电磁场基本方程
- 格式:ppt
- 大小:653.00 KB
- 文档页数:4
电磁场与电磁波公式整理第一章A:矢量恒等式()()()A B C B C A C A B ×=×=×i i i ()()()A B C B A C C A B ××=−i i ()uv u v v u ∇=∇+∇ ()uA u A A u ∇=∇+∇i()0U ∇×∇=()0A ∇∇×=i 2()U U ∇∇=∇i2()()A A A ∇×∇×=∇∇−∇iVSAdV A dS ∇=∫∫i iVCAdS A dl ∇×=∫∫in V S AdV AdS e ∇×=×∫∫ n V S udV udS e ∇=∫∫n S C udS udl e ×∇=∫∫ 2)V S u v u dV udSnv v ∂+∇∇=∇∂∫∫i22(()VSuu v v dV uv dS n nv u ∂∂−=−∇∇∂∂∫∫ B:三种坐标系的积分元以及梯度、散度、旋度、和拉普拉斯运算⑴直角坐标系位置矢量微分元:x y z dr dx dy dz e e e =++面积元:,,x y z d dydz d dxdz d dxdy s s s === 体积元:dv dxdydz = x y z u u uu e e e x y z ∂∂∂∇=++∂∂∂ y x z A A A A x y z∇=∂∂∂++∂∂∂i x yz A x y z A A A x yz e ee∂∂∂∇×=2222222u u u u x y z ∇∂∂∂=++∂∂∂()uA u A u A ∇×=∇×+∇×()A B B A A B∇×=∇×−∇×i i i ()()()A B A B B A A B B A ∇=∇×+∇+×∇×+×∇×i i i ()()()()A B A B B A B A A B ∇××=∇−∇+∇−∇i i i i⑵圆柱坐标系位置矢量微分元:z dr d d dz e e e ρφρρφ=++面积元:,,z d d dz d d dz d d d s s s ρφρφρρρφ=== 体积元:dv d d dz ρρφ=z u u u u z e e e ρφρρφ∂∂∂∇=++∂∂∂ ()()()11A A A z A z ρρρφρρρφ∂∂∂∇=++∂∂∂i1z e e e A z A A Az ρφρρφρρφ∂∂∂∇×=∂∂∂22222211()u u u u z ρρρρρφ∂∂∂∂=++∇∂∂∂∂⑶球坐标系位置矢量微分元:sin r r r dr dr d d e e e θφθθφ=++面积元:2sin ,sin ,r d d d d r drd d rdrd r s s s θφθθφθφθ=== 体积元:2sin dv drd d r θθφ=1sin ru u u u r r r e e e θφθθφ∂∂∂∇=++∂∂∂22111()(sin )sin sin r A r r r r rA r A A φθθθθθφ∂∂∂∇=++∂∂∂i2sin 1sin sin re re r e A r ArrA r A r θφθθφθθθφ∂∂∂∇×=∂∂∂ 22222222111()(sin sin sin u u uu r r r r r r θθθθφθ∇∂∂∂∂∂=++∂∂∂∂∂ C:几个定理散度定理:v s FdV F dS ∇=∫∫i i斯托克斯定理:s c F dS F dl∇×=∫∫i i亥姆霍茨定理:()()()F r u r A r =−∇+∇×格林定理:n V S FdV F dS e ∇=∫∫i i高斯定理和环路定理:第二章表一:电荷和电流的三种密度表二:电场和磁场表四:介质中的电(磁)场感应强度:电磁感应定律S in B dS d d dt dt ϕε=−=−∫i in C in E dl ε=∫i S C S d Bd dt tE dl ∂∂=−∫∫i i 积分形式 1.如果回路静止则有:S C S Bd tE dl ∂∂=−∫∫i BE t∂∇×=−∂ 2.导体以速度v 在磁场中运动 : ()CC v B dl E dl ×=∫∫i i3.导体在时变场中运动:()CS S B d tC v B dl E dl ∂∂−×=+∫∫∫i i i表五:麦克斯韦方程组:。
