关于脑缺血再灌注损伤机制及治疗
- 格式:doc
- 大小:76.00 KB
- 文档页数:4
脑梗死再灌注损伤机理脑梗死再灌注损伤机理脑梗死是一种常见的神经系统疾病,其发病率逐年增加。
脑梗死的发生会导致大脑缺血、缺氧和代谢紊乱等一系列生理变化,从而引起神经细胞的死亡和功能障碍。
虽然再灌注治疗可以恢复部分神经细胞的功能,但同时也会引起再灌注损伤。
本文将对脑梗死再灌注损伤机理进行详细介绍。
一、再灌注损伤的定义再灌注损伤是指在脑组织缺血缺氧状态下,通过再次供血使得局部组织氧合作用得以恢复,但同时也会引起一系列新的生理变化,从而导致神经细胞死亡和功能障碍。
这种现象被称为再灌注损伤。
二、再灌注损伤的机制1. 氧自由基反应在缺血状态下,由于缺乏氧气供应,线粒体无法正常进行呼吸作用,从而导致氧自由基的产生。
再灌注时,大量的氧气进入局部组织,与原本产生的氧自由基发生反应,形成更多的氧自由基,从而引起细胞膜脂质过氧化和细胞内蛋白质、核酸等分子结构的破坏。
2. 炎症反应缺血状态下,细胞内代谢产物堆积和细胞死亡会引起炎症反应。
再灌注后,由于大量的氧分子进入局部组织,会激活一系列炎症反应介质(如细胞因子、趋化因子等),从而导致神经元坏死、脑水肿等现象。
3. 钙离子过载在缺血状态下,由于ATP合成受到限制,钠泵失去作用,从而导致钙离子通道开放。
再灌注时,大量的钙离子进入神经元内部,导致神经元兴奋性增加、线粒体功能受损和ATP合成障碍等现象。
4. 凋亡缺血状态下会引起神经元凋亡。
再灌注时,由于氧自由基的产生和炎症反应的激活,会加速神经元凋亡过程。
5. 血管损伤再灌注时血管内皮细胞受到损伤,从而导致血管通透性增加、血液-脑屏障受损等现象。
三、预防和治疗再灌注损伤的方法1. 保护线粒体功能通过提高ATP合成能力、减少氧自由基的产生等方式保护线粒体功能,可以有效预防再灌注损伤。
2. 抑制炎症反应通过使用抗炎药物、细胞因子拮抗剂等方式,可以有效降低炎症反应的程度,从而减少再灌注损伤。
3. 抑制钙离子过载通过使用钙离子通道拮抗剂、钙离子螯合剂等方式,可以有效降低神经元内钙离子浓度,从而减少神经元兴奋性和线粒体功能障碍。
脑缺血再灌注损伤治疗的研究进展引言缺血性脑卒中(ischemic stroke)是全球范围内主要的死亡和致残原因之一,其治疗方法和临床效果备受研究和关注。
缺血性脑卒中是由于脑血管病变或者血管阻塞等原因引起的脑部缺血所致。
脑缺血引起的急性神经缺血症状,如头痛、晕厥、恶心、呕吐等,常常让人无法忍受。
而脑缺血再灌注损伤治疗的研究进展是当今医学领域的一个重要方向。
脑缺血再灌注损伤治疗脑缺血再灌注损伤治疗是一种旨在减轻脑部缺血再灌注损伤的治疗方法。
该治疗方法的目的是通过促进脑缺血再灌注损伤的恢复,以恢复脑部神经功能和避免脑部缺血再灌注综合征(I/R)的发生。
I/R综合征是指在施行缺血-再灌注过程中,由于缺血-再灌注所致的微循环障碍和氧化应激导致的一系列反应,导致了机体对缺血和再灌注的不适应性反应,进而引发了炎症反应和再灌注障碍等症状。
药物治疗现有的药物治疗方法包括抗氧化剂、钾通道开放剂、Ca2+通道拮抗剂、神经保护剂等,这些药物可通过不同途径来减轻脑缺血再灌注损伤。
抗氧化剂的作用是通过清除活性氧、控制炎症反应等方式来减轻脑缺血再灌注损伤。
经过大量的研究发现,抗氧化剂对于缓解脑缺血再灌注损伤、保护神经细胞,起到了积极的作用。
例如,红枣等抗氧化剂可通过增加神经细胞的氧化还原酶和清除自由基等方式来促进脑血液循环和再灌注损伤的恢复。
钾通道开放剂钾通道开放剂是一种可以改善脑血流、促进再灌注治疗的药物。
它通过促进细胞内K+流动和外流等方式来增加细胞内外的离子浓度,从而使神经细胞更容易形成充分的动作电位和充足的ATP供给,进而促进神经元再生和修复等疗效。
