成都中考数学试卷(word版)
- 格式:doc
- 大小:1.33 MB
- 文档页数:9
2019年成都中考数学试题全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分,考试时间120分钟A 卷(共100分) 第I 卷(选择题,共30分)一.选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求) 1.比-3大5的数是( )A.-15B.-8C.2D.8 【解析】此题考查有理数的加减,-3+5=2,故选C2.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )A. B. C. D.【解析】此题考查立体几何里三视图的左视图,三视图的左视图,应从左面看,故选B 3.2019年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年.将数据5500万用科学计数法表示为( )5500×104 B.55×106 C.5.5×107 D.5.5×108【解析】此题考查科学记数法(较大数),将一个较大数写成na 10⨯的形式,其中101<≤a ,n 为正整数,故选C4.在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为( ) A.(2,3) B.(-6,3) C.(-2,7) D.(-2,-1)【解析】此题考查科学记数法(较大数),一个点向右平移之后的点的坐标,纵坐标不变,横坐标加4,故选A5.将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=30°,则∠2的度数为( )A.10°B.15°C.20°D.30°【解析】此题考查平行线的性质(两直线平行内错角相等)以及等腰直角三角形的性质,故选B6.下列计算正确的是( )A.b b ab 235=-B.242263b a b a =-)( C.1)1(22-=-a a D.2222a b b a =÷ 【解析】此题考查正式的运算,A 选项明显错误,B 选项正确结果为249b a ,C 选项122+-a a ,故选D7. 分式方程1215=+--xx x 的解为( ) 8.A.1-=xB.1=xC.2=xD.2-=x 【解析】此题考查分式方程的求解.选A8.某校开展了主题为“青春·梦想”的艺术作品征集互动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50则这组数据的中位数是( )A.42件B.45件C.46件D.50件【解析】此题考查数据统计相关概念中中位数的概念,中位数表示将这列数按从小到大排列后,最中间的一个数或者最中间的两个数的平均值,故选C 。
中考数学试题一、选择题1.如图图形中是中心对称图形的为()A.B. C.D.2.如图,实数a,b,c,d在数轴上表示如下,则最小的实数为()A.aB.bC.cD.d3.如图,以A、B、C为顶点的三角形与以D、E、F为顶点的三角形相似,则这两个三角形的相似比为()A.2:1B.3:1C.4:3D.3:24.一个由相同正方体堆积而成的几何体如图所示,从正面看,这个几何体的形状是()。
A.B.C.D.5.已知m3=n4,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=12二、填空题(共24分)6.把一张半径为2cm,圆心角为120°的扇形纸片卷成一个圆锥的侧面,那么这个圆锥的底面积是。
7.小明和小红在阳光下行走,小明身高1.75米,他的影长2.0米,小红比小明矮7厘米,此刻小红的影长是()米。
8.如图,正方形ABCD的面积为4,点E,F,G,H分别为边AB,BC,CD,AD的中点,则四边形EFGH的面积为____.9.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B、F的坐标分别为(-4,4)、(2,1)则位似中心的坐标为()。
(x<0)图象上的点,过点A作y轴10.如图,在平面直角坐标系中,点A是函数y=kx的垂线交y轴于点B,点C在x轴上,若△ABC的面积为1,则k的值为()。
三、解答题(共20分)11.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E。
求证:DE是⊙O的切线。
12.如图,D,E分别是△ABC的边AB,AC上的点,DE∥BC,AB=7,AD=5,DE=10,求BC的长.13.如图,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C,在x轴的正半轴上(C在B的右侧),BC=2,AB=2根号3,△ADC与△ABC关于AC 所在的直线对称。
高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)注意事项:1. 全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟.2. 五城区及高新区的考生使用答题卡作答,郊区(市)县的考生使用机读卡加答题卷作答。
3. 在作答前,考生务必将自己的姓名、准考证号涂写在答题卡(机读卡加答题卷)上。
考试结束,监考人员将试卷和答题卡(机读卡加答题卷) 一并收回。
4.选择题部分必须使用2B铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚。
5.请按照题号在答题卡(机读卡加答题卷)上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
6.保持答题卡面(机读卡加答题卷)清洁,不得折叠、污染、破损等。
A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题:(每小题3分,共3 0分)每小题均有四个选项,其中只有一项符合题目要求。
1. 4的平方根是(A)±16 (B)16(C)±2 (D)22.如图所示的几何体的俯视图是(A)(B)(C)(D)3. 在函数y=x的取值范围是(A)12x≤ (B)12x<(C)12x≥ (D)12x>4. 近年来,随着交通网络的不断完善,我市近郊游持续升温。