一、电磁场的源——电荷与电流1、电荷与电荷密度宏观上可以用“电荷密度”来描述带电体的电荷分布。
定义体电荷密度为30m C d d lim−→∆⋅=∆∆=VQV Q V ρ其中Q ∆是体积元V ∆内包含的总电荷量。
当电荷存在于一无限薄的薄层或者截面很小的细线上时,可用面电荷密度或线电荷密度来描述20m C d d lim−→∆⋅=∆∆=SQS Q S S ρ10m C d d lim −→∆⋅=∆∆=lQl Q l l ρ一个体积为V 、表面积为S 、线长为l 上包含的电荷总量可以分别对上述三式进行体、面、线积分得到,即∫∫∫=VV Q d ρ、∫∫=SS S Q d ρ、∫=ll lQ d ρ2、电流与电流密度任取一个面,穿过此面的电流定义为单位时间内穿过此面的电荷量,即As C d d lim10或−→∆⋅=∆∆=tQt Q I t 电流的正方向规定与正电荷的运动方向。
体电流密度是一个矢量,方向为正电荷的运动方向,大小等于垂直于运动方向上的单位面积上的电流。
电流密度的大小可表示为20m A lim−→∆⋅∆∆=SI J S 体电流密度矢量由体电荷密度和正电荷的运动速度确定,即vJ r r ⋅=ρ对于任意曲面,穿过此曲面的总电流为∫∫⋅=SSJ I r r d 同样,可以定义面电流密度为10m A lim −→∆⋅∆∆=l IJ l S vJ S S r r ⋅=ρ∫⋅=ls lJ I r r d 3、电流连续性方程(电荷守恒定律)在一个体电荷密度为ρ的带电体内任取一个封闭曲面S ,某瞬间从此封闭曲面流出的电流为i(t),则()∫∫∫∫∫−=−==⋅V S V t t Q t i S J d d d d d d ρr r 即电流连续性方程(电荷守恒定律)的积分形式。
若体积V 是静止的,则对时间的微分和体积分的次序可以交换,结合散度定理,有∫∫∫∫∫∫∫∫∂∂−=⋅=⋅∇V S V Vt S J V J d d d ρr r r于是,对于任意体积V ,都有tJ ∂∂−=⋅∇ρr 即电流连续性方程(电荷守恒定律)的微分形式。
麦克斯韦方程组数学表达式麦克斯韦方程组是描述电磁场的基本方程,它由四个方程组成,分别为高斯定律、法拉第电磁感应定律、安培环路定理和法拉第电磁感应定律的积分形式。
这四个方程的数学表达式如下:1. 高斯定律(电场电荷密度定理):$$ablacdotmathbf{E}=frac{rho}{epsilon_0}$$其中,$ablacdotmathbf{E}$表示电场的散度,$rho$表示电荷密度,$epsilon_0$为真空介电常数。
2. 法拉第电磁感应定律(电动势定理):$$oint_Cmathbf{E}cdotdmathbf{l}=-frac{d}{dt}int_Smathbf{B}cdot dmathbf{A}$$ 其中,$C$表示一条封闭路径,$mathbf{E}$表示电场强度,$mathbf{B}$表示磁场强度,$S$表示该路径所围成的面积。
3. 安培环路定理(磁场电流密度定理):$$ablatimesmathbf{B}=mu_0mathbf{J}+mu_0epsilon_0frac{partialm athbf{E}}{partial t}$$其中,$ablatimesmathbf{B}$表示磁场的旋度,$mathbf{J}$表示电流密度,$mu_0$为真空磁导率,$epsilon_0$为真空介电常数。
4. 法拉第电磁感应定律的积分形式(法拉第电磁感应定律的通量定理):$$oint_Smathbf{E}cdotdmathbf{A}=-frac{d}{dt}int_Vmathbf{B}cdot dmathbf{V}$$ 其中,$S$表示一个封闭曲面,$mathbf{E}$表示电场强度,$mathbf{B}$表示磁场强度,$V$表示该曲面所围成的体积。
