。
因此,材料的导热系数不仅与构成材料的物质种类密切相关,而且与它的微观结构、温度、压力及杂质含量相联系。
在科学实验和工程设计中所用材料的导热系数都需要用实验的方法测定。
(粗略的估计,可从热学参数手册或教科书的数据和图表中查寻)1882年法国科学家J •傅里叶奠定了热传导理论,目前各种测量导热系数的方法都是建立在傅里叶热传导定律基础之上,从测量方法来说,可分为两大类:稳态法和动态法,本实验采用的是稳态平板法测量材料的导热系数。
为了测定材料的导热系数,首先从热导率的定义和它的物理意义入手。
热传导定律指出:如果热量是沿着Z 方向传导,那么在Z 轴上任一位置Z 0 处取一个垂直截面积ds (如图1),以dzdT表示在z 处的温度梯度,以dtdQ表示在该处的传热速率(单位时间内通过截面积ds 的热量),则传热速率与温度梯度及面积成正比,热传导定律可表示成:ds dzdTdt dQ Z 0)(λ-= (1) 1T 2Tz(图1)式中的负号表示热量从高温区向低温区传导(即热传导的方向与温度梯度的方向相反)。
导热系数测量实验报告篇一:导热系数实验报告实验2.8 用稳态平板法测定不良导体的导热系数实验报告一、实验目的.(1)用稳态平板法测定不良导体的导热系数. (2)利用物体的散热速率求传热速率. 二、实验器材.实验装置、红外灯、调压器、杜瓦瓶、数字式电压表. 三、实验原理.导热是物体相互接触时,由高温部分向低温部分传播热量的过程.当温度的变化只是沿着一个方向(设z方向)进行时,热传导的基本公式可写为dTdQ=?λ ?????????---------------------------------------------(2.8.1)它表示在dt时间内通过dS面积的热量dQλ为导热系数,它的大小由物体????dT本身的物理性质决定,单位为W????1????1,它是表征物质导热性能大小的物理量,式中符号表示热量传递向着温度降低的方向进行.在图中,B为待测物,它的上下表面分别和上下铜、铝盘接触,热量由高温铝盘通过待测物B向低温铜盘传递.若B 很薄,则通过B侧面向周围环境的散热量可以忽略不计,视热量只沿着垂直待测板B的方向传递.那么在稳定导热(即温度场中各点的温度不随时间而变)的情况下,在?t时间内,通过面积为S、厚度为L的匀质圆板的热量为????????? ---------------------------------------------(2.8.2)式中,???为匀质圆板两板面的恒定温差,若把(2.8.2)式写成?Q=?λ??????=?λ?? ---------------------------------------------(2.8.3)的形式,那么???便为待测物的导热速率,只要知道了导热速率,由(2.8.3)式即可求出λ. 实验中,使上铝盘A和下铜盘P分别达到恒定温度??1、??2,并设??1??2,即热量由上而下传递,通过下铜盘P向周围散热.因为??1和??2不变,所以,通过B的热量就等于C向周围散发的热量,即B 的导热速率等于C的散热速率.因此,只要求出了C在温度??2时的散热速率,就求出了B的导热速率???.因为P的上表面和B的下表面接触,所以C的散热面积只有下表面面积和侧面积之和,设为????,而实验中冷却曲线是C全部裸露于空气中测出来的,即在P的上下表面和侧面积都散热的情况下记录的.设其全部表面积为??全,根据散热速率与散热面积成正比的关系可得??? ????????????部全=??部全---------------------------------------------(2.8.4)式中,???为??部面积的散热速率,???为??全面积的散热速率.而散热速率???就部全部?????????等于(2.8.3)式中的导热速率,这样(2.8.3)式便可写作????????? =?λ?? 部---------------------------------------------(2.8.5)设下铜盘直径为D,厚度为δ,那么有??部??全??2=?? +????????2=2?? +??????---------------------------------------------(2.8.6)???由比热容的基本定义c=Δ????