1.1.2 集合间的基本关系(2)
- 格式:doc
- 大小:207.50 KB
- 文档页数:4
1.1.2 集合间的基本关系
教学过程:
(I)复习回顾
问题1:元素与集合之间的关系是什么?
问题2:集合有哪些表示方法?集合的分类如何?
)班的学生
通过观察就会发现,这五组集合中,集合A都是集合B的一部分,从而有:
1.子集
B
规定:空集∅是任何集合的子集,即对于任意一个集合A都有∅A。
是两条边相等的三角形
问题3:观察(7)和(8),集合A与集合B的元素,有何关系?
⇒集合A与集合B的元素完全相同,从而有:
问题4:(1)集合A是否是其本身的子集?(由定义可知,是)
(2)除去∅与A本身外,集合A的其它子集与集合A的关系如何?(包含于A,但不等于A)
3.真子集:
由“包含”与“相等”的关系,可有如下结论:
(1)A⊆A (任何集合都是其自身的子集);
(2)若A⊆B,而且A≠B(即B中至少有一个元素不在A中),则称集合A是集合B的真
子集(proper subset),记作A⊂≠B。
(空集是任何非空集合的真子集)
(3)对于集合A,B,C,若A⊆B,B⊆C,即可得出A⊆C;对A⊂≠B,B⊂≠C,同样有A⊂≠C, 即:
包含关系具有“传递性”。
4.证明集合相等的方法:
(1)证明集合A,B中的元素完全相同;(具体数据)
(2)分别证明A⊆B和B⊆A即可。
(抽象情况)
对于集合A,B,若A⊆B而且B⊆A,则A=B。
1.2集合间的基本关系教学设计(人教A版)第一节通过研究集合中元素的特点研究了元素与集合之间的关系及集合的表示方法,而本节重点通过研究元素得到两个集合之间的关系,尤其学生学完两个集合之间的关系后,一定让学生明确元素与集合、集合与集合之间的区别。
课程目标1. 了解集合之间包含与相等的含义,能识别给定集合的子集.2. 理解子集.真子集的概念.3. 能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用。
数学学科素养1.数学抽象:子集和空集含义的理解;2.逻辑推理:子集、真子集、空集之间的联系与区别;3.数学运算:由集合间的关系求参数的范围,常见包含一元二次方程及其不等式和不等式组;4.数据分析:通过集合关系列不等式组,此过程中重点关注端点是否含“=”及 问题;5.数学建模:用集合思想对实际生活中的对象进行判断与归类。
重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、问题导入:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探. 二、 预习课本,引入新课阅读课本7-8页,思考并完成以下问题1. 集合与集合之间有什么关系?怎样表示集合间的这些关系?2. 集合的子集指什么?真子集又是什么?如何用符号表示?3. 空集是什么样的集合?空集和其他集合间具有什么关系?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究 (一)知识整理 1.集合与集合的关系(1)一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A BB A ⊆⊇或读作:A 包含于B(或B 包含A).图示:(2)如果两个集合所含的元素完全相同(A B B A ⊆⊆且),那么我们称这两个集合相等.记作:A =B 读作:A 等于B.图示:2. 真子集若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集。
1.1.2 集合间的基本关系——题型探究类型一 子集、真子集的概念问题【例1】 已知集合M ={x|x <2且x ∈N },N ={x|-2<x <2且x ∈Z }.(1)试判断集合M 、N 间的关系.(2)写出集合M 的子集、集合N 的真子集.[思路探索] 把用描述法表示的集合用列举法表示出来,以便于观察集合的关系和写子集与真子集.解 M ={x|x <2且x ∈N }={0,1},N ={x|-2<x <2,且x ∈Z }={-1,0,1}.(1)M N.(2)M 的子集为: ,{0},{1},{0,1},N 的真子集为: ,{-1},{0},{1},{-1,0},{-1,1},{0,1}.