Ca2+通道拮抗剂Ca2+通道拮抗剂的作用是通过拮抗钙离子过度流入神经细胞,从而抑制过度的细胞凋亡、氧化应激等反应,改善神经细胞的代谢,减少神经细胞的死亡率。
例如,氨基依内酰胺等药物是一种常用的Ca2+通道拮抗剂,在临床治疗中被广泛应用。
神经保护剂神经保护剂是一种能够减少神经细胞受损程度、促进神经再生和修复等疗效的药物。
脑缺血再灌注损伤机制及医治进展西安交通大学医学院第二附属医院麻醉科710004薛荣亮脑缺血一按时间恢复血液供给后,其功能不但未能恢复,却出现了加倍严重的脑性能障碍,称之为脑缺血再灌注损伤(cerebral ischemia reperfusion injury,CIR)。
脑缺血再灌注损伤与自由基的生成、细胞内钙超载、兴奋性氨基酸毒性、白细胞高度聚集和高能磷酸化合物的缺乏等有关。
急性局灶性脑缺血引发的缺血中心区死亡以细胞坏死为主,目前熟悉的比较清楚,即脑缺血后5-7分钟内,细胞能量耗竭,K+通道受阻,膜电位降低,神经末梢释放谷氨酸,通过兴奋谷氨酸受体(包括NMDA 、AMPA和KA受体)致使细胞膜上的Ca2+通道开放,引发Ca2+超载,高Ca2+可激活NOS,使NO和氧自由基的形成增加,引发脂质过氧化,引发膜结构和DNA的损伤;Ca2+还可活化各类酶类,加重细胞损伤和能量障碍,引发缺血级联反映,结果细胞水肿、细胞膜破裂,细胞内酶和炎性介质释放,引发细胞坏死。
最近几年来熟悉到半暗带区域于再灌注数天后出现了迟发性神经元死亡(DND),DND常出此刻缺血再灌注后2-4日,主要发生在海马、纹状体及皮质区域,DND需要数日时间、有新蛋白质合成的、需要消耗能量的、为无水肿的细胞自杀进程,称之为细胞凋亡(PCD)。
脑缺血再灌注损伤既包括急性细胞坏死也包括细胞凋亡,对于DND的确切机制目前仍不清楚,尚需进一步深切研究。
现对脑缺血再灌注损伤机制的研究进展及保护办法简述如下:1.基因活化脑缺血再灌注损伤后可出现大量基因表达,大约有374种基因出现转变,绝大多数基因与凋亡有关,其中57种基因的蛋白表达是缺血前的倍,而34种基因的表达量出现下降,均发生在4小时到72小时, 包括蛋白质合成,基因突变,促凋亡基因,抑凋亡基因和损伤反映基因转变等,这些基因的彼此作用最终决定了DND的发生。
2.兴奋性氨基酸毒性兴奋性氨基酸毒性是指EAA受体活化而引发的神经元死亡,是脑缺血性损伤的重要触发物和介导物。
脑梗死缺血/再灌注损伤机制的研究进展脑梗死是神经系统常见的多发病疾病之一,具有病死率、致残率高的特点,严重威胁患者的生命安全。
目前,脑缺血/再灌注损伤是急性脑梗死发生的主要原因,其机制较为复杂,研究显示主要与自由基过度形成、兴奋性氨基酸毒性作用、细胞内钙超载、炎性反应等多种机制相关。
多种环节互相作用,进一步促进脑缺血/再灌注损伤后神经细胞损伤加重、脑梗死灶的形成。
由此,临床在早期治疗过程中,减轻脑梗死后缺血/再灌注损伤程度,可有效挽救或保护濒死脑组织,提高患者生存质量,改善脑梗死患者临床预后效果。
以下综述脑梗死缺血/再灌注损伤机制的研究进展,为临床治疗脑梗死提供一定的参考依据。
标签:脑梗死;缺血再灌注;损伤机制随着人们生活水平的不断提高,饮食结构、生活习惯发生了巨大变化,脑梗死发病率呈逐年上升趋势[1]。
脑梗死的发生不仅会影响患者的生存治疗,而且会增加家庭的巨大经济负担。
研究显示脑缺血发生后,血液恢复供应,其功能不但不能有效恢复,而且可能出现更严重的脑功能障碍,即所谓的缺血/再灌注损伤[2]。
因此,脑梗死导致的神经功能缺损和死亡机制中,缺血/再灌注损伤机制起着至关重要作用。
因此,临床尽早恢复脑缺血、缺血半暗带区的血供、挽救濒死的脑神经细胞是治疗脑梗死的核心。
