电容滤波电路(桥式电路)ppt课件
- 格式:ppt
- 大小:585.50 KB
- 文档页数:36
目录1 课程设计的目的与作用 (1)1。
1 课程设计的目的 (1)1。
2 课程设计的方法 (1)2 设计任务及所用MULTISIM软件环境介绍 (1)2。
1设计任务 (1)2.2 M ULTISIM软件环境简介 (1)2.2.1 Multistim 12简介 (1)2.2.2 Multistim 12主页面 (1)2.2。
3 Multistim 12元器件库 (2)2.2.4 Multistim 12虚拟仪器 (3)3 电路模型的建立 (4)4 理论分析及计算 (4)4。
1理论分析 (4)4。
2工作原理 (5)4.3理论计算 (5)5 仿真结果分析 (5)5.1单相桥式整流电容滤波电路万用表 (5)5.2单相桥式整流电容滤波电路示波器 (6)6 设计总结和体会 (8)7 参考文献 (8)1 课程设计的目的与作用1.1 课程设计的目的(1)了解并掌握Multisim软件,并能熟练的使用其进行仿真;(2)加深理解单相桥式整流电容滤波电路的组成及性能;(3)进一步学习整流电路基本参数的测试方法.1。
2 课程设计的方法通过自己动手亲自设计和用Multistim软件来仿真电路,不仅能使我们队书上说涉及到的程序软件有着更进一步的了解和掌握,而且通过计算机仿真,避免了实际动手操作时机器带来的误差,使我们对上课所学到的知识也有更深刻的了解。
2 设计任务及所用multisim软件环境介绍2。
1 设计任务单相桥式整流电容滤波电路设计单相桥式整流电容滤波电路,使输出电压成为比较平滑的直流电压,电路由自己独自设计完成,在实验中通过自己动手调试电路,能够真正掌握实验原理,即静态分析和动态分析,并在试验后总结出心得体会。
正确理解不同电容对电路性能的影响,以及如何根据实际要求在电路中求出输出直流电压Uo的估算2.2 Multisim软件环境简介2。
2。
1 Multistim 12简介Multistim是美国IIT公司推出的基于Windows的电路仿真软件,由于采用交互式的界面,比较直观,操作方便,具有丰富的元件库和品种繁多的虚拟仪器,以及强大的分析功能等特点,因而得到了广泛的应用。
电容滤波的不控整流电路在交—直—交变频器等电力电子电路中,大多采用不可控整流电路经电容滤波后提供直流电源给后级的逆变器,因此有必要对电容滤波的不控整流电路开展研究。
一、带电容滤波的单相不控整流电路图1为电容滤波的单相不可控整流电路,这种电路常使用在开关电源的整流环节中。
仅用电容滤波的单相不可控整流电路如图1a)所示。
在分析时将时间坐标取在u2正半周和ud的交点处,见图3-29c)。
当u2ud,VD1、VD4导通,交流电源向电容C充电,同时也向负载Rd供电。
设u2正半周过零点与VD1、VD2开始导通时刻相差的角度为δ,则VD1、VD2导通后(1)ωt=0时,u20=uc0=ud0=,电容电流为(2)负载电流为(3)整流桥输出电流(4)0,向电容C充电,uc随u2而上升,到达u2峰值后,uc 又随u2下降,id减小,直至ωt=θ时,id=0,VD1、VD4关断,即θ为VD1、VD4的导通角。
令id=0,可求得二极管导通角θ与初始相位角δ的关系为(5)由上式可知θ+δ是位于第二象限的角,故(6)ωt>θ后,电容C向负载R供电,uc从t=θ/ω的数值按指数规律下降(7)ωt=π时,电容C放电结束,电压uc的数值与ωt=0是的电压数值相等,即(8)将式(6)和的关系式代入上式,可得(9)整流电路的输出直流电压可按下式计算(10)在已知ωRC的条件下,可通过式(9)求起始导电角δ,在由式(6)计算导通角θ,最后可由式(10)求出整流电路输出直流电压平均值Ud。
3.4.2 带电容滤波的三相不控整流电路图2所示的是带电容滤波的三相桥式不控整流电路及其电压、电流波形。
