1.1.2 集合间的基本关系(2)
- 格式:doc
- 大小:207.50 KB
- 文档页数:4
1.1.2 集合间的基本关系
教学过程:
(I)复习回顾
问题1:元素与集合之间的关系是什么?
问题2:集合有哪些表示方法?集合的分类如何?
)班的学生
通过观察就会发现,这五组集合中,集合A都是集合B的一部分,从而有:
1.子集
B
规定:空集∅是任何集合的子集,即对于任意一个集合A都有∅A。
是两条边相等的三角形
问题3:观察(7)和(8),集合A与集合B的元素,有何关系?
⇒集合A与集合B的元素完全相同,从而有:
问题4:(1)集合A是否是其本身的子集?(由定义可知,是)
(2)除去∅与A本身外,集合A的其它子集与集合A的关系如何?(包含于A,但不等于A)
3.真子集:
由“包含”与“相等”的关系,可有如下结论:
(1)A⊆A (任何集合都是其自身的子集);
(2)若A⊆B,而且A≠B(即B中至少有一个元素不在A中),则称集合A是集合B的真
子集(proper subset),记作A⊂≠B。
(空集是任何非空集合的真子集)
(3)对于集合A,B,C,若A⊆B,B⊆C,即可得出A⊆C;对A⊂≠B,B⊂≠C,同样有A⊂≠C, 即:
包含关系具有“传递性”。
4.证明集合相等的方法:
(1)证明集合A,B中的元素完全相同;(具体数据)
(2)分别证明A⊆B和B⊆A即可。
(抽象情况)
对于集合A,B,若A⊆B而且B⊆A,则A=B。
1.2集合间的基本关系教学设计(人教A版)第一节通过研究集合中元素的特点研究了元素与集合之间的关系及集合的表示方法,而本节重点通过研究元素得到两个集合之间的关系,尤其学生学完两个集合之间的关系后,一定让学生明确元素与集合、集合与集合之间的区别。
课程目标1. 了解集合之间包含与相等的含义,能识别给定集合的子集.2. 理解子集.真子集的概念.3. 能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用。
数学学科素养1.数学抽象:子集和空集含义的理解;2.逻辑推理:子集、真子集、空集之间的联系与区别;3.数学运算:由集合间的关系求参数的范围,常见包含一元二次方程及其不等式和不等式组;4.数据分析:通过集合关系列不等式组,此过程中重点关注端点是否含“=”及 问题;5.数学建模:用集合思想对实际生活中的对象进行判断与归类。
重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、问题导入:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探. 二、 预习课本,引入新课阅读课本7-8页,思考并完成以下问题1. 集合与集合之间有什么关系?怎样表示集合间的这些关系?2. 集合的子集指什么?真子集又是什么?如何用符号表示?3. 空集是什么样的集合?空集和其他集合间具有什么关系?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究 (一)知识整理 1.集合与集合的关系(1)一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A BB A ⊆⊇或读作:A 包含于B(或B 包含A).图示:(2)如果两个集合所含的元素完全相同(A B B A ⊆⊆且),那么我们称这两个集合相等.记作:A =B 读作:A 等于B.图示:2. 真子集若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集。
1.1.2 集合间的基本关系——题型探究类型一 子集、真子集的概念问题【例1】 已知集合M ={x|x <2且x ∈N },N ={x|-2<x <2且x ∈Z }.(1)试判断集合M 、N 间的关系.(2)写出集合M 的子集、集合N 的真子集.[思路探索] 把用描述法表示的集合用列举法表示出来,以便于观察集合的关系和写子集与真子集.解 M ={x|x <2且x ∈N }={0,1},N ={x|-2<x <2,且x ∈Z }={-1,0,1}.(1)M N.(2)M 的子集为: ,{0},{1},{0,1},N 的真子集为: ,{-1},{0},{1},{-1,0},{-1,1},{0,1}.[规律方法] 1.写有限集合的所有子集,首先要注意两个特殊的子集: 和自身;其次按含一个元素的子集,含两个元素的子集…依次写出,以免重复或遗漏.2.若集合A 含n 个元素,那么它子集个数为2n ;真子集个数为2n -1,非空真子集个数为2n -2.【活学活用1】 已知集合A ={x|x 2-3x +2=0,x ∈R }.B ={x|0<x <5,x ∈N },则满足条件A C B 的集合C 的个数为( ).A .1B .2C .3D .4解析 易知A ={1,2},B ={1,2,3,4},又A C B.