为了降低脑梗死缺血/再灌注损伤对神经细胞的损害,有效保护神经细胞,本文作者对脑梗死缺血/再灌注损伤机制研究进展进行综述,为临床的早期治疗奠定基础。
现综述如下:1大脑对缺血缺氧敏感的原因脑组织会消耗全身20%~25%的氧气,是人体所有器官中每一单位重量代谢最高的器官[3]。
但是脑组织内糖和糖原的储备量却很低,因此大脑对血流供应减少极为敏感。
一般在缺血20 min即会发生不可逆性损伤。
与其他的脏器对比,大脑富含多元不饱和脂肪酸,而保护性抗氧剂如超氧化物歧化酶、过氧化氢酶、谷胱甘肽过氧化物酶水平非常低,故对氧化应激损伤也同样敏感。
此外,缺血再灌注后会造成特定递质大量释放,例如谷氨酸盐、多巴胺,从而会导致神经元的钙超载和细胞毒性。
·专题·脑缺血再灌注后血脑屏障损伤机制及药物保护作用的研究进展李蕾1,许栋明2,王文1,王培昌1,艾厚喜1,张丽1,李林1[摘要]脑缺血再灌注导致血脑屏障破坏,从而引起脑出血和脑水肿。
与此同时机体内释放大量的细胞和化学因子可以调控血脑屏障的开放。
目前研究表明,脑缺血再灌注后血脑屏障损伤的主要机制为炎症因子的浸润,蛋白酶的水解作用以及水通道蛋白的开放等。
通过对以上机制的深入研究有助于开发新的脑保护药物,并进一步明确各种脑保护药物的治疗靶点和疗效。
[关键词]脑缺血再灌注;血脑屏障;药物;综述Advance in Damage Mechanism on Blood Brain Barrier after C erebral Ischemia-reperfusion and Neuroprotective Drugs(review)L I L ei,XU Dong-ming,WAN G Wen,et al.X uanwu Hospital o f Capital Medica l University;Torch Hi gh Technology Ind ustry Dev elopment Center,T he Ministry o f Science and T echnology o f the P.R.C.,Beij ing100038,ChinaA bstract:Cerebr al ischemia-reperfusio n results in breakdow n on co nst ruction and function o f blood brain bar rie r,leading to hemo rr hag e tra nsfo rmatio n and br ain edema.A t the same time,g ener ous cy tokines and chemokines r eleased after cerebra l ischemia-reperfusion can regula te the o pening o f the blood brain barrier.M any current studie s show ed that the majo r damag e mechanisms on bloo d brain bar rie r a re inflammatory infiltratio n,pr oteolysis,o pening aquapo rin and so o n.T he deep r esear ch on the mechanism con-tributes to explore new neuro pr otective dr ug s,and fur ther identify the targ et and therapeutic effec t o f drug trea tme nt.Key words:cer ebral ischemia-re perfusio n;bloo d brain bar rier;drug;review[中图分类号]R743.3[文献标识码]A[文章编号]1006-9771(2009)10-0901-04[本文著录格式] 李蕾,许栋明,王文,等.脑缺血再灌注后血脑屏障损伤机制及药物保护作用的研究进展[J].中国康复理论与实践,2009,15(10):901—904.缺血性脑血管病是临床常见的危重疾病,占脑卒中总数的75%~85%。