a) b)c) L=0,ωRC= d) L>0,ωRC=e) L=0,ωRC0,ωRC<图2 带电容滤波的三相桥式不控整流电路及其电压、电流波形。
电感电容电阻滤波电路————————————————————————————————作者:————————————————————————————————日期:电感电容电阻滤波电路在电路中,当电流流过导体时,会产生电磁场,电磁场的大小除以电流的大小就是电感,电感的定义是L=phi/i, 单位是韦伯。
电感只能对非稳恒电流起作用,它的特点两端电压正比于通过他的电流的瞬时变化率(导数),比例系数就是它的“自感” 。
电感起作用的原因是它在通过非稳恒电流时产生变化的磁场,而这个磁场又会反过来影响电流,所以,这么说来,任何一个导体,只要它通过非稳恒电流,就会产生变化的磁场,就会反过来影响电流,所以任何导体都会有自感现象产生。
电阻-电容组合起低通滤波作用,这时输入端是两个元件两端,输出端是电容两端,对于后级电路来说,低、高频信号可以过去,但高频信号被电容短路了。
(电容通高频信号,阻低频信号,通交流信号,阻直流信号,对于高频信号,电容现在相当与一根导线,所以将高频信号短路了)对于电容-电阻组合则起高通滤波作用,这时输入端是两个元件两端,输出端是电阻两端,对于后级电路来说,低频信号由于电容存在,过不去,到不了后级电路(电容通高频信号,阻低频信号,通交流信号,阻直流信号),而高频信号却可以通过,所以为高通滤波。
如上图所示为10MHz低通滤波电路。
该电路利用带宽高达100MHz的高速电流反馈运算放大器OPA603组成二阶巴特沃斯低通滤波器。
转折频率为f0=1/2πRC,按图中所示参数,f0=10MHz,电路增益为1.6。
如上图所示为有源高通滤波电路。
该电路的截止频率fc=100Hz。
电路中,R1与R2之比和C1与C2之比可以是各种值。
该电路采用R1=R2和C1=2C2。
采用C1=C2和R1=2R2也可以。
滤波电路分类详解整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。
课程设计任务书目录1 课程设计的目的与作用 (1)1.1 课程设计的目的 (1)1.2 课程设计的方法 (1)2 设计任务、及所用multisim软件环境介绍 (1)2.1 设计任务 (1)2.1.1单相桥式整流电容滤波电路 (1)2.1.2矩形波发生器 (1)2.1.3音调发生电路 (1)2.1.4微变积分电路 (1)2.2 Multisim软件环境简介 (1)2.2.1 Multistim 10简介 (1)2.2.2 Multistim 10主页面 (2)2.2.3 Multistim 10元器件库 (2)2.2.4 Multistim 10虚拟仪器 (3)2.2.5 Multistim 10分析工具 (3)3 电路模型的建立 (4)3.1单相桥式整流电容滤波电路 (4)3.2矩形波发生器 (4)3.3音调发生电路 (5)3.4微变积分电路 (5)4 理论分析及计算 (6)4.1理论分析 (6)4.1.1单相桥式整流电容滤波电路 (6)4.1.2矩形波发生器 (6)4.1.3音调发生电路 (6)4.1.4微变积分电路 (6)4.2工作原理 (6)1 课程设计的目的与作用1.1 课程设计的目的(1)了解并掌握Multisim软件,并能熟练的使用其进行仿真;(2)加深理解单相桥式整流电容滤波电路的组成及性能;(3)进一步学习整流电路基本参数的测试方法。
1.2 课程设计的方法通过自己动手亲自设计和用Multistim软件来仿真电路,不仅能使我们队书上说涉及到的程序软件有着更进一步的了解和掌握,而且通过计算机仿真,避免了实际动手操作时机器带来的误差,使我们对上课所学到的知识也有更深刻的了解。
2 设计任务、及所用multisim软件环境介2.1设计任务2.1.1单相桥式整流电容滤波电路设计单相桥式整流电容滤波电路,使输出电压成为比较平滑的直流电压,电路由自己独自设计完成,在实验中通过自己动手调试电路,能够真正掌握实验原理,即静态分析和动态分析,并在试验后总结出心得体会。