[规律方法] 1.写有限集合的所有子集,首先要注意两个特殊的子集: 和自身;其次按含一个元素的子集,含两个元素的子集…依次写出,以免重复或遗漏.2.若集合A 含n 个元素,那么它子集个数为2n ;真子集个数为2n -1,非空真子集个数为2n -2.【活学活用1】 已知集合A ={x|x 2-3x +2=0,x ∈R }.B ={x|0<x <5,x ∈N },则满足条件A C B 的集合C 的个数为( ).A .1B .2C .3D .4解析 易知A ={1,2},B ={1,2,3,4},又A C B.∴集合C 可以是{1,2},{1,2,3},{1,2,4},{1,2,3,4}.答案 D类型二 集合的相等问题【例2】 集合⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b},则a 2 013+b 2 014的值为( ). A .0 B .1 C .-1 D .±1[思路探索] 集合相等 集合的元素相同 a ≠0 b =0,a 2=1 a 2013+b 2014=-1.解析 ∵⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b}, 又a ≠0,∴b a=0,∴b =0. ∴a 2=1,∴a =±1.又a ≠1,∴a =-1,∴a 2 013+b 2 014=(-1)2 013+02 014=-1.答案 C[规律方法] 1.本题以“0”为着眼点,b a中a 不为0为突破口. 2.两个集合相等,则所含元素完全相同,与顺序无关,但要注意检验,排除与集合元素互异性或与已知矛盾的情形.例如本题中a =1不满足互异性,否则会错选D.【活学活用2】 设集合A ={1,-2,a 2-1},B ={1,a 2-3a,0},若A =B ,求实数a 的值.解 由A =B 及两集合元素特征,∴⎩⎪⎨⎪⎧ a 2-1=0,a 2-3a =-2, ∴⎩⎪⎨⎪⎧a =±1,a =1或a =2. 因此a =1,代入检验满足互异性.∴a =1.类型三 由集合间的关系求参数范围问题【例3】 已知集合A ={x|-3≤x ≤4},B ={x|2m -1<x <m +1},且B A.求实数m 的取值范围.[思路探索] 借助数轴分析,注意B 是否为空集.解 ∵B A ,(1)当B = 时,m +1≤2m -1,解得m ≥2.(2)当B ≠ 时,有⎩⎪⎨⎪⎧ -3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2,综上得m ≥-1.[规律方法] 1.(1)分析集合间的关系时,首先要分析、简化每个集合.(2)借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.2.此类问题要注意对空集的讨论.【活学活用3】 已知集合A ={x|1≤x ≤2},B ={x|1≤x ≤a ,a ≥1}.(1)若A B ,求a 的取值范围;(2)若B A ,求a 的取值范围.解 (1)若A B ,由图可知a >2.(2)若B A ,由图可知1≤a ≤2.方法技巧 分类讨论思想在集合关系中的应用所谓分类讨论,就是当问题所涉及的对象不能统一解决时,就需要对研究对象按某个标准进行分类,然后对每一类分别研究得出每一类结论,最后综合各类结果得到整个问题的答案.在集合包含关系或涉及集合的元素含有参数时,常借助分类讨论思想转化求解.【示例】 (2013·济南高一检测)已知集合A ={x|x 2-4x +3=0},B ={x|mx -3=0},且B A ,求实数m 的集合.[思路分析]解 由x 2-4x +3=0,得x =1或x =3.∴集合A ={1,3}.(1)当B = 时,此时m =0,满足B A.(2)当B ≠ 时,则m ≠0,B ={x|mx -3=0}=⎩⎨⎧⎭⎬⎫3m . ∵B A ,∴3m =1或3m=3,解之得m =3或m =1. 综上可知,所求实数m 的集合为{0,1,3}.[题后反思] 1.解答诸如含有集合包含关系的题目时,一定要警惕“ ”这一陷阱,考虑不周而漏掉对空集的讨论,往往造成不应有的失分,初学者要切记.2.