∴集合C 可以是{1,2},{1,2,3},{1,2,4},{1,2,3,4}.答案 D类型二 集合的相等问题【例2】 集合⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b},则a 2 013+b 2 014的值为( ). A .0 B .1 C .-1 D .±1[思路探索] 集合相等 集合的元素相同 a ≠0 b =0,a 2=1 a 2013+b 2014=-1.解析 ∵⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b}, 又a ≠0,∴b a=0,∴b =0. ∴a 2=1,∴a =±1.又a ≠1,∴a =-1,∴a 2 013+b 2 014=(-1)2 013+02 014=-1.答案 C[规律方法] 1.本题以“0”为着眼点,b a中a 不为0为突破口. 2.两个集合相等,则所含元素完全相同,与顺序无关,但要注意检验,排除与集合元素互异性或与已知矛盾的情形.例如本题中a =1不满足互异性,否则会错选D.【活学活用2】 设集合A ={1,-2,a 2-1},B ={1,a 2-3a,0},若A =B ,求实数a 的值.解 由A =B 及两集合元素特征,∴⎩⎪⎨⎪⎧ a 2-1=0,a 2-3a =-2, ∴⎩⎪⎨⎪⎧a =±1,a =1或a =2. 因此a =1,代入检验满足互异性.∴a =1.类型三 由集合间的关系求参数范围问题【例3】 已知集合A ={x|-3≤x ≤4},B ={x|2m -1<x <m +1},且B A.求实数m 的取值范围.[思路探索] 借助数轴分析,注意B 是否为空集.解 ∵B A ,(1)当B = 时,m +1≤2m -1,解得m ≥2.(2)当B ≠ 时,有⎩⎪⎨⎪⎧ -3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2,综上得m ≥-1.[规律方法] 1.(1)分析集合间的关系时,首先要分析、简化每个集合.(2)借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.2.此类问题要注意对空集的讨论.【活学活用3】 已知集合A ={x|1≤x ≤2},B ={x|1≤x ≤a ,a ≥1}.(1)若A B ,求a 的取值范围;(2)若B A ,求a 的取值范围.解 (1)若A B ,由图可知a >2.(2)若B A ,由图可知1≤a ≤2.方法技巧 分类讨论思想在集合关系中的应用所谓分类讨论,就是当问题所涉及的对象不能统一解决时,就需要对研究对象按某个标准进行分类,然后对每一类分别研究得出每一类结论,最后综合各类结果得到整个问题的答案.在集合包含关系或涉及集合的元素含有参数时,常借助分类讨论思想转化求解.【示例】 (2013·济南高一检测)已知集合A ={x|x 2-4x +3=0},B ={x|mx -3=0},且B A ,求实数m 的集合.[思路分析]解 由x 2-4x +3=0,得x =1或x =3.∴集合A ={1,3}.(1)当B = 时,此时m =0,满足B A.(2)当B ≠ 时,则m ≠0,B ={x|mx -3=0}=⎩⎨⎧⎭⎬⎫3m . ∵B A ,∴3m =1或3m=3,解之得m =3或m =1. 综上可知,所求实数m 的集合为{0,1,3}.[题后反思] 1.解答诸如含有集合包含关系的题目时,一定要警惕“ ”这一陷阱,考虑不周而漏掉对空集的讨论,往往造成不应有的失分,初学者要切记.2.在方程或不等式中,当一次项或二次项系数含参数时,在参数取值范围不确定的情况 下要注意分类讨论.作业1.集合{0}与∅的关系是( ).A .{0}B .{0}∈C .{0}=D .{0}解析 空集是任何非空集合的真子集,故A 正确.集合与集合之间无属于关系,故B 错;空集不含任何元素,{0}含有一个元素0,故C 、D 均错.答案 A2.已知集合A ={x|-1<x <4},B ={x|x <a},若A B ,则实数a 满足( ).A .a <4B .a ≤4C .a >4D .a ≥4解析 由A B ,结合数轴,得a ≥4.答案 D3.已知集合A ={2,9},集合B ={1-m,9},且A =B ,则实数m =________. 解析 ∵A =B ,∴1-m =2,∴m =-1.答案 -14.已知集合A ={-1,3,2m -1},集合B ={3,m 2},若B A ,则实数m =________. 解析 ∵B ={3,m 2},A ={-1,3,2m -1},且B A ,∴m 2∈{-1,3,2m -1},又m 2≠3,∴m 2=2m -1,解得m =1,经检验合题意.答案 15.已知集合A ={(x ,y)|x +y =2,x ,y ∈N },试写出A 的所有子集.解 ∵A ={(x ,y)|x +y =2,x ,y ∈N },∴A ={(0,2),(1,1),(2,0)}.