《模拟电子技术》演示实验库实验11:桥式整流电容滤波电路一、教学目的1. 演示桥式整流输出电压的波形并与变压器次级波形作比较。
2. 演示加有电容滤波的输出电压的波形,负载变化后对输出电压波形的影响。
3. 测试各种情况下的输出电压,演示当一支二极管开路、短路后输出电压的变化,加深理解桥式整流电路的应用。
二、演示内容1. 创建单相桥式整流、电容滤波实验电路(1)启动Multisim进入Multisim工作界面。
(2)按图11.1在电路工作区连接电路图11.1 单相全波整流电容滤波实验电路◆安放元器件(或仪器)单击打开相应元器件库(或仪器库),将所需元器件(或仪器)拖拽至相应位置。
利用工具栏的旋转、水平翻转、垂直翻转等按钮使元器件符合电路的安放要求。
◆连接电路(3)按图11.1所示,给元器件标识、赋值(或选择模型)双击元器件打开元件特性对话框,进行相应设置。
全波整流波形电源电压波形(示波器面板波形显示框)图11.2 电源与全波整流波形◆信号源u s单击Label,键入单相交流电源Us。
单击Value,设置Vo1tage:200V,Frequency:50Hz,Phase:0。
◆变压器Tr单击“Label”,键入Tr 10:1。
单击Mode1s,选中Library 中的default和Model中的ideal,单击“Edit”按钮打参数设置对话框,在“primary to Secondary tums ratio”框键入“10”,单击“确定”。
◆整流桥堆D×4单击Labe1,键入D×4,单击Models,选中Library中的general1和Model中的BYM10.100,单击“确定”。
◆电容C单击Labe1,键入滤波电容C。
单击V alue,将“Capacitance”设置为20μF,单击“确定”。
◆开关K单击Label,键入K,单击确定。
由于只有一个开关,故控制键可采用其缺省设置的“Space”(空格键)。
电感电容电阻滤波电路电感电容电阻滤波电路在电路中,当电流流过导体时,会产生电磁场,电磁场的大小除以电流的大小就是电感,电感的定义是L=phi/i, 单位是韦伯。
电感只能对非稳恒电流起作用,它的特点两端电压正比于通过他的电流的瞬时变化率(导数),比例系数就是它的“自感” 。
电感起作用的原因是它在通过非稳恒电流时产生变化的磁场,而这个磁场又会反过来影响电流,所以,这么说来,任何一个导体,只要它通过非稳恒电流,就会产生变化的磁场,就会反过来影响电流,所以任何导体都会有自感现象产生。
电阻-电容组合起低通滤波作用,这时输入端是两个元件两端,输出端是电容两端,对于后级电路来说,低、高频信号可以过去,但高频信号被电容短路了。
(电容通高频信号,阻低频信号,通交流信号,阻直流信号,对于高频信号,电容现在相当与一根导线,所以将高频信号短路了)对于电容-电阻组合则起高通滤波作用,这时输入端是两个元件两端,输出端是电阻两端,对于后级电路来说,低频信号由于电容存在,过不去,到不了后级电路(电容通高频信号,阻低频信号,通交流信号,阻直流信号),而高频信号却可以通过,所以为高通滤波。
如上图所示为10MHz低通滤波电路。
该电路利用带宽高达100MHz的高速电流反馈运算放大器OPA603组成二阶巴特沃斯低通滤波器。
转折频率为f0=1/2πRC,按图中所示参数,f0=10MHz,电路增益为1.6。
如上图所示为有源高通滤波电路。
该电路的截止频率fc=100Hz。
电路中,R1与R2之比和C1与C2之比可以是各种值。
该电路采用R1=R2和C1=2C2。
采用C1=C2和R1=2R2也可以。
滤波电路分类详解整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。
为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。