在方程或不等式中,当一次项或二次项系数含参数时,在参数取值范围不确定的情况 下要注意分类讨论.作业1.集合{0}与∅的关系是( ).A .{0}B .{0}∈C .{0}=D .{0}解析 空集是任何非空集合的真子集,故A 正确.集合与集合之间无属于关系,故B 错;空集不含任何元素,{0}含有一个元素0,故C 、D 均错.答案 A2.已知集合A ={x|-1<x <4},B ={x|x <a},若A B ,则实数a 满足( ).A .a <4B .a ≤4C .a >4D .a ≥4解析 由A B ,结合数轴,得a ≥4.答案 D3.已知集合A ={2,9},集合B ={1-m,9},且A =B ,则实数m =________. 解析 ∵A =B ,∴1-m =2,∴m =-1.答案 -14.已知集合A ={-1,3,2m -1},集合B ={3,m 2},若B A ,则实数m =________. 解析 ∵B ={3,m 2},A ={-1,3,2m -1},且B A ,∴m 2∈{-1,3,2m -1},又m 2≠3,∴m 2=2m -1,解得m =1,经检验合题意.答案 15.已知集合A ={(x ,y)|x +y =2,x ,y ∈N },试写出A 的所有子集.解 ∵A ={(x ,y)|x +y =2,x ,y ∈N },∴A ={(0,2),(1,1),(2,0)}.∴A 的子集有: ,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.课堂小结1.子集和真子集(1)A B 包含两种情况:A =B 和A B.当A 是B 的子集时,不要漏掉A =B 的情况.(2)在真子集的定义中,A B 首先要满足A B ,其次至少有一个x ∈B ,但x A.(3)集合与集合之间的关系有包含关系、相等关系,其中包含关系有:包含于( )、包含( ),真包含于( )、真包含( )等,用这些符号时要注意方向.2.空集(1)空集是任何集合的子集,是任何非空集合的真子集.(2)若利用“A B”或“A B”解题,要讨论A= 和A≠ 两种情况.3.涉及字母参数的集合关系时,注意数形结合思想与分类讨论思想的应用.。
《1.1.2集合间的基本关系》学案【学习目标】1.理解掌握集合间的基本关系--包含,真包含关系,并能用韦恩图表示2.区别元素与集合,集合和集合间的关系3.了解空集的含义.【基础知识】1、 子集观察下列几个例子,你能发现两个集合间的关系吗?(1){}{}.5,4,3,2,1,0B ,5,3,1A == (2){},女同学是鸡西一中高一年级的x x |A ={}.|B 学生是鸡西一中高一年级的x x =(3){},|A 是两边相等的三角形x x ={}.|B 是等腰三角形x x = (4)Z B ,N A ==.知识提炼:子集: 为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn 图。
如图l 和图2分别是表示问题中实例1和实例3的Venn 图.图1 图22、 集合相等对于两个集合A 和B ,集合A 是集合B 的子集,集合B 是集合A 的子集,能否同时成立?(1)考查下面两个集合:{},4,3,2,1,0A ={}.4|B 的自然数是不大于x x = (2)两个实数b a ,,如果b a ≥,且a b ≥,那么有b a =,与集合相类比你有什么体会?知识提炼:集合相等:3、 真子集观察下列各组中的集合A 与B ,它们有怎样的关系? (1){},4,3,1A ={}.4,5,3,2,1,0B = (2)()(){},1,0,1,0A =(){}.,,1|,B R y R x y x y x ∈∈=+= (3){},|是偶数x x A ={}.|B 是整数x x =知识提炼:真子集:4、空集知识提炼:空集: 空集,记为.规定:空集是任何集合的子集,空集是任何非空集合的真子集.也就是说,对于任何一个集合A,有A ;若A ≠,有A .【两个结论】(1)任何一个集合是它本身的子集,即A ⊆ A 。