∴A 的子集有: ,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.课堂小结1.子集和真子集(1)A B 包含两种情况:A =B 和A B.当A 是B 的子集时,不要漏掉A =B 的情况.(2)在真子集的定义中,A B 首先要满足A B ,其次至少有一个x ∈B ,但x A.(3)集合与集合之间的关系有包含关系、相等关系,其中包含关系有:包含于( )、包含( ),真包含于( )、真包含( )等,用这些符号时要注意方向.2.空集(1)空集是任何集合的子集,是任何非空集合的真子集.(2)若利用“A B”或“A B”解题,要讨论A= 和A≠ 两种情况.3.涉及字母参数的集合关系时,注意数形结合思想与分类讨论思想的应用.。
《1.1.2集合间的基本关系》学案【学习目标】1.理解掌握集合间的基本关系--包含,真包含关系,并能用韦恩图表示2.区别元素与集合,集合和集合间的关系3.了解空集的含义.【基础知识】1、 子集观察下列几个例子,你能发现两个集合间的关系吗?(1){}{}.5,4,3,2,1,0B ,5,3,1A == (2){},女同学是鸡西一中高一年级的x x |A ={}.|B 学生是鸡西一中高一年级的x x =(3){},|A 是两边相等的三角形x x ={}.|B 是等腰三角形x x = (4)Z B ,N A ==.知识提炼:子集: 为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn 图。
如图l 和图2分别是表示问题中实例1和实例3的Venn 图.图1 图22、 集合相等对于两个集合A 和B ,集合A 是集合B 的子集,集合B 是集合A 的子集,能否同时成立?(1)考查下面两个集合:{},4,3,2,1,0A ={}.4|B 的自然数是不大于x x = (2)两个实数b a ,,如果b a ≥,且a b ≥,那么有b a =,与集合相类比你有什么体会?知识提炼:集合相等:3、 真子集观察下列各组中的集合A 与B ,它们有怎样的关系? (1){},4,3,1A ={}.4,5,3,2,1,0B = (2)()(){},1,0,1,0A =(){}.,,1|,B R y R x y x y x ∈∈=+= (3){},|是偶数x x A ={}.|B 是整数x x =知识提炼:真子集:4、空集知识提炼:空集: 空集,记为.规定:空集是任何集合的子集,空集是任何非空集合的真子集.也就是说,对于任何一个集合A,有A ;若A ≠,有A .【两个结论】(1)任何一个集合是它本身的子集,即A ⊆ A 。
(2)对于集合A 、B 、C ,如果A ⊆ B ,且B ⊆ C ,那么A ⊆ C 类比:a<b ,b<c ,则a<c【基本题型】例1.写出集合{a ,b ,c }的所有的子集.总结升华:集合A 中有n 个元素,请总结出它的子集、真子集、非空真子集个数与n 的关系.例2. 设A ={x |x 2-8x +15=0},B ={x |ax -1=0},若B ⊆A ,求实数a 组成的集合.例3. 已知A ={x ∈R |x <-1,或x >5},B ={x ∈R |a ≤x <a +4}.若A B ,求实数a 的取值范围.●随堂训练(一).集合间的关系1:下列命题:(1)空集无子集;(2)任何集合至少有两个子集;(3)空集是任何集合的真子集;(4)若ΦA 则φ≠A 。
第1章 1.1.2 集合间的基本关系一.选择题1.已知集合{|6A x x =<且*}x N ∈,则A 的非空真子集的个数为A .30B .31C .62D .63【答案】A 【解析】集合{|6A x x =<且*}{1x N ∈=,2,3,4,5},故A 的子集个数为5232=,非空真子集个数为30.故选A .2.集合{|22}A x Z x =∈-<<的子集个数为A .4B .6C .7D .8【答案】D【解析】{|22}{1A x Z x =∈-<<=-,0,1}, ∴集合A 的子集个数为328=个,故选D .3.已知集合{0A =,1},{B m =,1,2},若A B ⊆,则实数m 的值为A .2B .0C .0或2D .1【答案】B 【解析】集合{0A =,1},{B m =,1,2},A B ⊆,0m ∴=, 故实数m 的值为0.故选B .4.设集合{|21M x x k ==+,}k Z ∈,{|2N x x k ==+,}k Z ∈,则A .M NB .M N =C .N MD .M N =∅【答案】A 【解析】集合{|21M x x k ==+,}{k Z ∈=奇数},{|2N x x k ==+,}{k Z ∈=整数},M N ∴.故选A .5.设a ,b R ∈,集合{1,a b +,}{0a =,b a ,}b ,则b a -= A .1B .1-C .2D .2- 【答案】C 【解析】根据题意,集合{1,,}{0,,}b a b a b a +=, 又0a ≠,0a b ∴+=,即a b =-, ∴1b a=-, 1b =;故1a =-,1b =,则2b a -=,故选C .6.