麦克斯韦方程组电磁场的基本定律麦克斯韦方程组被誉为电磁学的基石,它是电场和磁场之间相互作用的数学描述。
通过这组方程,我们可以了解电磁场的本质及其基本行为。
本文将详细介绍麦克斯韦方程组的四个方程以及它们的物理意义。
一、麦克斯韦方程组的引入麦克斯韦方程组由19世纪物理学家詹姆斯·克拉克·麦克斯韦于1864年首次提出。
他基于法拉第电磁感应定律和库仑定律,将电场和磁场统一起来,形成了这组方程。
麦克斯韦方程组包括四个方程:高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定律。
这四个方程共同描述了电磁场的生成、传播和相互作用。
二、麦克斯韦方程组的四个方程1. 高斯定律高斯定律描述了电场的产生和分布规律。
它表明电场线从正电荷出发,经过电场中的介质,最终到达负电荷。
高斯定律的数学形式为:∮S E·dA = ε0∫V ρdV其中,S表示任意闭合曲面,E表示电场强度,dA表示曲面元素的面积,ε0为真空中的介电常数,ρ为电荷密度,V表示包围电荷体积。
2. 高斯磁定律高斯磁定律描述了磁场的分布规律。
与高斯定律类似,高斯磁定律指出磁场线无法孤立存在,它们必然会形成闭合回路。
高斯磁定律的数学表达式为:∮S B·dA = 0其中,S表示闭合曲面,B表示磁场强度,dA表示曲面元素的面积。
3. 法拉第电磁感应定律法拉第电磁感应定律描述了磁场变化产生的感应电场。
根据这个定律,当磁场的磁感线与一个闭合电路相交时,电路内将会产生感应电动势。
法拉第电磁感应定律可以用如下方程表示:∮C E·dl = -d(∫S B·dA)/dt其中,C表示闭合回路,E表示感应电场,dl表示沿闭合回路的微元弧长,S表示以闭合回路为边界的任意曲面。
4. 安培环路定律安培环路定律描述了磁场中的电流分布规律。
根据这个定律,一个闭合回路上的磁场的环路积分等于通过该回路的电流总和的倍数。
安培环路定律的数学形式为:∮C B·dl = μ0(∫S J·dA + ε0∫S E·dA/dt)其中,C表示闭合回路,B表示磁场强度,dl表示沿闭合回路的微元弧长,S表示以闭合回路为边界的任意曲面,J表示电流密度,μ0为真空中的磁导率。
电磁场理论电磁场理论,是电磁学的一个重要分支,研究电荷的运动对周围空间所形成的电场和磁场的影响,以及电流产生的磁场对周围空间所形成的电场和磁场的影响。
电磁场理论的基本方程包括麦克斯韦方程组和洛伦兹力密度方程。
麦克斯韦方程组是电磁场理论的基础,它包含了四个基本方程:1. 高斯定律:电场的通量与被包围电荷量之比等于电场强度在该点的值。
$$\abla \\cdot \\mathbf{E}=\\frac{\\rho}{\\varepsilon_{0}}$$2. 麦克斯韦—法拉第定律:磁场感应强度的闭合线圈输出电动势等于穿过该线圈的时间变化磁通量。
$$\abla \\times \\mathbf{E}=-\\frac{\\partial \\mathbf{B}}{\\partial t}$$3. 法拉第定律:导体中的电流与其上产生的磁场强度成正比。
$$\abla \\cdot \\mathbf{B}=0$$4. 安培定律:电流的旋度等于该点磁场的旋度与电场强度之和。
$$\abla \\times \\mathbf{B}=\\mu_{0} \\mathbf{J}+\\mu_{0}\\varepsilon_{0} \\frac{\\partial \\mathbf{E}}{\\partial t}$$其中,$\\rho$ 为电荷密度,$\\mathbf{E}$ 为电场强度,$\\mathbf{B}$ 为磁场感应强度,$\\mu_0$ 为真空中的磁导率,$\\varepsilon_0$ 为真空中的介电常数,$\\mathbf{J}$ 为电流密度。