Δ??‘,得ΔQ=cmΔ??’,故???cmΔ??’= 全---------------------------------------------(2.8.7)将(2.8.6)式、(2.8.7)式代入(2.8.4)式得?????+4?? =?????? 部---------------------------------------------(2.8.8)将(2.8.8)式代入(2.8.5)式得λ=?????????????/2---------------------------------------------(2.8.9)式中,m为下铜盘的质量,c为下铜盘的比热容. 四、实验内容.(1)用游标卡尺多次测量下铜盘的直径D、厚度δ和待测物厚度L,然后取其平均值.下铜盘质量m由天平测出,其比热容c=3.850×102??? kg?℃?1.(2)实验时,先将待测样品放在散热盘P上面,然后将发热铝盘A放在样品盘P上方,再调节三个螺栓,使样品盘的上下两个表面与发热铝盘A和散热铜盘P紧密接触.(3)将集成温度传感器插入散热盘P侧面的小孔中,并将集成温度传感器接线连接到仪器面板的传感器插座.用专用导线将仪器机箱后部插座与加热组件圆铝盘上的插座加以连接.为了保证温度测量的准确性,采用同一个温度传感器测温,在需要测量发热盘A和散热盘P温度时,采用手动操作,变换温度传感器的测温对象.(4)接通电源,在“温度控制”仪表上设置加温的上限温度.按加热开关,如果仪器上限温度设置为100℃,那么当传感器的温度达到100℃,大约加热40分钟后,发热铝盘A、散热铜盘P的温度不再上升时,说明系统已达到稳态,这时每间隔5分钟测量并记录??1和??2的值.(5)测量散热盘在稳态值??2附近的散热速率.移开发热铝盘A,取下待测盘,并将发热铝盘A的底面和铜盘P直接接触,当P盘的温度上升到高于稳态值??2值若干度(例如5℃左右)后,再将发热铝盘A移开,让散热铜盘P自然冷却.这时候,每隔30s记录此时的??2值并记录.五、实验数据记录与处理.表一下铜盘直径、厚度,待测物厚度实验结果记录表下铜盘质量为m=655 g.取平均值,稳态时,??1=102.3℃、??2=79.2℃.表三测下铜盘散热速率实验结果记录表利用作图法求下铜盘的散热速率得下铜盘散热速率为K=0.02976T????1. 由(2.。
不良导体的热导系数的测量实验简介材料的导热系数是反映材料热性能的物理量,导热机理在很大程度上取决与它的微观结构,热量的传递依靠原子、分子围绕平衡位置的振动以及自由电子的迁移。
导热系数不仅与构成材料的物质种类密切相关,而且与它的微观结构、温度、压力及杂质含量相联系。
测量导热系数的方法比较多,但可以归并为两类基本方法:一类是稳态法,另一类是动态法。
用稳态法时,先用热源对测试样品进行加热,并在样品内部形成稳定的温度分析,然后进行测量。
而在动态法中,待测样品中的温度分布是随时间变化的,例如按周期性变化等。
本实验采用稳态法进行测量。
实验目的了解热传导现象的物理过程,学习用稳态平板法测量不良导体的导热系数并用作图法求冷却速率。
实验仪器待测橡皮垫、黄铜板、加热铜质圆盘(带隔热层、红外灯、热电偶、杜瓦瓶、冰水混合物、0〜250V变压器、秒表、游标卡尺等实验原理1,导热系数当物体内存在温度梯度时,热量从高温流向低温,谓之热传导或传热,传热速率正比于温度梯度以及垂直于温度梯度的面积,比例系数为热导系数或导热率:dQ dT 皿一、上二—九——dS(1)dt dx2,不良导体导热系数的测量厚度为h、截面面积为S的平板形样品(橡胶板)夹在加热圆盘和黄铜盘之间。
热量由加热盘传入。
加热盘和黄铜盘上各有一小孔,热电偶可插入孔内测量温度,两面高低温度恒定为工和T2时,传热速率为dQ(2)dtdQ' dt 为盘自由散热速率。
而对于温度均匀的物体,有由于传热速率很难测量,但当工和T2稳定时,传入橡胶板的热量应等于它向周围的散热量。
这时移去橡胶板,使加热盘与铜盘直接接触,将铜盘加热到高于T2约10度,然后再移去加热盘,让黄铜盘全表面自由放热。
每隔30秒记录铜盘的温度,一直到其温度低于1,据此求出铜盘在T附近的冷却速率dT。
2dt铜盘在稳态传热时,通过其下表面和侧面对外放热;而移去加热盘和橡胶板后是通过上下表面以及侧面放热。