据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为(A)420.310⨯人 (B) 52.0310⨯人(C) 42.0310⨯人 (D) 32.0310⨯人B时间人数5.下列计算正确的是(A )2x x x += (B) 2x x x ⋅=(C)235()x x =(D)32x x x ÷=6.已知关于x 的一元二次方程20(0)mx nx k m ++=≠有两个实数根,则下列关于判别式24n mk -的判断正确的是(A) 240n mk -< (B)240n mk -= (C)240n mk -> (D)240n mk -≥7.如图,若AB 是⊙0的直径,CD 是⊙O 的弦,∠ABD=58°, 则∠BCD=(A)116° (B)32° (C)58° (D)64°8.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是 (A)0m > (B)0n < (C)0mn < (D)0m n ->9. 为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了成如图所示的条形统计图.根据图中提供的信息,这50人一周的体育锻炼时间的众数和中位数分别是(A)6小时、6小时 (B) 6小时、4小时 (C) 4小时、4小时 (D)4小时、6小时 10.已知⊙O 的面积为9π2cm ,若点0到直线l 的距离为πcm ,则直线l 与⊙O 的位置关系是(A)相交 (B)相切 (C)相离 (D)无法确定BBB 第Ⅱ卷《非选择题,共7()分)二、填空题:(每小题4分,共l 6分)11. 分解因式:.221x x ++=________________。
word版)2021年成都市中考数学试卷真题(含国标答案和详细解析)2021年成都市中考数学A卷(共100分)第I卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.7的倒数是A)-1/7(B)1/7(C)-7(D)72.如右图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是3.2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展。
将数据3亿用科学记数法表示为A)3 × 105(B)3 × 106(C)3 × 107(D)3 × 1084.在平面直角坐标系xy中,点M(-4,2)关于x轴对称的点的坐标是(A)(-4,-2)(B)(4,2)(C)(-4,2)(D)(4,-2)5.下列计算正确的是A)3mn-2mn=mn(B)(mn)2=m2n2(C)(-m)3·m=m4(D)(m+n)2=m2+n26.如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是A)BE=DF(B)∠BAE=∠DAF(C)AE=AD(D)∠AEB=∠AFD7.菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是(A)34(B)35(C)36(D)408.分式方程x-3/(2-x)+3-x/(3-x)=1的解为(A)x=2(B)x=-2(C)x=1(D)x=-19.《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的2/3,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为10.如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为(A)3π(B)6π(C)8π(D)12π第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.因式分解:x2- 4 = (x+2)(x-2)。
2024成都中考数学真题及答案第一部分:选择题1.若一条直线的斜率为1/2,该直线在坐标系中的斜率为() A. 1/2 B.-1/2 C. 2 D. -22.计算 3 - |-7| + 2×(-5) 的值是() A. -21 B. -13 C. -7 D. 13.已知若两个角互补,则其中一个角一定是() A. 锐角 B. 直角 C. 钝角D. 旋转角4.若一个正方形的边长为x,则其面积为() A. x^2 B. 2x C. x/2 D. 4x5.设直线L1和直线L2垂直,直线L1的斜率为3/4,则L2的斜率为() A. 4/3 B. 3/4 C. -3/4 D. -4/3第二部分:解答题问题1:三角形的内角和公式证明:一个三角形的三个内角之和等于180度。
解析:设三角形的三个内角分别为A、B、C度。
我们可以通过以下步骤来证明这个结论:1.假设线段AB、BC、AC分别构成三角形。
2.通过对角度度量的定义,我们知道直线AB与直线AC的夹角等于角A。
3.同样地,直线AB与直线BC的夹角等于角B,直线BC与直线AC的夹角等于角C。
4.根据直线上的任意两条线段之间的夹角恒等于两个夹角的和的性质,我们可以得出以下等式:角A + 角B = 直线AB与AC的夹角——(1)角B + 角C = 直线AB与BC的夹角——(2)5.根据直线上的任意两条线段之间的夹角恒等于两个夹角的和的性质,我们可以得出以下等式:角A + 角C = 直线AC与BC的夹角——(3)6.由于直线AC与BC的夹角等于180度(直线在平面上的性质),我们可以得出以下等式:角A + 角B + 角C = 180度——(4)7.因此,一个三角形的三个内角之和等于180度。
问题2:一元一次方程的解解:考虑以下一元一次方程:2x - 5 = 3x + 1。
我们需要找到满足这个方程的x的值。
首先,我们可以将方程转化为标准形式,即将未知数放在等号左边,常数放在右边:2x - 3x = 1 + 5。
成都初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 9的解?A. x = 3B. x = 4C. x = 2D. x = 5答案:A2. 如果一个数的平方等于其本身,那么这个数可以是:A. 0B. 1C. -1D. 0或1答案:D3. 函数y = 2x - 1的图像经过点:A. (0, -1)B. (1, 1)C. (2, 3)D. (3, 5)答案:A4. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 200π答案:B5. 以下哪个是不等式2x - 5 > 3的解集?A. x > 4B. x < 4C. x > 1D. x < 1答案:A6. 一个三角形的三个内角之和是:A. 90°B. 180°C. 270°D. 360°答案:B7. 一个等腰三角形的两个底角相等,如果一个底角是40°,那么顶角是:A. 100°B. 80°C. 120°D. 140°答案:A8. 一个数的立方等于其本身,那么这个数可以是:A. 0B. 1C. -1D. 0, 1或-1答案:D9. 以下哪个是二次方程x² - 5x + 6 = 0的根?A. 2B. 3C. 4D. 6答案:B10. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是:A. 24cm³B. 36cm³C. 48cm³D. 52cm³答案:A二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是______。