已知集合22{(,)|3A x y x y =+,x N ∈,}y Z ∈,则A 中元素的个数为A .9B .8C .7D .6【答案】D【解析】x N ∈, 0x ∴=时,1y =-,0,11x =时,1y =-,0,11x >时,不存在实数解x∴共有6种故选D .7.已知集合{1A =,2,3,4,5},{(,)|B x y x A =∈,y A ∈,}y A x∈,则集合B 所含元素个数为A .3B .6C .8D .10 【答案】D 【解析】集合{1A =,2,3,4,5},{(,)|B x y x A =∈,y A ∈,}y A x∈, {(1,2)B ∴=,(1,3),(1,4),(1,5),(2,4),(1,1),(2,2),(3,3),(4,4),(5,5)}, ∴集合B 所含元素个数为10.故选D .8.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若A ∅,则A ≠∅.其中正确的个数是A .0B .1C .2D .3 【答案】B【解析】在①中,空集的子集是空集,故①错误; 在②中,空集只有一个子集,还是空集,故②错误; 在③中,空集是任何非空集合的真子集,故③错误; 在④中,若A ∅,则A ≠∅,故④正确.故选B .9.已知集合{2A =-,3,1},集合{3B =,2}m ,若B A ⊆,则实数m 的取值集合为A .{1}B .C .{1,1}-D . 【答案】C【解析】{2A =-,3,1},{3B =,2}m , 若B A ⊆,则21m =1m ∴=或1m =-实数m 的取值集合为{1,1}-故选C .10.满足{1}{1X ⊆⊂,2,3,4,5}的集合X 有A .15个B .16个C .18个D .31个【答案】A 【解析】根据子集的定义,可得集合X 必定含有1这个元素,可能含有2、3、4、5,但不能是{1,2,3,4,5}.因此,满足条件的集合X 有:42115-=个. 故选A .二.填空题11.已知集合{0A =,2,3},{|B x x a b ==,a ,}b A ∈,则集合B 的子集个数为 .【答案】16【解析】{0A =,2,3},{|B x x a b ==,a ,}b A ∈, {0B ∴=,4,6,9}.所以集合B 中的子集个数为4216=个.故答案为:16.12.已知集合{|13}A x x =-<<,{|}B x m x m =-<<,若B A ⊆,则m 的取值范围为 .【答案】(-∞,1]【解析】集合{|13}A x x =-<<,{|}B x m x m =-<<, 若B A ⊆,则A 集合应含有集合B 的所有元素, 讨论B 集合:(1)当B =∅时,m m -,即:0m ,(2)当B ≠∅时,则由数形结合可知:需B 集合的端点a 满足: ①m m -<,②1m --,③3m ,三个条件同时成立. 解得:01m <综上由(1)(2)可得实数m 的取值范围为:1m 即:(-∞,1]故答案为:(-∞,1]13.设集合{1A =-,}a ,{2B =,}b ,若A B =,则a b += .【答案】1【解析】根据已知条件得:2a =,1b =-,1a b ∴+=; 故答案为:1.14.设{1M =,2,3,⋯,1995},A 是M 的子集且满足条件:当x A ∈时,15x A ∉,则A 中元素的个数最多是 .【答案】1870【解析】199515133=⨯.故取出所有不是15的倍数的数,共1862个, 这些数均符合要求.在所有15的倍数的数中,215的倍数有8个,这些数又可以取出,这样共取出了1870个.即||1870A .又{k ,15}(9k k =,10,11,⋯,133)中的两个元素不能同时取出, 故||199513381870A -+=.故答案为:1870.15.设集合{|32}A x x =-,{|2121}B x k x k =-+,且A B ⊇,则实数k 的取值范围是 . 【答案】112k - 【解析】2121k k -+恒成立,B ∴≠∅, 因为A B ⊇,∴213212k k --⎧⎨+⎩, 解得112k - 故答案为:112k-. 三.解答题16.(1)已知集合2{|310A x ax x =-+=,}a R ∈,若A 中只有一个元素,求a 的取值范围.(2)集合2{|650}A x x x =-+<,{|3243}C x a x a =-<<-,若C A ⊆,求a 的取值范围.【答案】(1)0a =或94a =;(2)2a【解析】(1)若A 中只有一个元素,则方程2310ax x -+=有且只有一个实根当0a =时方程为一元一次方程,满足条件 当0a ≠,此时△940a =-=,解得:94a =0a ∴=或94a =; (2)2{|650}{|15}A x x x x x =-+<=<<, C A ⊆,当C =∅时,3243a a ->-,解得1a <;当C ≠∅时∴321435a a -⎧⎨-⎩ 解得:2a .17.