洛伦兹力密度方程是磁场产生力的关系式,它描述了电磁场对电荷的作用力,即洛伦兹力:$$\\mathbf{f}=q\\left(\\mathbf{E}+\\mathbf{v} \\times\\mathbf{B}\\right)$$其中,$\\mathbf{v}$ 为电荷的速度。
电磁场计算
电磁场的计算可以通过安培环路定理和法拉第电磁感应定律来实现。
1. 安培环路定理:根据安培环路定理,通过一条封闭回路内的磁场的总和应等于通过该回路内的电流的总和的乘积,即
∮B·dl = μ0I,其中B是磁场强度,l是回路的长度,I是通过
回路的电流,μ0是真空中的磁导率。
这个定理可以用来计算
回路周围的磁场。
2. 法拉第电磁感应定律:法拉第电磁感应定律描述了磁场变化产生的电场。
根据这个定律,当一个导体回路被一个随时间变化的磁场穿过时,回路内将产生感应电动势。
这个电动势可以通过以下公式计算:ε = -dφ/dt,其中ε是感应电动势,φ是磁
通量,t是时间。
通常情况下,磁通量可以通过B·A计算得到,其中B是磁场强度,A是回路面积。
这个定律可以用来计算
磁场变化产生的感应电动势。
基于以上两个定律,可以进行电磁场的计算,通常通过数值求解来计算复杂的电磁场分布。
这需要采用适当的数值方法,如有限差分法或有限元法,以离散化电磁场方程并进行数值求解。
另外,还可以使用电磁场模拟软件,如ANSYS、COMSOL等,来进行电磁场的计算和仿真。
麦克斯韦方程组的积分式中表示变化的磁场产生电场的方程是
麦克斯韦方程组是电磁场理论的基本方程组,包括4个方程,分别是高斯定律、法拉第电磁感应定律、安培环路定理和电磁场的无源性。
其中,法拉第电磁感应定律描述了变化的磁场如何产生电场。
法拉第电磁感应定律可以表示为:
∮E·dl = - d(∮B·dA)/dt
其中,∮E·dl表示沿闭合回路的电场环量,∮B·dA表示通过该回路的磁感应强度与回路所围面积的积分,dt表示时间的微元,d(∮B·dA)/dt表示磁感应强度随时间的变化率。
这个方程告诉我们,当磁场随时间变化时,会在空间中产生一个电场,这个电场的环量和磁场的变化率有关。
这个电场的产生机制就是磁感应定律。
根据这个方程,我们可以看出,只有当磁场随时间变化时,才会产生电场。
这个电场的方向和大小取决于磁场的变化率和闭合回路上的形状和取向。
这个方程对于理解电磁感应现象非常重要,如变压器、电感等电磁设
备的工作原理都与此相关。
同时,这个方程也是麦克斯韦方程组中的一个重要方程,与其他方程共同描述了电磁场的行为和相互关系。
有源区和无源区的麦克斯韦方程
麦克斯韦方程是描述电磁场行为的基本方程组,包括四个方程:两个高斯定律方程和两个法拉第电磁感应定律方程。
这些方程对于理解电磁场的性质和行为非常重要,它们揭示了电磁场的产生、传播和相互作用的规律。
对于有源区,即存在电荷和电流的区域,麦克斯韦方程可以更直观地描述电磁场的行为。
第一个高斯定律方程表明电场线从正电荷流向负电荷,呈现出辐射状的形态。
第二个高斯定律方程说明磁场线是闭合的,不存在单磁极。
法拉第电磁感应定律方程则描述了电场和磁场的相互作用,当电场变化时,磁场产生感应电流;当磁场变化时,电场产生感应电动势。
相比之下,无源区是指电荷和电流密度为零的区域,也就是没有外部电荷和电流的存在。
在无源区,麦克斯韦方程可以简化为两个方程:第一个高斯定律方程和第二个法拉第电磁感应定律方程。
这两个方程描述了电场和磁场的分布以及相互作用,但与有源区相比,无源区不包含电荷和电流的产生和消失过程。
无论是有源区还是无源区,麦克斯韦方程都是研究电磁场行为的基础。
它们揭示了电磁场的本质和运动规律,对于理解电磁波传播、电磁感应等现象具有重要意义。
通过对麦克斯韦方程的研究,我们可以更好地理解电磁场的特性,并应用于电磁学、无线通信、光学
等各个领域的研究和应用中。
有源区和无源区的麦克斯韦方程是描述电磁场行为的基本方程组,它们揭示了电磁场的产生、传播和相互作用的规律。
通过对这些方程的研究,我们能够更好地理解电磁场的性质和行为,为相关领域的研究和应用提供理论基础。