答案:512. 如果一个数的绝对值是4,那么这个数可以是______或______。
答案:4,-413. 一个直角三角形的两条直角边分别是3cm和4cm,那么它的斜边长度是______。
2019年成都中考数学试题全卷分A卷和B卷,A卷满分100分,B卷满分50分,考试时间120分钟A卷(共100分)第I卷(选择题,共30分)一.选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.比-3大5的数是()A.-15B.-8C.2D.82.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A. B. C. D.3.2019年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年.将数据5500万用科学计数法表示为()5500×104 B.55×106 C.5.5×107 D.5.5×1084.在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为()A.(2,3)B.(-6,3)C.(-2,7)D.(-2,-1)【解析】一个点向右平移之后的点的坐标,纵坐标不变5.将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=30°,则∠2的度数为()A.10°B.15°C.20°D.30°6.下列计算正确的是( )A.b b ab 235=-B.242263b a b a =-)(C.1)1(22-=-a a D.2222a b b a =÷ 7.分式方程1215=+--xx x 的解为( ) A.1-=x B.1=x C.2=x D.2-=x8.某校开展了主题为“青春·梦想”的艺术作品征集互动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50则这组数据的中位数是( )A.42件B.45件C.46件D.50件9.如图,正五边形ABCDE 内接于⊙O ,P 为上的一点(点P 不与点D 重合),则∠CPD 的度数为( )A.30°B.36°C.60°D.72°10.如图,二次函数c bx ax y ++=2的图象经过点A (1,0),B (5,0),下列说法正确的是( )A.0>cB.042<-ac bC.0<+-c b aD.图象的对称轴是直线3=x第II 卷(非选择题,共70分)二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若1+m 与-2互为相反数,则m 的值为 .12.如图,在△ABC 中,AB=AC ,点D ,E 都在边BC 上,∠BAD=∠CAE ,若BD=9,则CE 的长为 .13.已知一次函数1)3(+-=x k y 的图象经过第一、二、四象限,则k 的取值范围是 .14. 如图,□ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,以AM 长为半径作弧,交OC 于点M ';③以点M '为圆心,以MN 长为半径作弧,在∠COB 内部交前面的弧于点N ';④过点N '作射线N O '交BC 于点E ,若AB=8,则线段OE 的长为 .三.解答题.(本大题共6个小题,共54分,解答过程写在答题卡上)15.(本小题满分12分,每题6分)(1)计算:|31|1630cos 2)2(0-+-︒--π.(2)解不等式组:⎪⎩⎪⎨⎧+<--≤-②211425①54)2(3x x x x16.(本小题满分6分) 先化简,再求值:62123412++-÷⎪⎭⎫ ⎝⎛+-x x x x ,其中12+=x .17(本小题满分8分)随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.18.(本小题满分8分)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力.如图,在一场马拉松比赛中,某人在大楼A 处,测得起点拱门CD 的顶部C 的俯角为35°,底部D 的俯角为45°,如果A 处离地面的高度AB=20米,求起点拱门CD 的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)19.(本小题满分10分)如图,在平面直角坐标系xOy 中,一次函数521+=x y 和x y 2-=的图象相交于点A ,反比例函数xk y =的图象经过点A. (1)求反比例函数的表达式;(2)设一次函数521+=x y 的图象与反比例函数x k y = 的图象的另一个交点为B ,连接OB ,求△ABO 的面积。
成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A 卷和B 卷,A 卷满分100分,8卷满分50分;考试时间l20分钟。
A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。
A 卷(共100分) 第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页。
答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上。
请注意机读答题卡的横竖格式。
