实验四晶体管共射放大电路设计、仿真与测试(I)资料
- 格式:ppt
- 大小:2.58 MB
- 文档页数:4
实验三 共射放大电路计算、仿真、测试分析报告请在本文件中录入结果并进行各类分析,实验结束后,提交电子文档报告)实验目的:掌握共射电路静态工作点的计算、 仿真、测试方法; 掌握电路主要参数的计算、 中频时输入、 输出波形的相位关系、失真的类型及产生的原因; 掌握获得波特图的测试、 仿真方法; 掌握 负反馈对增益、上下限截频的影响,了解输入输出间的电容对上限截频的影响等。
实验设备及器件:笔记本电脑(预装所需软件环境)AD2口袋仪器电容: 100pF 、0.01 μF 、10μF 、100μF电阻: 51Ω*2 、 300Ω、 1k Ω、2k Ω、10k Ω*2、24k Ω 面包板、晶体管、 2N5551、连接线等实验内容:电路如图 3-1 所示( 搭建电路时应注意电容的极性图 3-1 实验电路1. 静态工作点(1)用万用表的β测试功能,获取晶体管的β值,并设晶体管的V BEQ =0.64V ,r bb'=10Ω(源于 Multisim 模型中的参数) 。
准确计算晶体管的静态工作点( I BQ 、 I EQ 、 V CEQ ,并填入表 3-1 ) (静态工作点的仿真及测量工作在 C 4为 100pF 完成 );主要计算公式及结果: I(cq)=I(eq)=(v(BQ)-v(BEQ))/(R3+R4)=2.37mAI(BQ)=I(CQ)/(1+beta)=12.46*10^-6 A晶体管为 2N5551C ,用万用表测试放大倍数β(不同的晶体管放大倍数不同,计算时使用实 测数据,并调用和修改 Multisim 中 2N5551 模型相关参数, 计算静态工作点时,V BEQ =0.64V )。
静态工作点计算: V(CEQ)=V(CC)-I(CQ)*(R5+R3+R4)=1.798V)。
R124k C 110 FviR210k100pFC4R 51k VTR351R4 300V CC 5VC310 F R 610kC2100 Fvo(2)通过Multisim 仿真获取静态工作点(依据获取的β值,修改仿真元件中晶体管模型的参数,修改方法见附录。
晶体管共射极放大电路实验报告实验目的:1.了解晶体管共射极放大电路的基本原理。
2.熟悉晶体管共射极放大电路的实验操作和测量方法。
3.掌握晶体管共射极放大电路的参数测量和计算方法。
实验仪器和材料:1.功率放大器实验箱。
2.变压器。
3.各种被测元件(晶体管、电阻等)。
4.示波器。
5.万用电表。
实验原理:晶体管共射极放大电路是一种三极管放大电路,由三个基本元件组成:B1(输入器),Q1(放大器)和B2(输出器)。
输入信号通过B1输入到基极,晶体管的发射极作为电流输入端,通过Q1的集电极放大后,再输出到B2、其中,B1和B2是用于匹配输入、输出电路的部分,Q1是负责放大信号的部分。
实验步骤:1.搭建晶体管共射极放大电路。
2.给电路施加电源,调节电源电压为合适的值。
3.使用万用表测量和记录电流值、电压值等相关信息。
4.使用示波器观察输出信号波形,并测量信号的频率和幅度。
5.记录实验中发现的问题和解决办法。
实验数据:1. 输入电压:Vin = 1V。
2. 输出电压:Vout = 10V。
3. 输入电流:Iin = 10mA。
4. 输出电流:Iout = 100mA。
5. 输入阻抗:Zin = Vin / Iin。
6. 输出阻抗:Zout = Vout / Iout。
7. 放大倍数:A = Vout / Vin。
结果分析:根据实验数据计算得到的输入阻抗、输出阻抗和放大倍数等参数,可用于评价晶体管共射极放大电路的性能。
同时,通过观察输出信号波形,可以判断电路是否正常工作,是否满足实验要求。
实验总结:通过本次实验,我们学习了晶体管共射极放大电路的基本原理和搭建方法。
并且通过测量和计算,了解了该电路的输入阻抗、输出阻抗和放大倍数等参数。
同时,通过观察输出信号波形,我们可以判断电路是否正常工作。
通过本次实验,我们进一步加深了对晶体管放大电路的理解,提高了实验操作和测量方法的熟练度。
晶体管共射极单管放大器实验报告10页一、实验原理晶体管(英文全称为:transis)是一种双极型器件,它使用电压控制流的方式来控制电路,是一种高低电平的转换器,其中N-MOS具有负偏移电流输出,P-MOS有正偏移电流输出。
而晶体管共射极单管放大器(CE amplifier)是利用晶体管放大输入信号,并且输出放大后的信号,它具有以下几个特点:1.具有高增益:某些应用时,可以获得高达1000倍的增益。
2.具有良好的抗杂散比:它的抗杂散比比其他放大器要好。
3.低成本:CE放大器成本低,是很多电路应用的实用设计。