已知集合2{|40}A x x =-=,集合{|20}B x ax =-=,若B A ⊆,求实数a 的取值集合.【答案】{1,1-,0}【解析】2402x x -=⇒=±,则{2A =,2}-, 若B A ⊆,则B 可能的情况有B =∅,{2}B =或{2}B =-, 若B =∅,20ax -=无解,此时0a =,若{2}B =,20ax -=的解为2x =,有220a -=,解可得1a =,若{2}B =-,20ax -=的解为2x =-,有220a --=,解可得1a =-,综合可得a 的值为1,1-,0;则实数a 的取值集合为{1,1-,0}.18.已知集合2{|3100}A x x x =--.(Ⅰ)若{|621}B x m x m =--,A B ⊆,求实数m 的取值范围; (Ⅱ)若{|121}B x m x m =+-,B A ⊆,求实数m 的取值范围.【答案】(Ⅰ)[3,4];(Ⅱ)(-∞,3].【解析】集合2{|3100}{|25}A x x x x x =--=-, (Ⅰ)A B ⊆,∴62215m m --⎧⎨-⎩,解得:34m ,∴实数m的取值范围为:[3,4];(Ⅱ)B A⊆,①当B=∅时,121m m+>-,即2m<,②当B≠∅时,12112215m mmm+-⎧⎪+-⎨⎪-⎩,解得:23m,综上所述,实数m的取值范围为:(-∞,3].。
1.1.2 集合间的基本关系一、子集1、定义:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含包含关系,称集合A 为集合B 的子集2、记法与读法:记作B A ⊆(或A B ⊇),读作“A 含于B ”(或“B 包含A ”)3、结论(1)任何一个集合是它本身的子集,即A A ⊆.(2)对于集合A ,B ,C ,若A ⊆B ,且B ⊆C ,则C A ⊆4、对子集概念的理解(1)集合A 是集合B 的子集的含义是:集合A 中的任何一个元素都是集合B 中的元素,即由x ∈A 能推出x ∈B .例如{0,1}⊆{-1,0,1},则0∈{0,1},0∈{-1,0,1}.(2)如果集合A 中存在着不是集合B 的元素,那么集合A 不包含于B ,或B 不包含A .此时记作A B 或B ⊉A .(3)注意符号“∈”与“⊆”的区别:“⊆”只用于集合与集合之间,如{0}⊆N.而不能写成{0}∈N ,“∈”只能用于元素与集合之间.如0∈N ,而不能写成0⊆N.二、集合相等1、集合相等的概念如果集合A 是集合B 的子集(A ⊆B ),且集合B 是集合A 的子集(B ⊆A ),此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作B A =.2、对两集合相等的认识(1)若A ⊆B ,又B ⊆A ,则A =B ;反之,如果A =B ,则A ⊆B ,且B ⊆A .这就给出了证明两个集合相等的方法,即欲证A =B ,只需证A ⊆B 与B ⊆A 同时成立即可.(2)若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关.三、真子集1、定义:如果集合A ⊆B ,但存在元素A x ∈,且B x ∈,我们称集合A 是集合B 的真子集2、记法与表示:3、对真子集概念的理解(1)在真子集的定义中,A B 首先要满足A ⊆B ,其次至少有一个x ∈B ,但x ∉A .(2)若A 不是B 的子集,则A 一定不是B 的真子集.四、空集1、定义:我们把不含任何元素的集合,叫做空集2、记法:∅3、规定:空集是任何集合的子集,即∅⊆A4、特性:(1)空集只有一个子集,即它的本身,∅⊆∅(2)A ≠∅,则∅真包含A5、∅与{0}的区别(1)∅是不含任何元素的集合;(2){0}是含有一个元素的集合,∅{0}.题型一、集合间关系的判断例1、(1)下列各式中,正确的个数是( B )①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0} A.1B.2 C.3 D.4题型二、有限集合子集的确定例2(1)集合M={1,2,3}的真子集个数是()A.6 B.7 C.8 D.9(2)满足{1,2}M⊆{1,2,3,4,5}的集合M有________个.[解析](1)集合M的真子集所含有的元素的个数可以有0个,1个或2个,含有0个为∅,含有1个有3个真子集{1},{2},{3},含有2个元素有3个真子集{1,2}{1,3}和{2,3},共有7个真子集,故选B.(2)由题意可得{1,2}M⊆{1,2,3,4,5},可以确定集合M必含有元素1,2,且含有元素3,4,5中的至少一个,因此依据集合M的元素个数分类如下:含有三个元素:{1,2,3}{1,2,4}{1,2,5};含有四个元素:{1,2,3,4}{1,2,3,5}{1,2,4,5};含有五个元素:{1,2,3,4,5}.