一、选择题:(每小题3分,共30分) 1. 计算2×(12-)的结果是 (A)-1 (B) l (C)一2 (D) 2 2. 在函数131y x =-中,自变量x 的取值范围是 (A)13x < (B) 13x ≠- (C) 13x ≠ (D) 13x >3. 如图所示的是某几何体的三视图,则该几何体的形状是 (A)长方体 (B)三棱柱 (C)圆锥 (D)正方体 4. 下列说法正确的是(A)某市“明天降雨的概率是75%”表示明天有75%的时间会降雨 (B)随机抛掷一枚均匀的硬币,落地后正面一定朝上 (C)在一次抽奖活动中,“中奖的概率是1100”表示抽奖l00次就一定会中奖 (D)在平面内,平行四边形的两条对角线一定相交5. 已知△ABC∽△DEF,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为 (A)1:2 (B)1:4 (C)2:1 (D)4:16. 在平面直角坐标系xOy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转180°得到0A′, 则点A ′在平面直角坐标系中的位置是在(A)第一象限 (B)第二象限 (c)第三象限 (D)第四象限7. 若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是(A)1k>- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠8. 若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是 (A)40° (B)80° (C)120° (D)150°AB CDEA′9. 某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为 (A)20kg (B)25kg(C)28kg (D)30kg10.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了l5户家庭的日用电量,结果如下表:则关于这l5户家庭的日用电量,下列说法错误的是 (A)众数是6度 (B)平均数是度 (C)极差是5度 (D)中位数是6度成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学注意事项: 1.A 卷的第Ⅱ卷和B 卷共l0页,用蓝、黑钢笔或圆珠笔直接答在试卷上。
成都中考初三数学试卷真题中考试卷真题分析与解析一、选择题(共60分,每小题2分)1. 设集合A={x| x是北京奥运会金牌数是偶数的中国省会城市},B={x| x是北京奥运会金牌数是奇数的中国省会城市}。
则A∪B=()。
A. 武汉B.北京C. 成都D. 哈尔滨解析:根据题意,集合A包含了北京奥运会金牌数是偶数的中国省会城市,集合B包含了北京奥运会金牌数是奇数的中国省会城市。
求A∪B,即为集合A和集合B的并集,也就是包含在A或B中的元素的集合。
因此,答案为C成都。
2. 一个数列的各项是这样规定的:第一项是n,以后每一项都等于前一项减去2。
所以显然我们可以知道:当n为奇数时,数列为n,n-2,n-4,…,1。
当n为偶数时,数列为n,n-2,n-4,…,0。
在这个数列中,有2018项。
问第2018项是多少。
A. -1009B.2018C.0D. -1008解析:根据题意,当n为奇数时,数列为n,n-2,n-4,…,1;当n为偶数时,数列为n,n-2,n-4,…,0。
题目中给出有2018项,可以观察到奇数项和偶数项之间的差别是2,而2018是偶数,所以最后一项的值为0。
因此,答案为C0。
二、填空题(共10分,每小题2分)1. 设a*b=a·a+b,两个任意实数a,b。
若2*3=12,则5*3的值为_____。
解析:根据题意,a*b=a·a+b,已知2*3=12,代入得到2*3=2·2+3=4+3=7。
因此,答案为7。
2. 若2a+b=7,a-3b=5,求a的值。
解析:根据题意,得到如下方程组:2a+b=7 (1)a-3b=5 (2)通过将方程(2)两边乘以2,得到2a-6b=10。
然后用方程(1)减去方程(2),得到2a+b-a+3b=7-5,即a+4b=2。
再将2a-6b=10与a+4b=2相减,消去变量a,得到-10b=8。
最后,将-10b=8两边同时除以-10,得到b=-0.8。
2023成都市高中阶段教育学校统一招生暨初中学业水平考试时间:120分钟满分:150分A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.在3,-7,0,19四个数中,最大的数是()A.3B.-7C.0D.192.2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星.北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为()A.3×108B.3×109C.3×1010D.3×10113.下列计算正确的是()A.(-3x)2=-9x2B.7x+5x=12x2C.(x-3)2=x2-6x+9D.(x-2y)(x+2y)=x2+4y24.近年来,随着环境治理的不断深入,成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好,杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市今年三月份某五天的空气质量指数(AQI):33,27,34,40,26,则这组数据的中位数是()A.26B.27C.33D.345.如图,在▱ABCD中,对角线AC与BD相交于点O,则下列结论一定正确的是()第5题图A.AC=BDB.OA=OCC.AC⊥BDD.∠ADC=∠BCD6.为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是()A.12B.13C.14D.167.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,则可列方程为()A.1 2(x+4.5)=x-1B.12(x+4.5)=x+1C.1 2(x+1)=x-4.5D.12(x-1)=x+4.58.如图,二次函数y=ax2+x-6的图象与x轴交于A(-3,0),B两点,下列说法正确的是()第8题图A.抛物线的对称轴为直线x=1B.抛物线的顶点坐标为(-12,-6)C.A,B两点之间的距离为5D.当x<-1时,y的值随x值的增大而增大第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.因式分解:m2-3m=________.10.若点A(-3,y1),B(-1,y2)都在反比例函数y=6x的图象上,则y1________y2(填“>”或“<”).11.