再灌注损伤名词解释引言再灌注损伤是指在组织或器官缺血再灌注的过程中,由于缺血引起的损伤加上再灌注时的氧化应激反应导致的细胞和组织受损。
再灌注损伤在多种疾病和医疗操作中都可能发生,如心肌梗死、中风、器官移植等。
本文将对再灌注损伤的定义、发生机制、临床表现以及预防和治疗方法进行详细解释。
定义再灌注损伤是指在缺血再灌注的过程中,由于氧化应激反应引起的细胞和组织受损。
缺血是指某一组织或器官由于血液供应不足而导致缺氧和营养不足,再灌注是指在缺血后重新恢复血液供应。
再灌注损伤通常发生在缺血时间较长后再灌注时,血液和氧气突然重新流入组织或器官,导致细胞内外环境的剧烈变化,从而引发一系列病理生理反应。
发生机制再灌注损伤的发生机制非常复杂,涉及多个细胞和分子水平的相互作用。
以下是再灌注损伤的主要发生机制:1. 氧化应激反应再灌注时,血液和氧气重新进入组织或器官,导致氧化应激反应的增加。
氧化应激是指细胞内外的氧自由基和其他活性氧物质超过细胞抗氧化能力的情况。
氧自由基和活性氧物质可引起脂质过氧化、蛋白质氧化、DNA损伤等,导致细胞和组织的损伤。
2. 炎症反应再灌注损伤时,缺血组织或器官受到损伤后,释放出多种炎症介质,如细胞因子、白细胞黏附分子等。
这些炎症介质可引发炎症反应,进一步加重组织损伤。
3. 钙离子紊乱再灌注时,缺血组织或器官内外的钙离子浓度发生变化。
钙离子是细胞内外信号传导的关键分子,参与多种细胞功能的调节。
再灌注时,钙离子的紊乱可导致细胞内钙超载,进而引发细胞死亡和组织损伤。
4. 缺血再灌注损伤缺血再灌注损伤是再灌注损伤的基础。
缺血导致组织或器官缺氧和营养不足,细胞代谢和功能受到抑制。
再灌注时,血液和氧气重新进入组织或器官,引发一系列病理生理反应,导致细胞和组织的损伤。
临床表现再灌注损伤的临床表现因受损组织或器官的不同而有所差异。
以下是一些常见的再灌注损伤的临床表现:1. 心肌再灌注损伤心肌再灌注损伤是指心肌梗死后再灌注时引起的心肌细胞损伤。
脑缺血再灌注损伤机制与治疗现状近年来,脑缺血再灌注损伤(CIRI)成为神经科学研究领域的热点之一。
在脑缺血的情况下,脑组织会因为血流减少而缺氧,导致神经细胞死亡。
然而,当血流重新恢复时,这种损伤往往会加剧,引发脑水肿、炎症反应和氧化应激等病理变化。
因此,了解脑缺血再灌注损伤的机制和治疗现状对于防治卒中和其他脑血管疾病具有重要意义。
脑缺血再灌注损伤的机制十分复杂,主要包括以下几个方面:氧化应激:当血流重新恢复时,大量氧分子与自由基产生,导致氧化应激反应。
这些自由基可攻击细胞膜和线粒体等细胞结构,引发细胞死亡。
细胞内钙离子超载:在脑缺血期间,细胞内钙离子水平上升。
当血流恢复时,由于钠-钙交换异常,钙离子水平会进一步升高,导致细胞死亡。
炎症反应:脑缺血再灌注后,炎症细胞会被激活,释放炎性因子,引发炎症反应。
这些炎性因子可导致神经细胞死亡和血脑屏障破坏。
凋亡和坏死:脑缺血再灌注后,神经细胞可发生凋亡和坏死。
这些细胞死亡过程可导致神经功能缺损和认知障碍。
目前,针对脑缺血再灌注损伤的治疗主要包括以下几个方面:溶栓治疗:通过使用溶栓药物,如尿激酶、组织型纤溶酶原激活物等,溶解血栓,恢复血流,减轻脑缺血再灌注损伤。