故满足题意的集合M共有7个.公式法求有限集合的子集个数(1)含n个元素的集合有2n个子集.(2)含n个元素的集合有(2n-1)个真子集.(3)含n个元素的集合有(2n-1)个非空子集.(4)含有n个元素的集合有(2n-2)个非空真子集.(5)若集合A有n(n≥1)个元素,集合C有m(m≥1)个元素,且A⊆B⊆C,则符合条件的集合B有2m-n个.[活学活用]非空集合S⊆{1,2,3,4,5}且满足“若a∈S,则6-a∈S”,则这样的集合S共有________个.解析:由“若a∈S,则6-a∈S”知和为6的两个数都是集合S中的元素,则()集合S中含有1个元素:{3};集合S中含有2个元素:{2,4},{1,5};集合S中含有3个元素:{2,3,4},{1,3,5};集合S中含有4个元素:{1,2,4,5};集合S中含有5个元素:{1,2,3,4,5}.故满足题意的集合S共有7个.题型三、集合间关系的应用例3、已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.[解]当B=∅时,只需2a>a+3,即a>3;当B ≠∅时,根据题意作出如图所示的数轴,可得⎩⎪⎨⎪⎧ a +3≥2a ,a +3<-1或⎩⎪⎨⎪⎧a +3≥2a ,2a >4,解得a <-4或2<a ≤3.综上可得,实数a 的取值范围为a <-4或a >2.[活学活用]1、已知集合A ={x |1<ax <2},B ={x |-1<x <1},求满足A ⊆B 的实数a 的取值范围. 解:(1)当a =0时,A =∅,满足A ⊆B .(2)当a >0时,A ={x |1a <x <2a}.又∵B ={x |-1<x <1}且A ⊆B , 如图作出满足题意的数轴:∴⎩⎪⎨⎪⎧ a >0,1a≥-1,2a ≤1,∴a ≥2. (3)当a <0时,A ={x |2a <x <1a } ∵A ⊆B ,如图所示, ∴⎩⎪⎨⎪⎧ a <0,2a≥-1,1a ≤1,∴a ≤-2.综上所述,a 的取值范围是{a |a =0或a ≥2或a ≤-2}.2、已知集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R},若B ⊆A ,求实数a 的取值范围.解:A ={x |x 2+4x =0}={0,-4},∵B ⊆A ,∴B =∅或B ={0}或B ={-4}或B ={0,-4}.(1)当B =∅时,方程x 2+2(a +1)x +a 2-1=0无实根,则Δ<0,即4(a +1)2-4(a 2-1)<0.∴a <-1.(2)当B ={0}时,有⎩⎪⎨⎪⎧Δ=0,a 2-1=0,∴a =-1.(3)当B ={-4}时,有⎩⎪⎨⎪⎧Δ=0,a 2-8a +7=0,无解. (4)当B ={0,-4}时,由韦达定理得a =1.综上所述,a =1或a ≤-1.课堂练习1.给出下列四个判断:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中,正确的有( )A .0个B .1个C .2个D .3个解析:由空集的性质可知,只有④正确,①②③均不正确.答案:B2.已知A ={x |x 是菱形},B ={x |x 是正方形},C ={x |x 是平行四边形},那么A ,B ,C 之间的关系是 ( B )A .A ⊆B ⊆C B .B ⊆A ⊆C C .A B ⊆CD .A =B ⊆C3.已知集合A ={-1,3,m},B ={3,4},若B ⊆A ,则实数m =________.解析 :∵B ⊆A ,B ={3,4},A ={-1,3,m}∴m ∈A ,∴m =4.答案:44.集合A ={x|0≤x<3且x ∈N}的真子集的个数为________.解析:由题意得A ={0,1,2},故集合A 有7个真子集.答案:75.已知集合A ={x|1≤x ≤2},B ={x|1≤x ≤a}.(1)若A 是B 的真子集,求a 的取值范围;(2)若B 是A 的子集,求a 的取值范围;(3)若A =B ,求a 的取值范围.解:(1)若A 是B 的真子集,即A B ,故a>2.(2)若B 是A 的子集,即B ⊆A ,则a ≤2.(3)若A =B ,则必有a =2.课时跟踪检测(三) 集合间的基本关系一、选择题1.已知集合A ={x |x =3k ,k ∈Z },B ={x |x =6k ,k ∈Z },则A 与B 之间最适合的关系是( )A .A ⊆BB .A ⊇BC .A BD .A B2.已知集合M ={x |-5<x <3,x ∈Z },则下列集合是集合M 的子集的为( )A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤3,x∈N}3.已知集合P={x|x2=1},Q={x|ax=1},若Q⊆P,则a的值是( ) A.1 B.-1C.1或-1 D.0,1或-14.