如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF 的长为____________________________________________________________________.第11题图12.在平面直角坐标系xOy 中,点P (5,-1)关于y 轴对称的点的坐标是________.13.如图,在△ABC 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点M ′;③以点M ′为圆心,以MN 长为半径作弧,在∠BAC 内部交前面的弧于点N ′;④过点N ′作射线DN ′交BC 于点E .若△BDE 与四边形ACED 的面积比为4∶21,则BE CE的值为________.第13题图三、解答题(本大题共5个小题,共48分)14.(本小题满分12分,每题6分)(1)计算:4+2sin 45°-(π-3)0+|2-2|.(2)2)-x ≤5,①x -1.②文明是一座城市的名片,更是一座城市的底蕴.成都市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.第15题图根据统计图信息,解答下列问题:(1)本次调查的师生共有________人,请补全条形统计图;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数;(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.16.(新考法·真实问题情境)(本小题满分8分)为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装遮阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB长为5米,与水平面的夹角为16°,且靠墙端离地高BC 为4米,当太阳光线AD与地面CE的夹角为45°时,求阴影CD的长.(结果精确到0.1米;参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)第16题图如图,以△ABC的边AC为直径作⊙O,交BC边于点D,过点C作CE∥AB交⊙O于点E,连接AD,DE,∠B=∠ADE.(1)求证:AC=BC;(2)若tan B=2,CD=3,求AB和DE的长.第17题图18.(本小题满分10分)如图,在平面直角坐标系xOy中,直线y=-x+5与y轴交于点A,与反比例函数y=kx的图象的一个交点为B(a,4),过点B作AB的垂线l.(1)求点A的坐标及反比例函数的表达式;(2)若点C在直线l上,且△ABC的面积为5,求点C的坐标;(3)P是直线l上一点,连接PA,以P为位似中心画△PDE,使它与△PAB位似,相似比为m.若点D,E恰好都落在反比例函数图象上,求点P的坐标及m的值.第18题图B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.若3ab -3b 2-2=0,则代数式(1-2ab -b 2a 2)÷a -b a 2b 的值为________.20.一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有________个.第20题图21.为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A 到B 有一笔直的栏杆,圆心O 到栏杆AB 的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳________名观众同时观看演出.(π取3.14,3取1.73)第21题图22.如图,在Rt △ABC 中,∠ABC =90°,CD 平分∠ACB 交AB 于点D ,过D 作DE ∥BC 交AC 于点E ,将△DEC 沿DE 折叠得到△DEF ,DF 交AC 于点G .若AG GE =73,则tan A =________.第22题图23.定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且m -n >1,则称这个正整数为“智慧优数”.例如,16=52-32,16就是一个智慧优数,可以利用m 2-n 2=(m +n )(m -n )进行研究.若将智慧优数从小到大排列,则第3个智慧优数是________;第23个智慧优数是________.二、解答题(本大题共3个小题,共30分)24.(本小题满分8分)2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.25.(本小题满分10分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c经过点P(4,-3),与y轴交于点A(0,1),直线y=kx(k≠0)与抛物线交于B,C两点.(1)求抛物线的函数表达式;(2)若△ABP是以AB为腰的等腰三角形,求点B的坐标;(3)过点M(0,m)作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得OD⊥OE始终成立?若存在,求出m的值;若不存在,请说明理由.第25题图26.(新考法·综合与实践)(本小题满分12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且ADBD=1n(n为正整数),E是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图①,当n=1时,兴趣小组探究得出结论:AE+BF=22AB,请写出证明过程.【深入探究】(2)①如图②,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明).【拓展运用】(3)如图③,连接EF,设EF的中点为M.若AB=22,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).第26题图2023成都市高中阶段教育学校统一招生暨初中学业水平考试数学解析快速对答案A卷一、选择题1-5ADCCB6-8BAC二、填空题9.m(m-3)10.>11.312.