第2章电磁场基本方程
- 格式:ppt
- 大小:1.45 MB
- 文档页数:13
电磁场基本方程1.麦克斯韦方程组1)麦克斯韦方程组全面反映了电磁基本规律,揭示了一般电磁现象,其微分形式的方程为: 0()t ∂∇⨯+=∂B B 法拉第定律 (2-1) 该定律揭示电磁感应现象,将磁场和电场有机联系了起来。
-(-)J t ∂∇⨯=∂D H 麦克斯韦安培定律 (2-2) 该定律的含义是磁通密度矢量沿任意一个闭合回路的线积分与穿过该闭合回路所在曲面Ω的电流总和相等,而与介质和磁场强度H 的分布无关。
()ρ∇•=D 高斯定律 (2-3) 该定律的含义是穿过任意一个闭合曲面的电通量(电位移矢量在该闭合曲面的有向积分)与这一闭合曲面所包围的自由电荷代数和相等,而与电介质和电通密度矢量分布无关。
0()∇•=B 磁场高斯定律 (2-4) 该定律的含义是穿出任意一个闭合曲面的磁通量(即磁通密度矢量在该闭合曲面的有向积分)恒等于零,而与磁介质和磁通密度矢量分布无关。
2)连续性方程,它是电流守恒定律的微分形式,可表示成:-t ρ∂∇•=∂J (2-5) 3)本构关系:本构关系表示与媒质电磁特性相关场量之间的关系,也叫媒质构成方程。
它描述了磁介质、电介质与导电体媒质三种电磁介质,同时解释了电磁场作用的媒质的分子磁化、电子传导、极化的机理,其中:ε=D E (2-6)μ=B H (2-7) 在电源以外区域有:()e σν=+⨯J E B (2-8) 需要注意,公式 (2.6)到(2.8)中,εμσ、、均为标量,因为材料均是各向同性媒质,若是各向异性媒质则均为张量。
其中:H 表示磁场强度;B 表示磁感应强度;E 表示电场强度;D 表示电位移矢量;J 表示电流密度;ρ表示电荷密度;ε表示电容率;σ表示电导率;ν表示磁阻率。
对于低频似稳电磁场,进行问题分析时在一般情况下可忽略因电场变化时产生的磁场,只研究磁场变化而产生的电场。
因为由麦克斯韦方程可知,电磁场的频率较低时,一般在1010Hz 以下,传导电流密度J 很大,而电位移矢量密度/t ∂∂D 很小,因此近似认为导体中无感应的涡流。
电磁场与电磁波第5版王家礼答案电磁场与电磁波第5版王家礼答案第一章电磁场和电磁波的基本概念1.1 什么是电磁场?电磁场是描述电荷运动影响的物理场。
它可以被看作是一种对空间的划分,并且在各个空间区域内具有不同的物理状态。
1.2 电磁场的基本方程式是哪些?电磁场的基本方程式包括:麦克斯韦方程组、库仑定律、法拉第电磁感应定律、安培环路定律等。
1.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象。
它具有电场和磁场的相互作用,且在真空和各种介质中都能传播。
第二章静电场和静磁场2.1 什么是静电场?静电场是指当电荷分布不随时间变化、不产生磁场时,所产生的电场。
2.2 静电场的基本定律有哪些?静电场的基本定律包括库仑定律、电场线、电势能和电势。
2.3 什么是静磁场?静磁场是指当电荷分布不随时间变化,但产生了磁场时,所产生的磁场。
2.4 静磁场的基本定律有哪些?静磁场的基本定律包括安培环路定律、比奥萨伐尔定律和洛伦兹力定律。
第三章时变电磁场和电磁波的基本概念3.1 什么是时变电磁场?时变电磁场是指电荷分布随时间变化,且产生了磁场时,所产生的电磁场。
3.2 时变电磁场的基本方程式是哪些?时变电磁场的基本方程式是麦克斯韦方程组,包括麦克斯韦-安培定律、麦克斯韦-法拉第定律、法拉第感应定律和电场定律等。
3.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象,它具有电场和磁场的相互作用,可以在真空和各种介质中传播。
3.4 电磁波的基本特征有哪些?电磁波的基本特征包括电场和磁场垂直于传播方向、具有可见光、红外线、紫外线、X射线和γ射线等不同频率和能量等。
第四章电磁波在真空和介质中的传播4.1 电磁波如何在真空中传播?电磁波在真空中传播速度等于光速,即299792458m/s。