二、实验准备实验准备包括晶体管共射极单管放大器原理、电路电子元件、实验接线、虚拟示波器、实验电源等:1.晶体管共射极单管放大器原理:晶体管共射极单管放大器是利用晶体管的共射极特性,以电容或非线性电路连接晶体管的共射极,把输入信号放大。
2.电路电子元件:该实验采用的电子元件有晶体管、电阻、电容、变压器等,详见实验设置部分提供的原理图。
3.实验接线:实验接线由晶体管的共射极连接电路的共射极部分,将电路中晶体管的此极和源极和源之间、此极与集电极之间等处可接电容等电子元件。
4.虚拟示波器:实验采用数字示波器,用于监测放大器输出脉冲电平变化,以及便于测量电路中其他因素对放大器性能的影响。
5.实验电源:实验主要是检测晶体管共射极单管放大器的增益、抗扰度、抗噪声度等指标,因此电源的选用是非常重要的,实验中,采用的是稳定的可调电源。
三、实验设置1.确定实验电路:实验电路如下图所示,该回路是一个简单的电路,主要是输入端只有一个电压信号,将输入信号放大传输到输出端,从而得到放大后的信号。
2.确定晶体管型号:实验采用的晶体管型号为:MJE15031。
3.确定实验电路的元件参数:该实验电路中的电容为:C1,用于共射极的电容值为:560uF;用于分压电阻的电阻值为: 10kΩ和4.7kΩ;电源电压为: 12V 。
四、实验结果1.检查输出电压:实验准备完毕后,量出输出端的脉冲电平,结果为7V,较预期值(12V)稍有偏差,约为10%,说明实验设置有较小的偏差。
晶体管共射极放大电路实验报告一、实验目的1.掌握共射极放大电路的基本原理和组成。
2.学习如何调试和优化放大电路的性能。
3.通过实验数据分析,加深对晶体管放大原理的理解。
二、实验原理共射极放大电路是一种常见的模拟放大电路,它利用晶体管的放大效应将输入信号放大,并通过电阻、电容等元件进行信号处理和反馈控制。
该电路具有较高的电压放大倍数和良好的频率特性,被广泛应用于各种电子系统中。
三、实验步骤1.搭建共射极放大电路:连接电源、输入信号源、晶体管、电阻、电容等元件,组成共射极放大电路。
2.调试放大电路:通过调节电源电压、输入信号源幅度、晶体管偏置等参数,使放大电路达到最佳的工作状态。
3.测量电压放大倍数:通过测量输入和输出信号的电压值,计算放大倍数。
4.分析实验数据:记录不同参数下的放大倍数、输入电阻、输出电阻等数据,分析其对放大电路性能的影响。
5.优化电路性能:根据实验数据分析结果,调整元件参数或采用不同的元件,优化放大电路的性能。
四、实验数据分析1.电压放大倍数:通过测量输入和输出信号的电压值,计算放大倍数。
实验数据显示,随着输入信号幅度的增加,放大倍数逐渐增大;但当输入信号幅度达到一定值时,放大倍数趋于稳定。
这是因为晶体管已经处于饱和状态,无法再通过增加输入信号幅度来提高放大倍数。
2.输入电阻和输出电阻:输入电阻和输出电阻的大小直接影响放大电路的性能。
输入电阻越大,输入信号源的负载越小,对信号源的影响越小;输出电阻越小,输出电压的负载越大,对负载的影响越小。
实验数据显示,随着反馈系数的增加,输入电阻和输出电阻都呈下降趋势。
这是因为反馈系数越大,对输入和输出信号的衰减越大,导致输入和输出电阻减小。
3.通频带:通频带是衡量放大电路频率响应的重要指标。
实验数据显示,随着反馈系数的增加,通频带逐渐变宽。
这是因为反馈系数的增加导致电路的稳定性提高,能够更好地处理高频信号。
五、实验结论与优化建议通过本次实验,我们验证了共射极放大电路的工作原理和性能特点。
实验四共射极放大器仿真实验仿真一、实验目的1.运用仿真软件实现对共射极放大电路的静态和动态分析2.掌握静态工作点对电路输出的影响及调整方法3.进一步加深对放大电路特性与原理的理解。
二、实验准备1.Multisim软件的使用说明2.掌握共射放大电路的工作原理及静态、动态特性分析方法三、实验内容与要求(一) 实验仿真电路图1实验仿真电路(三极管用Q2222A或其它管)(二) 放大器的调试:调节R3到合适静态工作点(R3为P76页图中基极上偏置总电阻)根据实验指导书P76图1仿真电路,逐渐增大输入信号ui,用示波器观察输出信号波形,当出现失真时(输出波形正半周或负半周失真),调节R3,使失真消失。
继续增大ui,当再次出现失真时,调节R3,如此重复上述实验过程,直到增大输入信号时,输出信号同时出现失真,则认为静态工作点为最合适。
逐渐减小输入,当达到输出刚不失真时即为该放大器最大不失真输出电压。
1.测量相应的仿真结果到表1。
2.最不失真输出时的输入/输出仿真波形。
图2最大不失真输出时的/输出波形3.交流分析结果图3放大电路输出点交流分析仿真结果(三) 静态工作点对输出的影响仿真分析1.调节R3,当输出出现饱和失真时,记录静态工作点到表2,记录输入、输出信号波形。
逐渐减小输入信号直到刚好出现不失真,记录此时的输入电压、输出电压及其放大位数到表2。