(-5,-1)13.23三、解答题标准答案及评分标准:14~18题见详解详析B卷一、填空题19.2320.621.18422.37723.15;57二、解答题标准答案及评分标准:24~26题见详解详析详解详析A卷一、选择题1.A2.D3.C4.C5.B6.B7.A8.C【解析】∵二次函数y=ax2+x-6的图象与x轴交于A(-3,0),B两点,∴0=9a-3-6,∴a=1,∴二次函数解析式为y=x2+x-6=(x+12)2-254,对称轴为直线x=-12,顶点坐标为(-12,-254),故A,B选项不正确,不符合题意;∵a=1>0,抛物线开口向上,当x<-1时,y的值随x值的增大而减小,故D选项不正确,不符合题意;当y=0时,x2+x-6=0.即x1=-3,x2=2,∴B(2,0),∴AB=5,故C选项正确.二、填空题9.m (m -3)10.>11.312.(-5,-1)13.23【解析】由题意得∠BDE =∠A ,∴DE ∥AC ,∴△BDE ∽△BAC ,∵△BDE 与四边形ACED 的面积比为4∶21,∴S △BDE S △BAC=421+4=(BE BC )2,∴BE BC =25,∴BE CE =23.三、解答题14.解:(1)原式=2+2×22-1+2-2(4分)=3;(6分)(2)解不等式①,得x ≤1,(2分)解不等式②,得x >-4,(4分)∴原不等式组的解集为-4<x ≤1.(6分)15.解:(1)300;(2分)(解法提示)由题可知,本次调查的师生共有60÷20%=300(人),∴“文明宣传”的人数为300-60-120-30=90(人).补全条形统计图如解图.(4分)第15题解图(2)在扇形统计图中,“敬老服务”对应的圆心角度数为120300×360°=144°;(6分)(3)估计参加“文明宣传”项目的师生人数为1500×80%×90300=360(人).答:估计参加“文明宣传”项目的师生人数有360人.(8分)16.解:如解图,过点A 作AG ⊥BC 于点G ,AF ⊥CE 于点F ,则四边形AFCG 是矩形.由题可知,∠BAG =16°,AB =5m ,在Rt △ABG 中,GB =AB ·sin ∠BAG =5·sin 16°≈5×0.28=1.4m ,AG =AB ·cos 16°≈5×0.96=4.8m ,则CF =AG =4.8m ,(3分)∵BC =4m ,∴AF =CG =BC -BG =4-1.4=2.6m ,(6分)∵∠ADF =45°,∴DF =AF =2.6m ,(7分)∴CD =CF -DF =4.8-2.6=2.2m.答:阴影CD 的长为2.2米.(8分)第16题解图(命题立意)试题以“遮阳篷”为背景,考查学生建立几何模型解决实际问题的能力,通过作辅助线构造直角三角形进行求解,评价其数学建模、推理能力、几何直观、运算能力等数学素养的发展水平,指向六个维度中的“立足学科素养”“加大开放探究”“落实活动建议”的考查.17.(1)证明:∵CE ∥AB ,∴∠BAC =∠ACE ,∵ AE = AE ,∴∠ACE =∠ADE ,(2分)∴∠BAC =∠ADE ,又∵∠B =∠ADE ,∴∠B =∠BAC ,∴AC =BC ;(4分)(2)解:设BD =x ,∵AC 是⊙O 的直径,∴∠ADC =∠ADB =90°,∵tan B =2,∴AD BD=2,即AD =2x ,(5分)根据(1)中的结论,可得AC =BC =BD +DC =x +3,根据勾股定理,可得AD 2+DC 2=AC 2,即(2x )2+32=(x +3)2,解得x 1=2,x 2=0(舍去),∴BD =2,AD =4,AB =AD 2+BD 2=25;(6分)如解图,过点E 作DC 的垂线,交DC 的延长线于点F ,第17题解图∵BC =AC ,∴∠ACB =180°-2∠B ,又∵CE ∥AB ,∴∠ECF =∠B ,(7分)∵EF ⊥CF ,∴tan ∠ECF =tan B =2,即EFCF=2,(8分)∵∠B +∠BAD =90°,∠ADE +∠EDF =90°,∠B =∠ADE ,∴∠BAD =∠EDF ,∴∠DEF =90°-∠EDF =90°-∠BAD =∠B ,∴DF EF=2,(9分)设CF =a ,则DF =DC +CF =3+a ,∴EF =2a ,可得方程3+a2a=2,解得a =1,经检验a =1是分式方程的解,∴EF =2,DF =4,DE =DF 2+EF 2=25.(10分)18.解:(1)令x =0,则y =5,∴点A 的坐标为(0,5),(1分)将点B (a ,4)代入y =-x +5,得4=-a +5,解得a =1.∴B (1,4),(2分)将点B (1,4)代入y =k x ,得4=k1,解得k =4.∴反比例函数的表达式为y =4x;(3分)(2)如解图,设直线l 与y 轴交于点M ,直线y =-x +5与x 轴交于点N ,第18题解图令y =-x +5=0,解得x =5,∴N (5,0),∴OA =ON =5,又∵∠AON =90°,∴∠OAN =45°,∵A (0,5),B (1,4),∴AB =(1-0)2+(4-5)2=2.(4分)又∵直线l 是AB 的垂线即∠ABM =90°,∠OAN =45°,∴AB =BM =2,∴AM =AB 2+BM 2=2,∴M (0,3).设直线l 的解析式是y =k 1x +b 1,将点M (0,3),点B (1,4)代入y =k 1x +b 11+b 1=41=31=11=3,∴直线l 的解析式是y =x +3,(5分)设点C 的坐标是(t ,t +3),∵S △ABC =12×2×|1-t |=5,解得t =-4或6,当t =-4时,t +3=-1;当t =6时,t +3=9;∴点C 的坐标为(6,9)或(-4,-1);(6分)(3)∵位似图形的对应点与位似中心三点共线,∴点B 的对应点也在直线l 上,不妨设为点E ,则点A 的对应点是点D ,∴点E 是直线l 与双曲线y =4x的另一个交点.将直线l =4x ,=x +3=1=4=-4=-1,∴E (-4,-1).(7分)又∵△PAB ∽△PDE ,∴∠PAB =∠PDE .∴AB ∥DE .∴直线AB 与直线DE 的解析式中的一次项系数相等,设直线DE 的解析式是y =-x +b 2,将点E (-4,-1)代入y =-x +b 2,得-1=-(-4)+b 2,解得b 2=-5,∴直线DE 的解析式是y =-x -5.(8分)∵点D 在双曲线y =4x上,∴点D 是直线DE 与双曲线y =4x的另一个交点,将直线DE 与双曲线y =4x =4x =-x -5,=-1=-4=-4=-1,∴D (-1,-4).设直线AD 的解析式为y =k 3x +b 3,将点A (0,5),D (-1,-4)代入y =k 3x +b 3k 3+b 3=-43=53=93=5,∴直线AD 的解析式是y =9x +5.