两个基本计数原理(加法原理和乘法原理)ppt课件精选ppt
- 格式:ppt
- 大小:1.74 MB
- 文档页数:50
第一章.计数原理一.两个基本计数原理分类计数原理(加法原理):完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,…..在第n类方式中有mn种不同的方法,那么完成这件事共有N=m1+m2+….mn种不同的方法。
分布计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1个有m1种不同的方法,做第2步有m2种不同的方法,….做第n步有mn种不同的方法,那么完成这件事共有N=m1+m2+….+mn种不同的方法。
二.排列一般的,从n个不同的元素中取出m(m≦n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列。
排列数三.组合一般的,从n个不同的元素中取出m(m≦n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
组合数㈠简单问题直接法例一.某班级有男生40人,女生20人,⑴从中任选一人去领奖,有多少种不同的选法?60⑵从中任选男女各一人去参加座谈会,有多少种不同的选法?800例二.五名学生报名参加思想体育比赛,每人限报一项,报名方法的种数为多少?1024例三.七个人做两排座位,第一排坐3人,第二排坐4人,有多少种不同的坐法?5040㈡相邻问题捆绑法例一.七个小孩拍照留念,其中三个是女孩,四个是男孩,⑴若三个女孩要站在一起,有多少种不同的排法720⑵若三个女孩要站在一起,四个男孩也要站在一起,则有多少种排法288㈢不相邻问题插空法例一.七个小孩拍照留念,其中三个是女孩,四个是男孩,⑴若三个女孩要互不相邻,有多少种排法1440⑵若三个女孩互不相邻,四个男孩也互不相邻,有多少种排法144例二.8张椅子排成一排,有四个人就坐,每个人一个座位,恰有3个连续的空位的做法共有几种480例三.5名学生和2位老师站成一排合影,2位老师不相邻的排法有几种例四.七人排成一排,甲乙两人必须相邻,且甲乙都不与丙相邻,则有不同的排法几种?960㈣特殊元素或特殊位置的优先考虑例一.4个男生,3个女生排队,⑴甲不站中间也不站两端,共有多少种排法?2880⑵甲乙中间至少有2个人,有多少种排法2400⑶甲必须在已的右边,有多少种排法2520例二.从6人中选出4人分别到莨山,韶山,衡山,张家界4个旅游景点游览,要求每个景点只有一人游览,每人只游览一个景点,且这6人中甲不去衡山景点,乙不去韶山景点,则不同的安排方法有几种252例三.从6名运动员中选出4人参加4*100米接力,⑴若甲不跑第一棒,乙不跑第四棒,则有多少种排法252⑵若甲乙都不跑第一棒,则有多少种排法240⑶若甲乙不跑中间两棒,则有多少种排法144例四.将五列车停在5条不同的轨道上,其中a列车不停在第一轨道,b列车不停在第二轨道,那么不同的停车方法有几种78例五.要排出某一天中语文,数学,政治,英语,体育,艺术,6门课各一节的课程表,要求数学课排在前三节,英语课不排在第六节,则不同的排法有几种?288㈤涂色问题例一.在矩形的绿地四角各方一盆花,现有6种不同颜色的花,若要求同一边的两端摆放不同的颜色,则不同的摆放方式有多少种630例二.将三种作物种在5块试验田里,每块种植一种作物,且相邻的试验田不能种植同一作物,不同的种植方法有多少种□□□□□42例三.在田字格中用四种颜色涂,要求相邻的格子颜色不能相同,有多少种不同的涂法㈥几何问题例一.平面内有12个点,任何3点不在同一直线上,以每3点为顶点画一个三角形,一共可画多少个三角形220例二.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得到多少个不同的三角形216例三.∠A的两条边除A点分别有3给点和四个点,则有这些点,共能构成多少个不同的三角形42例四.从正方体的八个顶点中任取三个点为顶点作为三角形,其中直角三角形有多少个?48例五.共有11层台阶,一个人可以一次走一个台阶或两个台阶,⑴若他恰在第七步走完,共可以有多少种走法35⑵若他要在7步内走完,共可以有多少种走法41例六.甲乙丙3人到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上得人不区分站的位置,则不同的站法有几种?例七.某市有7条南北向街道,5条东西向街道,⑴图中共有多少个矩形210⑵从A点到B点最短路线的走法有多少种?210㈦分组分配例一.对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有几种可能576例二.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级,且每班安排两名,则不同的安排方案有几种?90例三.从7名男运动员和5名女运动员中,选出4名进行男女混合双打乒乓球比赛,则不同的配组方法有几种420例四.共有8个人,其中6个人会英语,有5个人会法语,现从中选出6个人,3个人翻译英语,3个人翻译法语,共有多少种可能?55例五.若7个人身高都不同,从中取出6人,站成2排,每排3人,要求每一列前排比后排的人矮,共有几种站法?630㈦至多至少恰好间接法例一.袋中有5双不同的鞋子,从中取出4只⑴恰好有2双,共有几种可能?10⑵恰好有2只成双,共有几种可能120⑶至少有2只成双,有几种可能130⑷每只都不成双,有几种可能?80例二.将7名学生分配到甲乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的分配方式有几种?112例三.设有编号12345的五个球和编号为12345的五个盒子,现将五个球放入盒子内,要求每个盒子内放一个球,⑴若恰有两个球的编号与盒子编号相同,则这样的投放方法有几种20⑵若至多有两个球的编号与盒子相同,则这样的投放方法有多少种?109三个人站成一排,要调整位置,每个人都不站在自己的位置上,有2种方法。
两个基本计数原理加法原理和乘法原理两个基本计数原理:加法原理和乘法原理在我们的日常生活和数学学习中,经常会遇到需要计算各种可能性和数量的情况。
而两个基本的计数原理——加法原理和乘法原理,为我们解决这些问题提供了重要的方法和思路。
让我们先来了解一下加法原理。
想象一下,你要从 A 地去 B 地,有三条不同的路线可以选择,分别是路线 1、路线 2 和路线 3。
那么,你从 A 地到 B 地一共有多少种走法呢?答案很简单,就是这三条路线的总和,也就是 3 种。
这就是加法原理的一个简单例子。
加法原理指的是,如果完成一件事情有 n 类不同的办法,在第一类办法中有 m1 种不同的方法,在第二类办法中有 m2 种不同的方法,……,在第 n 类办法中有 mn 种不同的方法,那么完成这件事情共有 N = m1 + m2 +… + mn 种不同的方法。
再来看一个稍微复杂一点的例子。
假设你周末想去图书馆看书,图书馆有数学、语文、英语、历史和地理这五类书籍。
你决定只看一本,那么你有多少种选择呢?这里,因为你只能选择其中的一类书籍,而每一类书籍都算是一种选择,所以总的选择方法就是这五类书籍的总和,即 5 种。
接下来,我们说一说乘法原理。
假如你要从 A 地去 C 地,但是中间必须经过 B 地。
从 A 地到 B 地有 2 条路可以走,从 B 地到 C 地有 3条路可以走。
那么,从 A 地经过 B 地到 C 地一共有多少种走法呢?答案是 2×3 = 6 种。
这就是乘法原理的体现。
乘法原理是指,如果完成一件事情需要分成 n 个步骤,做第一步有 m1 种不同的方法,做第二步有 m2 种不同的方法,……,做第 n 步有 mn 种不同的方法,那么完成这件事情共有 N =m1×m2×…×mn 种不同的方法。
为了更好地理解乘法原理,我们再举一个例子。
你要参加一个活动,需要选择一套服装。
上衣有 3 种款式,裤子有 2 种款式。