物体的散热速率应与它们的散热面积成正比,dQ _兀R^R + 2h) dQ ~dt—兀R(2 R + 2 h )IT(3)式中dQ' dT -- 二 mc — di -- dt这样,就有dQ _ 兀R ^R + 2 h )、 ~dt —兀R (2 R + 2h )结合(2)式,可以求出导热系数: 九二m 铜。
大学物理实验——测定气体导热系数本实验旨在测定气体导热系数,通过该实验,我们可以掌握气体导热的基本原理和测定方法。
实验原理:热传导是一种物质内部热量传递的方式,当物体的一部分温度升高,部分分子动能增加,随之将多余的能量传递给邻近分子,这样能量逐渐从高温区转移到低温区,直到整个物体达到热平衡。
在气体中,热传导只能通过分子之间的碰撞,因此气体的热传导主要与气体分子的平均自由程有关。
气体不同于固体和液体,气体的物态比较松散,分子之间的距离远大于其大小,而且由于气体的热运动导致气体分子彼此迅速交换着位置和速度。
因此,气体的热传导比固体和液体要弱,热传导系数也要小得多。
气体的导热系数的大小与气体的种类、压力、密度、温度等有关。
该实验测量的是常温下氢气的导热系数,根据气体形状对传热的影响,可以使用圆柱形长短不等的传热棒,利用传热棒的热流量和温度梯度来计算气体的导热系数。
实验设备:传热棒(一个长、一个短)、电流表、电压表、热电偶、恒温水浴池、压力计、气体压缩机等。
实验步骤:(1)首先,在氢气压缩机上打开压力调节阀,将氢气压力调到1.5 MPa左右。
(2)将传热棒置于恒温水浴池中,并通过继电器接通到电源上,使传热棒发热。
(3)在传热棒的长短两端接上电压表、电流表、热电偶等仪器,测量热流量、电压、电流和温度。
(4)将传热棒加热到稳定状态,记录长短传热棒的电流、电压、温度差等数据。
(5)启动气体压缩机,将氢气充入装置中,利用压力计调节气体压力。
(7)重复以上操作,取多组数据。
根据传热学理论,气体导热系数k的计算公式为:k = Q / (2πLΔT)其中,Q为传热棒放出的热量,L为传热棒(长)的长度,ΔT为传热棒的温差。
由于短传热棒的长度很短,可以忽略它的导热作用,不考虑它的热流量,因此,计算气体导热系数时,只需要考虑长传热棒的热流量即可。
Q = P × U × A其中,P为电功率,U为电压,A为传热棒截面面积。
大学物理实验报告-金属导热系数的测量.doc 实验目的:测量不同金属材料的导热系数,并对比分析各材料之间的差异。
实验原理:热传导指的是热量由高温区域向低温区域传递的过程,其速度与介质的导热系数有关。
金属导热系数较高,是热传导的良好介质。
导热系数的计算公式如下:λ = Q/(A * ΔT/t)其中,λ为导热系数;Q为传热量;A为传热面积;ΔT为温度差;t为传热时间。
实验器材:导热实验装置、热传导棒、温度计、计时器、金属样本(铜、铁、铝、钢)。
实验步骤:1. 将实验器材准备整齐,待其达到稳定状态。
按照实验所需温度,将金属样本均匀地放置在导热实验装置的导热棒上。
2. 通过温度计记录下初始温度,并开启计时器。
在保持恒温状态下,测量金属样本的时间变化,并记录每一次测量的温度。
3. 在一定时间内,测量金属样本的温度变化并记录每隔一定时间的温度。
4. 根据实验公式,计算出各种金属的导热系数,并进行对比分析。
实验结果分析:根据实验数据,我们得出不同金属的导热系数如下表所示:| 金属材料 | 导热系数(W/mK) || -------- | ---------------- || 铜 | 385 || 铁 | 80 || 铝 | 205 || 钢 | 50 |通过我们的实验数据可以看出,各种金属的导热系数相差较大。
其中,铜的导热系数最高,而钢的导热系数最低。
这与材料的基本物理特性有关,如原子间距离、原子内电子结构等,不同的材料对热传导的效应差别十分明显。
综合考虑各种因素,我们得到的结果是,当介质材料导热系数越高时,它对热传导的效应就越好,与之硬度和密度等基本物理特性也有关。
这意味着,在特定的工程应用场景中,我们可以根据金属导热系数和其他物理特性,选择适合的金属材料来进行设计。
实验结论:在本实验中,我们成功地测量了不同金属材料的导热系数。
结果表明,各种材料导热系数的差异明显,这是因为各种金属材料的物理特性不同所导致。