神经保护剂治疗:使用神经保护剂,如钙通道拮抗剂、抗氧化剂、抗炎药物等,保护神经细胞免受氧化应激、炎症反应等的损害。
低温治疗:通过降低体温来减少脑代谢和氧化应激反应,保护神经细胞。
低温治疗已在动物实验中显示出良好的疗效,但其在临床试验中的效果尚不明确。
细胞治疗:利用干细胞、免疫细胞等修复受损的神经细胞,或通过调节免疫反应减轻炎症反应。
细胞治疗为脑缺血再灌注损伤的治疗提供了新的可能性,但尚处于研究阶段。
血管生成治疗:通过促进新血管形成,改善脑组织供血。
血管生成治疗包括血管内皮生长因子(VEGF)和其他促血管生成因子的应用。
这种治疗方法在动物实验中取得了显著成效,但仍需进一步的临床验证。
脑缺血再灌注损伤是卒中和脑血管疾病中一个重要的病理过程,其机制复杂,包括氧化应激、细胞内钙离子超载、炎症反应、凋亡和坏死等多个方面。
关于脑缺血再灌注损伤机制及治疗
脑缺血再灌注损伤(CIRI)是一种复杂的病理、生理过程。
它由多种机制共同参与,如炎性反应,钙离子超载,自由基的过度形成,兴奋性氨基酸的毒性作用等。
各个环节,多种因素共同作用,促进CIRI后脑梗死灶的形成及神经功能的破坏。
本文,我们将从CIRI发病机制及药物治疗两方面进行阐述。
标签:CIRI;发病机制;药物研究
脑血管疾病是中老年人常见的致残原因。
缺血性脑血管病(ICVD),它在脑血管病中的发病概率最高。
患者脑缺血持续一段时间后,虽然供血量恢复,但功能尚未恢复,且并发严重的脑机能障碍,称为CIRI。
CIRI具有发病机制复杂,病因多样等特点。
CIRI不仅危害患者生命及健康,还会给社会及患者家庭带来巨大的精神及经济负担。
现今,该病尚缺乏有效的治疗药物[1,2]。
故而,研究及探讨疾病的病因及药物治疗方法具有重要意义。
本文将就此进行综述。
1疾病的发病机制
1.1自由基自由基损伤脑组织多发于缺血再灌注期[3]。
①氧自由基氧自由基过多,可造成核酸、蛋白质及脂质的过氧化,破坏机体膜结构,增加膜结构的通透性,促进核酸断裂、线粒体变性及蛋白质降解。
氧自由基过多,还可诱导RNA,DNA,氨基酸等物质交联,减低物质活性。
缺血时,机体内源性的抗氧化系统常无显著改变,而脂质过氧化物将显著上升,致使机体氧化、过氧化失衡。
再灌注时,产生大量氧自由基,促使脂质过氧化过程继续,加重细胞的损伤。
②NO自由基它在CIRI发病中,具有神经保护作用及神经毒性。
过量的NO自由基可与超氧阴离子结合,促进DNA氧化,抑制其修复,损伤线粒体,促进机体细胞凋亡。
1.2兴奋性氨基酸的毒性作用(EAA)EAA是重要的兴奋性神经递质[4,5]。
脑缺血时,EAA对脑细胞产生毒性作用。
EAA是CIRI的重要环节。
EAA 包括天冬氨酸及谷氨酸等。
脑缺血时,谷氨酸起主要作用。
大量谷氨酸激活AMPA 谷氨酸受体,继而激活了磷脂酰肌醇(与Gq蛋白耦联)的信号转导系统,致使细胞的通透性改变,Cl-和Na+大量进入脑细胞,随之,水也被动性的进入细胞,造成脑水肿,最终诱导脑细胞凋亡。
1.3钙离子超载脑缺血时,脑细胞能量代谢障碍,细胞内缺乏ATP,钙离子泵功能失调,钙离子外流减低。
谷氨酸大量释放,NMDA受体被激活,致使钙离子内流。
细胞无氧代谢,使产H+增加,促进Na+内流,细胞内高浓度的Na+,激活Ca2+/ Na+交换蛋白,进一步加重钙离子内流。
细胞内离子的不均衡分布,将破坏脑细胞防御体系[6,7]。
①细胞内Ca2+浓度过高,Ca2+积聚于线粒体,损伤线粒体膜,抑制ATP的合成,继而导致能量合成障碍。
②Ca2+可激活C和A2,促进磷脂分解,产生白三烯、前列腺素等,对脑细胞产生毒性作用。
③Ca2+含量过高,使钙调蛋白含量增加,继而促进弹性蛋白酶、5-羟色胺释放,致使脑
血管痉挛。