(2)对于集合A 、B 、C ,如果A ⊆ B ,且B ⊆ C ,那么A ⊆ C 类比:a<b ,b<c ,则a<c【基本题型】例1.写出集合{a ,b ,c }的所有的子集.总结升华:集合A 中有n 个元素,请总结出它的子集、真子集、非空真子集个数与n 的关系.例2. 设A ={x |x 2-8x +15=0},B ={x |ax -1=0},若B ⊆A ,求实数a 组成的集合.例3. 已知A ={x ∈R |x <-1,或x >5},B ={x ∈R |a ≤x <a +4}.若A B ,求实数a 的取值范围.●随堂训练(一).集合间的关系1:下列命题:(1)空集无子集;(2)任何集合至少有两个子集;(3)空集是任何集合的真子集;(4)若ΦA 则φ≠A 。
1.1.2 集合间的基本关系
一、选择题
1、满足条件{1,2,3}⊂≠
M ⊂≠
{1,2,3,4,5,6}的集合M 的个数是
( )
A 、8
B 、7
C 、6
D 、5
2、若集合{}0|2≤=x x A ,则下列结论中正确的是( ) A 、A=0 B 、A ⊂0 C 、∅=A D 、A ⊂∅
3、下列五个写法中①{}{}2,1,00∈,②{}0≠
⊂∅,③{}{}0,2,12,1,0⊆,④∅∈0,
⑤∅=∅ 0,错误的写法个数是( )
A 、1个
B 、2个
C 、3个
D 、4个
4、若集合}1|{},2|{-=
===-x y y P y y M x ,则P M 等于_____
A 、 }1|{>y y
B 、}1|{≥y y
C 、}0|{>y y
D 、}0|{≥y y
5、不等式组⎪⎩⎪⎨⎧<-<-0
30
122x x x 的解集是_____
A 、 }11|{<<-x x
B 、 }30|{<<x x
C 、 }10|{<<x x
D 、}31|{<<-x x
6、已知全集⎭⎬⎫
⎩⎨⎧
∈∈-=Z a N a a M 且56
|
,则M=( ) A 、{2,3} B 、{1,2,3,4} C 、{1,2,3,6} D 、{-1,2,3,4}
7、集合},02{2
R x a x x x M ∈=-+=,且φM ,则实数a 的范围是( )
A 、1-≤a
B 、1≤a
C 、1-≥a
D 、1≥a
二、填空题
8、调查某班50名学生,音乐爱好者40名,体育爱好者24名,则两方面都爱好的人数最少是 ,
最多是
9、已知集合A ={x ∈R |x 2+2ax+2a 2
-4a+4=0},若φA ,则实数a 的取值是
10、已知集合A ={x ∈N *|2
6+x ∈Z },集合B ={x |x =3k+1,k ∈Z },则 A 与B 的关系是
11、已知A ={x |x <3},B ={x |x <a }
(1)若BA ,则a 的取值范围是______ (2)若AB ,则a 的取值范围是______
12、若{1,2,3}A {1,2,3,4},则A =______
三、解答题
13、设A ={x |x 2-8x +15=0},B ={x |ax -1=0},若BA ,求实数a 组成的集合、
14、已知A ={x ,xy ,1n(xy)},B ={0,|x |,y },且A =B 。
求x ,y 的值。
15、已知M={x | x 2
-2x-3=0},N={x | x 2
+ax+1=0,a ∈R},且N ⊆
≠M,求a 的取值范围、
答案: 一、选择题
1、C ;
2、D ;
3、C ;
4、C ;
5、C ;
6、D ;
7、C 二、填空题
8、14,24; 9、 {2} 10、 AB 11、 (1)a ≤3 (2)a >3 12、{1,2,3,4} 三、解答题
13、解:A ={3,5},因为BA ,所以若B =∅时,则a =0,若B ≠∅时,则a ≠0,这时有
a
1=3或
a
1 =5,
即a =
3
1,或a =
5
1,所以由实数a 组成的集合为{0,
5
1,
3
1}、
14、x=-1,y=-1;
15、解:M={x | x 2-2x-3=0}={3,-1}
∵N ⊆
≠M
(1) 当N= ∅ 时,N ⊆
≠M 成立
N={x | x 2
+ax+1=0} ∴a 2-4<0 ∴-2<a <2
(2) 当N ≠∅ 时,∵N ⊆
≠M
∴3∈N 或 -1∈N
当3∈N 时,32
-3a+1=0即a= -3
10,N={3,
3
1}不满足N ⊆
≠M
当-1∈N 时,(-1)2
-a+1=0即a=2,N={-1} 满足N ⊆
≠M ∴ a 的取値范围是:-2<x ≤2。