将直线AD 的解析式与直线l=9x +5=x +3=-14=114,∴点P 的坐标为(-14,114).(9分)∴BP =(-14-1)2+(114-4)2=542,EP =[-14-(-4)]2+[114-(-1)]2=1542.∴m =EPBP=3.(10分)B 卷一、填空题19.23【解析】(1-2ab -b 2a 2)÷a -b a 2b =(a 2-2ab +b 2a 2)×a 2b a -b =(a -b )2a 2×a 2ba -b=ab-b 2,∵3ab -3b 2-2=0,∴3ab -3b 2=2,∴ab -b 2=23.20.6【解析】根据主视图和俯视图可得第一列最多有2个小立方块,第二列最多有1个小立方块,如解图,共有2+2+1+1=6个.第20题解图21.184【解析】如解图,过点O 作AB 的垂线,交AB 于点C ,∵圆心O 到栏杆AB 的距离是5m ,∴OC =5m ,∵OC ⊥AB ,∴sin ∠OBC =OC OB =12,∴∠OBC =30°,AB =2BC =2AC =103m ,∵OA =OB ,∴∠AOB =180°-2∠OBA =120°,∴可容纳的观众=阴影部分面积×3=3×(S 扇形AOB -S △AOB )=3×(120°360°×π×102-12×103×5)≈184.25(人),∴最多可容纳184名观众同时观看演出.第21题解图22.377【解析】如解图,过点G作GM ⊥DE 于M ,第22题解图∵CD 平分∠ACB 交AB 于点D ,DE ∥BC ,∴∠1=∠2,∠2=∠3.∴∠1=∠3.∴ED =EC .∵∠3=∠4,∴∠1=∠4,又∵∠DGE =∠CGD ,∴△DGE ∽△CGD ,∴DG CG =GEGD ,∴DG 2=GE ·GC ,∵∠ABC =90°,DE ∥BC ,则AD ⊥DE ,∴AD ∥GM .∴AG GE =DMME ,∠MGE=∠A ,∵AG GE =73=DMME ,设GE =3,AG =7,EM =3n ,则DM =7n ,则EC =DE =10n ,∵DG 2=GE ·GC ,∴DG 2=3×(3+10n )=9+30n ,在Rt △GMD 中,GM 2=DG 2-DM 2,在Rt △GME 中,GM 2=GE 2-EM 2,DG 2-DM 2=GE 2-EM 2,即9+30n -(7n )2=32-(3n )2,解得n =34(不符合题意的值已舍),∴EM =94,GE =3,则GM =GE 2-ME 2=32-(94)2=374,∴tan A =tan ∠MGE =ME MG =94374=377.23.15;57【解析】第一个智慧优数为32-12=8,第二个智慧优数为42-22=12,第三个智慧优数为42-12=16-1=15,以此类推,m 为5,6,7,8时,分别有3,4,5,6个智慧优数,1+2+3+4+5+6=21.又∵两数相差越小,智慧优数越小,m 、n 相差2的智慧优数有8,12,16,20,24,28,32,36,40,44,48,52,56,60,…;m 、n 相差3的智慧优数有15,21,27,33,39,45,51,57,…;m 、n 相差4的智慧优数有24,32,40,…;m 、n 相差5的智慧优数有35,45,55,65,…;m 、n 相差6的智慧优数有48,60,72,…,∴综合排序得第23个智慧优数为57.二、解答题24.解:(1)设A 种食材的单价为a 元,B 种食材的单价为b 元,(1分)+b =68a +3b=280=38=30,(3分)∴A 种食材的单价为38元/千克,B 种食材的单价为30元/千克,(4分)(2)设A 种食材购买x 千克,则B 种食材购买(36-x )千克,(5分)根据题意得x ≥2(36-x ),解得x ≥24.设总费用为y 元,根据题意,y =38x +30(36-x )=8x +1080,(6分)∵8>0,∴y 随x 的增大而增大,即当x =24,36-x =12时,y 最小,(7分)∴最少总费用为8×24+1080=1272(元).答:当购买A 种食材24千克,B 种食材12千克时,总费用最少,最少总费用为1272元.(8分)25.解:(1)∵抛物线y =ax 2+c 经过点P (4,-3)且与y 轴交于点A (0,1),a +c =-3=1=-14=1,∴抛物线的函数表达式为y =-14x 2+1;(3分)(2)设B (t ,-14t 2+1),根据题意,△ABP 是以AB 为腰的等腰三角形,有两种情况:①当AB =AP 时,点B 和点P 关于y 轴对称,∵P (4,-3),∴B (-4,-3);②当AB =BP 时,则AB 2=BP 2,∴(t -0)2+(-14t 2+1-1)2=(t -4)2+(-14t 2+1+3)2,整理得t 2+4t -16=0,(4分)解得t 1=-2-25,t 2=-2+25.当t =-2-25时,-14t 2+1=-14×(-2-25)2+1=-5-25,B (-2-25,-5-25).(5分)当t =-2+25时,-14t 2+1=-14×(-2+25)2+1=-5+25,B (-2+25,-5+25),(6分)综上所述,满足题意的点B 的坐标为(-4,-3)或(-2-25,-5-25)或(-2+25,-5+25);(3)存在常数m ,使得OD ⊥OE .理由如下:设抛物线y =-14x 2+1与直线y =kx (k ≠0)的交点坐标为B (a ,ka ),C (b ,kb ),由y =-14x 2+1=kx 得x 2+4kx -4=0,∴a +b =-4k ,ab =-4,设直线AB 的表达式为y =px +q ,+q =ka =1=ka -1a =1,∴直线AB 的表达式为y =ka -1ax +1,令y =m ,由y =ka -1a x +1=m 得x =a (m -1)ka -1,∴D (a (m -1)ka -1,m ).(7分)同理可得直线AC 的表达式为y =kb -1b x +1,则E (b (m -1)kb -1,m ),(8分)过点E 作EQ ⊥x 轴于点Q ,过点D 作DN ⊥x 轴于点N ,则∠EQO =∠OND =90°,EQ =ND =m ,QO =-b (m -1)kb -1,ON =a (m -1)ka -1,若OD ⊥OE ,则∠EOD =90°,∴∠QEO +∠QOE =∠DON +∠QOE =90°,∴∠QEO =∠DON ,∴△EQO ∽△OND ,∴EQ ON =QOND,∴m a (m -1)ka -1=-b (m -1)kb -1m,(9分)整理得m 2(ka -1)(kb -1)=-ab (m -1)2,即m 2[abk 2-k (a +b )+1]=-ab (m -1)2,将a +b =-4k ,ab =-4代入,得m 2(-4k 2+4k 2+1)=4(m -1)2,第25题解图即m 2=4(m -1)2,则m =2(m -1)或m =-2(m -1),解得m 1=2,m 2=23.