4.2 介质是如何影响电磁波传播的?介质对电磁波的传播速度、方向和振动方向都有影响,介质内的电磁波速度取决于介质的介电常数和磁导率。
一、电磁场的源——电荷与电流1、电荷与电荷密度宏观上可以用“电荷密度”来描述带电体的电荷分布。
定义体电荷密度为30m C d d lim−→∆⋅=∆∆=VQV Q V ρ其中Q ∆是体积元V ∆内包含的总电荷量。
当电荷存在于一无限薄的薄层或者截面很小的细线上时,可用面电荷密度或线电荷密度来描述20m C d d lim−→∆⋅=∆∆=SQS Q S S ρ10m C d d lim −→∆⋅=∆∆=lQl Q l l ρ一个体积为V 、表面积为S 、线长为l 上包含的电荷总量可以分别对上述三式进行体、面、线积分得到,即∫∫∫=VV Q d ρ、∫∫=SS S Q d ρ、∫=ll lQ d ρ2、电流与电流密度任取一个面,穿过此面的电流定义为单位时间内穿过此面的电荷量,即As C d d lim10或−→∆⋅=∆∆=tQt Q I t 电流的正方向规定与正电荷的运动方向。
体电流密度是一个矢量,方向为正电荷的运动方向,大小等于垂直于运动方向上的单位面积上的电流。
电流密度的大小可表示为20m A lim−→∆⋅∆∆=SI J S 体电流密度矢量由体电荷密度和正电荷的运动速度确定,即vJ r r ⋅=ρ对于任意曲面,穿过此曲面的总电流为∫∫⋅=SSJ I r r d 同样,可以定义面电流密度为10m A lim −→∆⋅∆∆=l IJ l S vJ S S r r ⋅=ρ∫⋅=ls lJ I r r d 3、电流连续性方程(电荷守恒定律)在一个体电荷密度为ρ的带电体内任取一个封闭曲面S ,某瞬间从此封闭曲面流出的电流为i(t),则()∫∫∫∫∫−=−==⋅V S V t t Q t i S J d d d d d d ρr r 即电流连续性方程(电荷守恒定律)的积分形式。
若体积V 是静止的,则对时间的微分和体积分的次序可以交换,结合散度定理,有∫∫∫∫∫∫∫∫∂∂−=⋅=⋅∇V S V Vt S J V J d d d ρr r r于是,对于任意体积V ,都有tJ ∂∂−=⋅∇ρr 即电流连续性方程(电荷守恒定律)的微分形式。
电磁场方程及其解法电磁场是自然界中非常重要的物理现象,它的应用领域非常广泛。
电磁场方程是描述电磁现象的基本方程,了解电磁场方程及其解法,对于深入理解电磁现象具有重要的意义。
一、麦克斯韦方程组麦克斯韦方程组是描述电磁现象的重要基础方程组。
麦克斯韦方程组包括四个方程:高斯定理、法拉第定律、安培环路定理和位移电流定律。
高斯定理描述了电场和电荷之间的关系。
该定理的数学表达式为:$$\nabla·\boldsymbol{E}=\frac{\rho}{\varepsilon_0}$$其中$\boldsymbol{E}$表示电场矢量,$\rho$表示电荷密度,$\varepsilon_0$表示真空电容率。
法拉第定律描述了磁场和电流之间的关系。
该定律的数学表达式为:$$\nabla\times\boldsymbol{E}=-\frac{\partial\boldsymbol{B}}{\partial t}$$其中$\boldsymbol{B}$表示磁场矢量,$t$表示时间。
安培环路定理描述了磁场和电流之间的关系。
该定理的数学表达式为:$$\nabla·\boldsymbol{B}=0$$$$\nabla\times\boldsymbol{B}=\mu_0\boldsymbol{J}+\mu_0\vare psilon_0\frac{\partial\boldsymbol{E}}{\partial t}$$其中$\boldsymbol{J}$表示电流密度,$\mu_0$表示真空磁导率。
位移电流定律描述了电场和磁场之间的关系。
该定律的数学表达式为:$$\nabla·\boldsymbol{J}=-\frac{\partial\rho}{\partial t}$$$$\nabla\times\boldsymbol{B}=\mu_0\boldsymbol{J}$$二、电磁场方程的解法由于电磁场方程比较复杂,通常采用数值解法进行求解。