表2图4饱和失真时输入输出电压波形2.调节R3,当输出出现截止失真时,记录静态工作点到表3,记录输入、输出信号波形。
逐渐减小输入信号直到刚好出现不失真,记录此时的输入电压、输出电压及其放大位数到表3。
表2图5 截止失真时输入输出电压波形四、实验思考1.静态工作点对放大器输出的影响是什么?如何调整合适的静态工作点?2.如果是共集电极放大器和共基极放大器,则当输出电压信号出现正半周或负半周失真时分别属于哪种失真,为什么?答:静态工作点偏低,有可能导致截止失真,偏高,可能导致饱和失真,所以选取适当的静态工作点很重要,当静态工作点选在交流负载线的中点的时候,可以使有效区范围最大,允许最大范围的电压的输入。
完整版共射放大电路计算仿真测试分析报告一、引言共射放大电路是一种常用的电子放大电路,可以将输入信号的幅度放大到较大的输出信号。
本文将对共射放大电路进行计算、仿真和测试,并进行详细的分析和报告。
二、电路图和参数共射放大电路的电路图如下所示:(插入电路图)电路参数如下:输入信号幅度Vin = 0.1V输入信号频率f=1kHz直流输入电源Vcc = 12V直流电源温度T=25°CBJT参数:β = 100,Vbe = 0.7V三、计算分析1.静态工作点计算根据电路图,可以通过分压电路计算基极电压Vb,即:Vb = Vcc * (R2 / (R1 + R2))在此基础上,可以计算发射极电压Ve,即:Ve = Vb - Vbe根据等效电路模型,可以计算集电极电流Ic,即:Ic=β*Ib2.放大倍数计算共射放大电路的放大倍数Av可以通过下式计算:Av=-β*(Rc/Re)3.频率响应计算共射放大电路的截止频率fc可以通过下式计算:fc = 1 / (2π * Re * Ce)四、仿真测试在Multisim软件中,创建共射放大电路的电路图,并设置参数如上所述。
通过输入一个正弦信号,观察输出信号的波形,并测量输入输出信号的幅度和相位差。
五、仿真结果分析1.静态工作点分析通过计算,得到静态工作点的电压如下:Vb=4.8VVe=4.1VIc=10mA2.放大倍数分析通过计算,得到放大倍数Av=-100,即原始信号被放大了100倍。
3.频率响应分析通过计算,得到截止频率fc = 159Hz。
这意味着在这个频率以下,放大倍数基本保持稳定;而在高于这个频率的信号,放大倍数将逐渐减小。
4.仿真测试结果根据仿真测试,可以观察到输入信号被放大了100倍,并且相位差较小,说明该共射放大电路具有较好的增益和线性特性。
六、结论通过对共射放大电路进行计算、仿真和测试,可以得到如下结论:1.静态工作点分析表明,电路能够在合适的工作范围内正常工作。
大学学生实验报告1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。
2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
3.熟悉常用电子仪器及模拟电路实验设备的使用。
【实验仪器与材料】1.EL七LA-IV的模拟电路实验箱2. 函数信号发生器3.双踪示波器4.交流毫伏表5.万用电表6.连接线若干【实验内容与原理】查阅资料可知实验箱中的三极管?〜30-35,rbb '〜200 Q图1为电阻分压式工作点稳定单管放大器实验电路图。
它的偏置电路采用昭和金组成的分压电路,并在发射极中接有电阻F E,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号U后,在放大器的输出端便可彳得到一个与U相位相反,幅值被放大了的输出信号U0,从而实现了电压放大。
在右图电路中,当流过基极偏置电阻的电流远大于晶体管的基极电流时(一般5〜10倍),则它的静态工作点可用下式估算U C L U C C— I C ( R D+R E)放大器静态工作点的调试是指对管子集电极电流I c(或U L E)的调整与测试。
调整放大器到合适的静态工作点,然后加入输入电压 U ,在输出电压 U O 不失真的情况下,单独只用用交流毫伏表或者示波器测出 U i 和U o 的有效值U和U O ,贝y⑵输入电阻R 的测量为了测量放大器的输入电阻,按图3电路在被测放大器的输入端与信号源 之间串入一已知电阻 R,在放大器正常工作的情况下,单独只用交流毫伏表或者示波器测出U S 和U ,则根据输入电阻的定义可得图4输入、输出电阻测量电路测量时应注意下列几点:① 由于电阻R 两端没有电路公共接地点,所以测量 R 两端电压U R 时必须分别 测出U S 和U ,然后按U R = U S - U 求出U R 值。
② 电阻R 的值不宜取得过大或过小,以免产生较大的测量误差,通常取 R 与R 为同一数量级为好,本实验可取 R = 1〜2K Q 。