(10分)综上所述,存在常数m .使得OD ⊥OE ,m 的值为2或23.26.【初步感知】(1)证明:如解图①,连接CD ,第26题解图①当n =1时,ADBD=1,即AD =BD ,∵∠ACB =90°,AC =BC ,∴∠A =∠B =45°,CD ⊥AB ,∠FCD =12∠ACB =45°,∴CD =AD ,∠A =∠FCD ,AB =2BC ,∴BC =22AB ,(1分)∵DE ⊥FD ,∴∠ADE +∠EDC =∠FDC +∠EDC =90°,∴∠ADE =∠CDF .在△ADE 与△CDF 中,∠ADE =∠CDFDA =DC ∠DAE =∠DCF,∴△ADE ≌△CDF (ASA),(2分)∴AE =CF ,∴BC =CF +BF =AE +BF =22AB ;(3分)【深入探究】(2)解:①AE +12BF =23AB ,证明如下:如解图②,取BD 的中点G ,作HG ∥BC ,交DF 于点J ,交AC 于点H ,第26题解图②当n =2时,AD DB =12,即2AD =DB .∵G 是DB 的中点,∴AD =DG ,AG =23AB ,∵HG ∥BC ,∴∠AHG =∠C =90°,∠HGA =∠B =45°.∵∠A =45°,∴△AHG 是等腰直角三角形,∵△DJG ∽△DFB ,∴JG FB =DG DB =12,(4分)根据(1)中的结论可得AE +JG =22AG ,∴AE +JG =AE +12BF =22AG =22×23AB =23AB .∴线段AE ,BF ,AB 之间的数量关系为AE +12BF =23AB ;(6分)②当点F 在射线BC 上时,AE +1n BF =2n +1AB ,当点F 在CB 延长线上时,AE -1n BF =2n +1AB ;(8分)(解法提示)当点F 在射线BC 上时,如解图③,在DB 上取一点G 使得AD =DG ,过点G 作HG ∥BC ,交DF 于点J ,交AC 于点H ,同①,可得AE +JG =22AG ,∵AD BD =1n,AD =DG ,∴DG BD =1n ,AG =2n +1AB ,同①可得JG FB =DG DB =1n ,∴AE +JG =AE +1n FB =22AG =22×2n +1AB =2n +1AB ,即线段AE ,BF ,AB 之间数量关系为AE +1n BF =2n +1AB ;第26题解图③当点F 在CB 延长线上时,如解图④,在DB 上取一点G 使得AD =DG ,过G 作HJ ∥BC ,交DF 于点J ,交AC 于点H ,连接HD .同(1)中原理,可证明△DHE ≌△DGJ (ASA),∴HE =GJ ,可得AE -GJ =AE -HE =22AG ,∵AD BD =1n ,AD =DG ,∴DG BD =1n ,AG =2n +1AB ,同①可得JG FB =DG DB =1n ,∴AE -JG =AE -1n FB =22AG =22×2n +1AB =2n +1AB ,即线段AE ,BF ,AB 之间数量关系为AE -1n BF =2n +1AB .综上所述,当点F 在射线BC 上时,AE +1n BF =2n +1AB ;当点F 在CB 延长线上时,AE -1n BF =2n +1AB .第26题解图④【拓展运用】(3)解:如解图⑤,当E 1与A 重合时,取E 1F 1的中点M 1,当E 2与C 重合时,取E 2F 2的中点M 2,可得点M 的轨迹长度即为M 1M 2的长度,第26题解图⑤如解图⑥,以点D 为原点,DF 1为y 轴,DB 为x 轴建立平面直角坐标系,过点E 2作AB 的垂线段,交AB 于点G ,过点F 2作AB 的垂线段,交x 轴于点H ,∵AB =22,AD DB =1n ,∴AD =22n +1,DB =22n n +1,∴E 1(-22n +1,0),∵∠F 1BD =45°,∴F 1D =BD ,∴F 1(0,22nn +1),∵M 1是E 1F 1的中点,∴M 1(-2n +1,2n n +1),(9分)∵GB =GC =12AB =2,∴DG =DB -BG =-2+2n n +1,∴E 2(-2+2n n +1,2),(10分)根据(2)中的结论AE 2-1n BF 2=2n +1AB ,∴BF 2=n (AE 2-2n +1AB )=2n 2-2n n +1,∴BH =F 2H =22BF 2=2n 2-2n n +1,∴DH =DB +BH =2n ,∴F 2(2n ,-2n 2-2nn +1),(11分)∴M 2(2n 2+22n -22n +2,-2n 2+22n +22n +2),∴M 1M 2=n 2+1.(12分)第26题解图⑥。
成都市二O 一三年中考阶段教育学校统一招生考试
(含成都市初三毕业会考)
数 学
注意事项:
1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷
和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答
题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)
第I 卷(选择题,共30分)
一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.
其中只有一项符合题目要求,答案涂在答题卡上)
1. 2的相反数是
A. 2
B. 2-
C. 12
D. 12
- 2. 如图所示的几何体的俯视图可能是
A
B C D
3. 要使分式51
x -有意义,则x 的取值范围是 A. 1x ≠ B. 1x > C. 1x < D. 1x ≠-
4. 如图,在ABC ∆中,B C ∠=∠,5AB =,则AC 的长为
A. 2
B. 3
C. 4
D. 5
5. 下列运算正确的是
A. 1(3)13
⨯-= B. 583-=- C. 326-= D. 0(2013)0-=
6. 参加成都今年初三毕业会考的学生约有13万人,将13万用科学记数法表示应为
A. 51.310⨯
B. 41310⨯
C. 50.1310⨯
D. 60.1310⨯。