已知集合A⊆{0,1,2},且集合A中至少含有一个偶数,则这样的集合A的个数为( ) A.6 B.5C.4 D.35.已知集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么( ) A.P M B.M PC.M=P D.M P二、填空题6.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间的关系是________.7.图中反映的是“文学作品”“散文”“小说”“叙事散文”这四个文学概念之间的关系,请作适当的选择填入下面的空格:A为________;B为________;C为________;D为________.8.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有2个子集,则a的取值构成的集合为________.三、解答题9.已知A={x|x2-3x+2=0},B={x|ax-2=0},且B⊆A,求实数a组成的集合C.10.设集合A={x|-1≤x+1≤6},B={x|m-1<x<2m+1}.(1)当x∈Z时,求A的非空真子集的个数;(2)若A⊇B,求m的取值范围.答 案课时跟踪检测(三)1.选D 显然B 是A 的真子集,因为A 中元素是3的整数倍,而B 的元素是3的偶数倍.2.选D 先用列举法表示集合,再观察元素与集合的关系.集合M ={-2,-1,0,1},集合R ={-3,-2},集合S ={0,1},不难发现集合P 中的元素-3∉M ,集合Q 中的元素2∉M ,集合R 中的元素-3∉M ,而集合S ={0,1}中的任意一个元素都在集合M 中,所以S ⊆M ,且S M .故选D.3.选D 由题意,当Q 为空集时,a =0;当Q 不是空集时,由Q ⊆P ,a =1或a =-1.4.选A 集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.故选A.5.选C ∵⎩⎪⎨⎪⎧ x +y <0,xy >0,∴⎩⎪⎨⎪⎧ x <0,y <0. ∴M =P .6.解析:∵y =(x -1)2-2≥-2,∴M ={y |y ≥-2}.∴N M .答案:N M7.解析:由Venn 图可得AB ,CD B ,A 与D 之间无包含关系,A 与C 之间无包含关系.由“文学作品”“散文”“小说”“叙事散文”四个文学概念之间的关系,可得A 为小说,B 为文学作品,C 为叙事散文,D 为散文.答案:小说 文学作品 叙事散文 散文8.解析:因为集合A 有且仅有2个子集,所以A 仅有一个元素,即方程ax 2+2x +a =0(a ∈R )仅有一个根.当a =0时,方程化为2x =0,∴x =0,此时A ={0},符合题意.当a ≠0时,Δ=22-4·a ·a =0,即a 2=1,∴a =±1.此时A ={-1},或A ={1},符合题意.∴a =0或a =±1.答案:{0,1,-1}9.解:由x 2-3x +2=0,得x =1,或x =2.∴A ={1,2}.∵B ⊆A ,∴对B 分类讨论如下:(1)若B =∅,即方程ax -2=0无解,此时a =0.(2)若B ≠∅,则B ={1}或B ={2}.当B ={1}时,有a -2=0,即a =2;当B ={2}时,有2a -2=0,即a =1.综上可知,符合题意的实数a 所组成的集合C ={0,1,2}.10.解:化简集合A 得A ={x |-2≤x ≤5}.(1)∵x ∈Z ,∴A ={-2,-1,0,1,2,3,4,5},即A 中含有8个元素,∴A 的非空真子集数为28-2=254(个).(2)①当m ≤-2时,B =∅⊆A ;②当m >-2时,B ={x |m -1<x <2m +1},因此,要B ⊆A ,则只要⎩⎪⎨⎪⎧ m -1≥-22m +1≤5⇒-1≤m ≤2.综上所述,知m 的取值范围是:{m |-1≤m ≤2或m ≤-2}.。
一、内容及其解析(一)内容:集合间的基本关系。
(二)解析:本节课要学的内容有集合间的基本关系指的是集合间的包含和相等关系,其核心(或关键)是弄清楚集合中的元素之间的关系理解它关键就是分析清楚集合中的元素,学生已经学过了集合的含义与表示并且学习过实数间的大小关系。
本节课的内容集合间的基本关系就是在此基础上的发展(或就是它的下位概念,就可以类比它,等等)(定起点)。
由于它还与后续很多内容,比如圆锥曲线有思想方法上(都通过类比的想法来进行学习)联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容。
教学的重点是子集、真子集、等集和空集所以解决重点的关键是分析好集合间的关系、弄清楚集合中的元素。
二、目标及其解析(一)教学目标(1)理解集合之间包含与相等的含义,能识别给定集合的子集、真子集;(2)在具体情境中,了解空集的含义;(二)解析(1)理解集合之间包含与相等的含义,能识别给定集合的子集就是指集合两个集合之间是子集、真子集还是相等,掌握相应的含义以及数学表示、数学记号,并不致混淆;;(2)在具体情境中,了解空集的含义。