1.4炎性反应过度炎性反应是CIRI的重要原因。
CIRI后,相关炎性细胞产生大量的炎性因子,如黏附分子、趋化因子及细胞因子等。
这些炎性因子,促进机体炎性反应,激活内皮细胞,提高组织因子的含量,继而增加EAA、氧自由基及NO自由基的释放,间接促进细胞凋亡。
CIRI是一种复杂的病理、生理过程。
CIRI由自由基过度形成、EAA毒性作用、钙离子超载、炎性反应等多种机制共同参与,见图1。
图1 CIRI的相关机制
2药物治疗
2.1清除自由基药物的应用自由基损伤贯穿于CIRI及脑缺血的多个环节。
自由基连锁反应,是CIRI的主要病因。
相关研究证明,及时清除过多自由基,可有效减轻CIRI。
依达拉奉是新型自由基清除剂。
该药物可产生依达拉奉基团。
阻断脂质过氧化过程,保护患者脑细胞。
此外,该药物具有不良反应少、临床疗效好的特点,是治疗CIRI的一线药物。
米帕明属抗抑郁药。
相关研究显示,该药有减低NO 生产,抑制脑细胞凋亡,保护神经细胞的作用。
此外,氧化苦参碱,左卡尼汀等药物也有清除机体自由基的作用。
2.2缓解炎性反应药物的应用头孢曲松钠(内酰胺类药物),可透过机体血脑屏障进入脊髓和脑,然后诱导编码GLT-1基因,增加该基因的表达,继而促进谷氨酸的利用,起到保护脑细胞的作用。
阿司匹林(非甾体抗炎药),它具有抗血栓作用。
相关文献提出,阿司匹林可通过抑制CaN升高,抗凋亡,提高Bax/Bcl-2等,起到保护脑细胞的作用。
血管生成因子(AFs)是治疗缺血性疾病的重要药物。
相关研究表明,AFs具有促进血管生成,增加脑组织血供,促进患者神经功能恢复的作用。
3结论
近年来,脑血管疾病的发病率呈上升态势,且疾病逐渐年轻化。
每年,我国约有300万人死于缺血缺氧性心脑血管病[4]。
及时恢复患者脑组织血供是治疗缺血性心脑血管病的关键。
然而,恢复脑组织血流灌注,又给患者脑组织造成了新的损伤,即CIRI。
CIRI是一种复杂的病理、生理过程。
它由炎性反应,钙离子超载,自由基的过度形成,EAA毒性作用等机制共同参与。
各个环节,多种因素共同作用,促进CIRI后脑梗死灶的形成及神经功能的破坏。
目前,对CIRI 的研究多局限于动物试验,尚缺乏有效的药物治疗方法。
动物实验中发现,CIRI 的防治药物临床疗效多不理想,这可能与CIRI的病机复杂,单一药物难以达到对抗再灌注造成的病理、生理变化有关。
联合药理(缓解炎性反应的药物、清除自由基的药物、溶栓药物、麻醉剂、腺苷等),生理(高氧、亚低温等)治疗,
可能是防治CIRI的发展趋势。
然而,联合防治策略的组合方式,实施时间等尚不明确,仍需要进行大量的临床研究及动物试验。
如何充分利用已知的CIRI发病机制来防治疾病,仍需要我们进一步探讨。
参考文献:
[1]夏强,钱令波.心脑缺血再灌注损伤的机制及防治策略研究进展[J].浙江大学学报,2010,39(6):551-557.
[2]王立英,杨世杰.脑缺血-再灌注损伤机制及其药物治疗方法的研究进展[J].吉林大学学报,2012,38(6):1227-1231.
[3]陈玉敏,陈涛平,冯浩楼. 脑缺血再灌注损伤机制与治疗现状[J].医学研究与教育,2012,29(6):47-53.
[4]王光胜,耿德勤.脑缺血/再灌注损伤机制研究进展[J].医学综述,2011,17(24):3753-3756.
[5]林生.右美托咪定对大鼠脑缺血再灌注损伤的保护作用及机制[D].山东大学,2013.
[6]邹伟,孙晓伟,于学平,等.血脑屏障与脑缺血再灌注损伤研究进展[J].中华中医药学刊,2009(03):466-469.
[7]吴常青,汪春彦,董六一,等.补阳还五汤有效部位对大鼠局灶性脑缺血再灌注损伤的保护作用及机制[J].中草药,2011(01):114-117.编辑/孙杰。