就是指要掌握空集的含义,能分析给出的集合是否为空集;对关于空集的规定即空集是任何非空集合的子集,是任何非空集合的真子集要牢记。
三、问题诊断分析在本节课的教学中,学生可能遇到的问题是解题中对空集是任意集合的子集这一条件容易忽略,产生这一问题的原因是对这一新规定接受度不强.要解决这一问题,就是要依据实例反复操练,其中关键是师生的互动要到位.四、教学过程设计一、导入新课实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?二、提出问题问题1:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1) ;(2)设A为某中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;(3)设(4) .问题2:同样是子集,会不会有差别呢?(1) 请看幻灯片上的例子,你能发现什么问题吗?(2) 这两种不同的情形该如何表述呢?(3) 学生回答,师生共同归纳出真子集和集合相等的数学定义及数学语言表述。
1.1.2 集合间的基本关系
一、选择题
1、满足条件{1,2,3}⊂≠
M ⊂≠
{1,2,3,4,5,6}的集合M 的个数是
( )
A 、8
B 、7
C 、6
D 、5
2、若集合{}0|2≤=x x A ,则下列结论中正确的是( ) A 、A=0 B 、A ⊂0 C 、∅=A D 、A ⊂∅
3、下列五个写法中①{}{}2,1,00∈,②{}0≠
⊂∅,③{}{}0,2,12,1,0⊆,④∅∈0,
⑤∅=∅ 0,错误的写法个数是( )
A 、1个
B 、2个
C 、3个
D 、4个
4、若集合}1|{},2|{-=
===-x y y P y y M x ,则P M 等于_____
A 、 }1|{>y y
B 、}1|{≥y y
C 、}0|{>y y
D 、}0|{≥y y
5、不等式组⎪⎩⎪⎨⎧<-<-0
30
122x x x 的解集是_____
A 、 }11|{<<-x x
B 、 }30|{<<x x
C 、 }10|{<<x x
D 、}31|{<<-x x
6、已知全集⎭⎬⎫
⎩⎨⎧
∈∈-=Z a N a a M 且56
|
,则M=( ) A 、{2,3} B 、{1,2,3,4} C 、{1,2,3,6} D 、{-1,2,3,4}
7、集合},02{2
R x a x x x M ∈=-+=,且φM ,则实数a 的范围是( )
A 、1-≤a
B 、1≤a
C 、1-≥a
D 、1≥a
二、填空题
8、调查某班50名学生,音乐爱好者40名,体育爱好者24名,则两方面都爱好的人数最少是 ,
最多是
9、已知集合A ={x ∈R |x 2+2ax+2a 2
-4a+4=0},若φA ,则实数a 的取值是
10、已知集合A ={x ∈N *|2
6+x ∈Z },集合B ={x |x =3k+1,k ∈Z },则 A 与B 的关系是
11、已知A ={x |x <3},B ={x |x <a }
(1)若BA ,则a 的取值范围是______ (2)若AB ,则a 的取值范围是______
12、若{1,2,3}A {1,2,3,4},则A =______
三、解答题
13、设A ={x |x 2-8x +15=0},B ={x |ax -1=0},若BA ,求实数a 组成的集合、
14、已知A ={x ,xy ,1n(xy)},B ={0,|x |,y },且A =B 。
求x ,y 的值。
15、已知M={x | x 2
-2x-3=0},N={x | x 2
+ax+1=0,a ∈R},且N ⊆
≠M,求a 的取值范围、
答案: 一、选择题
1、C ;
2、D ;
3、C ;
4、C ;
5、C ;
6、D ;
7、C 二、填空题
8、14,24; 9、 {2} 10、 AB 11、 (1)a ≤3 (2)a >3 12、{1,2,3,4} 三、解答题
13、解:A ={3,5},因为BA ,所以若B =∅时,则a =0,若B ≠∅时,则a ≠0,这时有
a
1=3或
a
1 =5,
即a =
3
1,或a =
5
1,所以由实数a 组成的集合为{0,
5
1,
3
1}、
14、x=-1,y=-1;
15、解:M={x | x 2-2x-3=0}={3,-1}
∵N ⊆
≠M
(1) 当N= ∅ 时,N ⊆
≠M 成立
N={x | x 2
+ax+1=0} ∴a 2-4<0 ∴-2<a <2
(2) 当N ≠∅ 时,∵N ⊆
≠M
∴3∈N 或 -1∈N
当3∈N 时,32
-3a+1=0即a= -3
10,N={3,
3
1}不满足N ⊆
≠M
当-1∈N 时,(-1)2
-a+1=0即a=2,N={-1} 满足N ⊆
≠M ∴ a 的取値范围是:-2<x ≤2。